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Left: Circular bright rings make up the diffraction pattern 
obtained when an electron beam is passed through a 
thin polycrystalline aluminum sheet. The pattern results 
from the wave behavior of the electrons; the waves are 
diffracted by the Al crystals. Right: A magnet brought to 
the screen bends the electron paths and distorts the dif-
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pattern was due to X-rays, which are electromagnetic 
waves. Courtesy of Farley Chicilo
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FOURTH EDITION

The textbook represents a first course in elec-
tronic materials and devices for undergraduate 
students. With the additional topics, the text can 
also be used in a graduate-level introductory 
course in electronic materials for electrical engi-
neers and material scientists. The fourth edition is 
an extensively revised and extended version of 
the third edition based on reviewer comments and 
the developments in electronic and optoelectronic 
materials over the last ten years. The fourth edi-
tion has many new and expanded topics, new 
worked examples, new illustrations, and new 
homework problems. The majority of the illustra-
tions have been greatly improved to make them 
clearer. A very large number of new homework 
problems have been added, and many more solved 
problems have been provided that put the con-
cepts into applications. More than 50% of the il-
lustrations have gone through some kind of 
revision to improve the clarity. Furthermore, 
more terms have been added under Defining 

Terms, which the students have found very useful. 
Bragg’s diffraction law that is mentioned in sev-
eral chapters is kept as Appendix A for those 
readers who are unfamiliar with it.
 The fourth edition is one of the few books on 
the market that have a broad coverage of elec-
tronic materials that today’s scientists and engi-
neers need. I believe that the revisions have 
improved the rigor without sacrificing the origi-
nal semiquantitative approach that both the stu-
dents and instructors liked. The major revisions in 
scientific content can be summarized as follows:

Chapter 1 Thermal expansion; kinetic mole-
cular theory; atomic diffusion; 
 molecular collisions and vacuum 
deposition; particle flux density; 

line defects; planar defects; crystal 
surfaces; Grüneisen’s rule.

Chapter 2 Temperature dependence of resis-
tivity, strain gauges, Hall effect; 
ionic conduction; Einstein relation 
for drift mobility and diffusion;  
ac conductivity; resistivity of thin 
films; interconnects in microelec-
tronics; electromigration.

Chapter 3 Electron as a wave; infinite poten-
tial well; confined electron in a 
 finite potential energy well; stimu-
lated emission and photon amplifi-
cation; He–Ne laser, optical fiber 
amplification.

Chapter 4 Work function; electron photo-
emission; secondary emission; 
electron affinity and photomulti-
plication; Fermi–Dirac statistics; 
conduction in metals; thermoelec-
tricity and Seebeck coefficient; 
thermocouples; phonon concentra-
tion changes with temperature.

Chapter 5 Degenerate semiconductors; direct 
and indirect recombination; E vs.  
k diagrams for direct and indirect 
bandgap semiconductors; Schottky 
junction and depletion layer;  
Seebeck effect in semiconductors 
and voltage drift.

Chapter 6 The pn junction; direct bandgap 
pn junction; depletion layer capac-
itance; linearly graded junction; 
hyperabrupt junctions; light emit-
ting diodes (LEDs); quantum well 
high intensity LEDs; LED materi-
als and structures; LED character-
istics; LED spectrum; brightness 
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and efficiency of LEDs; multi-
junction solar cells.

Chapter 7 Atomic polarizability; interfacial 
polarization; impact ionization 
in gases and breakdown; 
 supercapacitors.

Chapter 8 anisotropic and giant magnetore-
sistance; magnetic recording 
 materials; longitudinal and 
 vertical magnetic recording; 
 materials for magnetic storage; 
superconductivity.

Chapter 9 Refractive and group index of  
Si; dielectric mirrors; free car-
rier absorption; liquid crystal 
 displays.

ORGANIZATION AND FEATURES

In preparing the fourth edition, as in previous edi-
tion, I tried to keep the general treatment and 
various proofs at a semiquantitative level without 
going into detailed physics. Many of the problems 
have been set to satisfy engineering accreditation 
requirements. Some chapters in the text have ad-
ditional topics to allow a more detailed treatment, 
usually including quantum mechanics or more 
mathematics. Cross referencing has been avoided 
as much as possible without too much repetition 
and to allow various sections and chapters to be 
skipped as desired by the reader. The text has 
been written so as to be easily usable in one- 
semester courses by allowing such flexibility.
 Some important features are:

∙ The principles are developed with the mini-
mum of mathematics and with the emphasis 
on physical ideas. Quantum mechanics is part 
of the course but without its difficult mathe-
matical formalism.

∙ There are numerous worked examples or 
solved problems, most of which have a prac-
tical significance. Students learn by way of 
examples, however simple, and to that end a 
large number (227 in total) of solved prob-
lems have been provided.

∙ Even simple concepts have examples to aid 
learning.

∙ Most students would like to have clear dia-
grams to help them visualize the explanations 
and understand concepts. The text includes 
565 illustrations that have been profession-
ally prepared to reflect the concepts and aid 
the explanations in the text. There are also 
numerous photographs of practical devices 
and scientists and engineers to enhance the 
learning experience.

∙ The end-of-chapter questions and problems 
(346 in total) are graded so that they start 
with easy concepts and eventually lead to 
more sophisticated concepts. Difficult prob-
lems are identified with an asterisk (*). Many 
practical applications with diagrams have 
been included. 

∙ There is a glossary, Defining Terms, at the 
end of each chapter that defines some of the 
concepts and terms used, not only within the 
text but also in the problems.

∙ The end of each chapter includes a section Ad-

ditional Topics to further develop important 
concepts, to introduce interesting applications, 
or to prove a theorem. These topics are in-
tended for the keen student and can be used as 
part of the text for a two-semester course.

∙ The text is supported by McGraw-Hill’s text-
book website that contains resources, such 
as  solved problems, for both students and 
 instructors.

∙ The fourth edition is supported by an exten-
sive PowerPoint presentation for instructors 
who have adopted the book for their course. 
The PowerPoint has all the illustrations in 
color, and includes additional color photos. 
The basic concepts and equations are also 
highlighted in additional slides. 

∙ There is a regularly updated online extended 
Solutions Manual for all instructors; simply 
locate the McGraw-Hill website for this 
textbook. The Solutions Manual provides 
not only detailed explanations to the solu-
tions, but also has color diagrams as well as 
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references and helpful notes for instructors.  
(It also has the answers to those “why?” 
questions in the text.)
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Left: GaAs ingots and wafers. GaAs is a III–V compound semiconductor 
because Ga and As are from Groups III and V, respectively. 
Right: An InxGa1−xAs (a III–V compound semiconductor)-based  
photodetector.

 Left: Courtesy of Sumitomo Electric Industries. Right: Courtesy of 
Thorlabs.

Left: A detector structure that will be used to detect dark matter particles. Each individual cylindrical detector has a CaWO4 single crystal, 
similar to that shown on the bottom right. These crystals are called scintillators, and convert high-energy radiation to light. The Czochralski 
technique is used to grow the crystal shown on top right, which is a CaWO4 ingot. The detector crystal is cut from this ingot.

 Left: Courtesy of Max Planck Institute for Physics. Right: Reproduced from Andreas Erb and Jean-Come Lanfranchi, CrystEngCom, 15, 
2301, 2015, by permission of the Royal Society of Chemistry. All rights reserved.
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C H A P T E R

1

Elementary Materials  
Science Concepts1

Understanding the basic building blocks of matter has been one of the most intrigu-
ing endeavors of humankind. Our understanding of interatomic interactions has now 
reached a point where we can quite comfortably explain the macroscopic properties 
of matter, based on quantum mechanics and electrostatic interactions between elec-
trons and ionic nuclei in the material. There are many properties of materials that 
can be explained by a classical treatment of the subject. In this chapter, as well as 
in Chapter 2, we treat the interactions in a material from a classical perspective and 
introduce a number of elementary concepts. These concepts do not invoke any quantum 
mechanics, which is a subject of modern physics and is introduced in Chapter 3. 
Although many useful engineering properties of materials can be treated with hardly 
any quantum mechanics, it is impossible to develop the science of electronic materials 
and devices without modern physics.

1.1  ATOMIC STRUCTURE AND ATOMIC NUMBER

The model of the atom that we must use to understand the atom’s general behavior 
involves quantum mechanics, a topic we will study in detail in Chapter 3. For the 
present, we will simply accept the following facts about a simplified, but intuitively 
satisfactory, atomic model called the shell model, based on the Bohr model (1913).
 The mass of the atom is concentrated at the nucleus, which contains protons and 
neutrons. Protons are positively charged particles, whereas neutrons are neutral par-
ticles, and both have about the same mass. Although there is a Coulombic repulsion 

 1 This chapter may be skipped by readers who have already been exposed to an elementary course in 
materials science.
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between the protons, all the protons and neutrons are held together in the nucleus 
by the strong force, which is a powerful, fundamental, natural force between par-
ticles. This force has a very short range of influence, typically less than 10−15 m. 
When the protons and neutrons are brought together very closely, the strong force 
overcomes the electrostatic repulsion between the protons and keeps the nucleus 
intact. The number of protons in the nucleus is the atomic number Z of the element.
 The electrons are assumed to be orbiting the nucleus at very large distances 
compared to the size of the nucleus. There are as many orbiting electrons as there 
are protons in the nucleus. An important assumption in the Bohr model is that only 
certain orbits with fixed radii are stable around the nucleus. For example, the closest 
orbit of the electron in the hydrogen atom can only have a radius of 0.053 nm. Since 
the electron is constantly moving around an orbit with a given radius, over a long 
time period (perhaps ∼10−12 seconds on the atomic time scale), the electron would 
appear as a spherical negative-charge cloud around the nucleus and not as a single 
dot representing a finite particle. We can therefore view the electron as a charge 
contained within a spherical shell of a given radius.
 Due to the requirement of stable orbits, the electrons therefore do not randomly 
occupy the whole region around the nucleus. Instead, they occupy various well-
defined spherical regions. They are distributed in various shells and subshells within 
the shells, obeying certain occupation (or seating) rules.2 The example for the carbon 
atom is shown in Figure 1.1.
 The shells and subshells that define the whereabouts of the electrons are labeled 
using two sets of integers, n and ℓ. These integers are called the principal and 
orbital angular momentum quantum numbers, respectively. (The meanings of 
these names are not critical at this point.) The integers n and ℓ have the values 
n = 1, 2, 3, . . . , and ℓ = 0, 1, 2, . . . , n − 1, and ℓ < n. For each choice of n, 
there are n values of ℓ, so higher-order shells contain more subshells. The shells 
corresponding to n = 1, 2, 3, 4, . . . are labeled by the capital letters K, L, M, N, . . . , 
and the subshells denoted by ℓ = 0, 1, 2, 3, . . . are labeled s, p, d, f . . . . The 

Nucleus

2s

2p

1s

K

L

L shell with
two subshells

1s22s22p2 or [He]2s22p2

Figure 1.1 The shell model of the carbon atom, in 
which the electrons are confined to certain shells 
and subshells within shells.

 2 In Chapter 3, in which we discuss the quantum mechanical model of the atom, we will see that these shells 
and subshells are spatial regions around the nucleus where the electrons are most likely to be found.
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Table 1.1  Maximum possible number of electrons in the shells 
and subshells of an atom

 Subshell

  ℓ = 0 1 2 3

n Shell s p d f

1 K 2
2 L 2 6
3 M 2 6 10
4 N 2 6 10 14

 3 We will actually show this in Chapter 3 using quantum mechanics.

subshell with ℓ = 1 in the n = 2 shell is thus labeled the 2p subshell, based on the 
standard notation nℓ.
 There is a definite rule to filling up the subshells with electrons; we cannot 
simply put all the electrons in one subshell. The number of electrons a given subshell 
can take is fixed by nature to be3 2(2ℓ + 1). For the s subshell (ℓ = 0), there are 
two electrons, whereas for the p subshell, there are six electrons, and so on. Table 1.1 
summarizes the most number of electrons that can be put into various subshells and 
shells of an atom. Obviously, the larger the shell, the more electrons it can take, 
simply because it contains more subshells. The shells and subshells are filled start-
ing with those closest to the nucleus as explained next.
 The number of electrons in a subshell is indicated by a superscript on the sub-
shell symbol, so the electronic structure, or configuration, of the carbon atom (atomic 
number 6) shown in Figure 1.1 becomes 1s22s22p2. The K shell has only one sub-
shell, which is full with two electrons. This is the structure of the inert element He. 
We can therefore write the electronic configuration more simply as [He]2s22p2. The 
general rule is to put the nearest previous inert element, in this case He, in square 
brackets and write the subshells thereafter.
 The electrons occupying the outer subshells are the farthest away from the 
nucleus and have the most important role in atomic interactions, as in chemical reac-
tions, because these electrons are the first to interact with outer electrons on neigh-
boring atoms. The outermost electrons are called valence electrons and they 
determine the valency of the atom. Figure 1.1 shows that carbon has four valence 
electrons in the L shell.
 When a subshell is full of electrons, it cannot accept any more electrons and it 
is said to have acquired a stable configuration. This is the case with the inert ele-
ments at the right-hand side of the Periodic Table, all of which have completely 
filled subshells and are rarely involved in chemical reactions. The majority of such 
elements are gases inasmuch as the atoms do not bond together easily to form a 
liquid or solid. They are sometimes used to provide an inert atmosphere instead of 
air for certain reactive materials.
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 In an atom such as the Li atom, there are two electrons in the 1s subshell and 
one electron in the 2s subshell. The atomic structure of Li is 1s22s1. The third elec-
tron is in the 2s subshell, rather than any other subshell, because this is the arrange-
ment of the electrons that results in the lowest overall energy for the whole atom. It 
requires energy (work) to take the third electron from the 2s to the 2p or higher 
subshells as will be shown in Chapter 3. Normally the zero energy reference cor-
responds to the electron being at infinity, that is, isolated from the atom. When the 
electron is inside the atom, its energy is negative, which is due to the attraction of 
the positive nucleus. An electron that is closer to the nucleus has a lower energy. 
The electrons nearer the nucleus are more closely bound and have higher binding 
energies. The 1s22s1 configuration of electrons corresponds to the lowest energy 
structure for Li and, at the same time, obeys the occupation rules for the subshells. 
If the 2s electron is somehow excited to another outer subshell, the energy of the 
atom increases, and the atom is said to be excited.

 The smallest energy required to remove a single electron from a neutral atom 
and thereby create a positive ion (cation) and an isolated electron is defined as the 
ionization energy of the atom. The Na atom has only a single valence electron in 
its outer shell, which is the easiest to remove. The energy required to remove this 
electron is 5.1 electron volts (eV), which is the Na atom’s ionization energy. The 
electron affinity represents the energy that is needed, or released, when we add an 
electron to a neutral atom to create a negative ion (anion). Notice that the ionization 
term implies the generation of a positive ion, whereas the electron affinity implies 
that we have created a negative ion. Certain atoms, notably the halogens (such as F, 
Cl, Br, and I), can actually attract an electron to form a negative ion. Their electron 
affinities are negative. When we place an electron into a Cl atom, we find that an 
energy of 3.6  eV  is released. The Cl− ion has a lower energy than the Cl atom, 
which means that  it is energetically favorable to form a Cl− ion by introducing an 
electron into the Cl atom.
 There is a very useful theorem in physics, called the Virial theorem, that 
allows us to relate the average kinetic energy KE, average potential energy PE, and 
average total or overall energy E of an electron in an atom, or electrons and nuclei 
in a molecule, through two remarkably simple relationships,4

 E = KE + PE  and  KE = −
1
2

 PE [1.1]

 For example, if we define zero energy for the H atom as the H+ ion and the elec-
tron infinitely separated, then the energy of the electron in the H atom is −13.6 eV. It 
takes 13.6 eV to ionize the H atom. The average PE of the electron, due to its 
Coulombic interaction with the positive nucleus, is −27.2 eV. Its average KE turns 
out to be 13.6 eV. Example 1.1 uses the Virial theorem to calculate the  radius of 
the hydrogen atom, the velocity of the electron, and its frequency of  rotation.

Virial 

theorem

 4 While the final result stated in Equation 1.1 is elegantly simple, the actual proof is quite involved and certainly 
not trivial. As stated here, the Virial theorem applies to a system of charges that interact through electrostatic 
forces only.
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VIRIAL THEOREM AND THE BOHR ATOM Consider the hydrogen atom in Figure 1.2 in 
which the electron is in the stable 1s orbit with a radius ro. The ionization energy of the 
hydrogen atom is 13.6 eV.

a. It takes 13.6 eV to ionize the hydrogen atom, i.e., to remove the electron to infinity. 
If  the condition when the electron is far removed from the hydrogen nucleus defines 
the zero reference of energy, then the total energy of the electron within the H atom is 
−13.6 eV. Calculate the average PE and average KE of the electron.

b. Assume that the electron is in a stable orbit of radius ro around the positive nucleus. 
What is the Coulombic PE of the electron? Hence, what is the radius ro of the elec-
tron orbit?

c. What is the velocity of the electron?
d. What is the frequency of rotation (oscillation) of the electron around the nucleus?

SOLUTION

a. From Equation 1.1 we obtain

 E = PE + KE =
1
2

 PE

 or PE = 2E = 2 × (−13.6 eV) = −27.2 eV

 The average kinetic energy is

 KE = −
1
2

 PE = 13.6 eV

b. The Coulombic PE of interaction between two charges Q1 and Q2 separated by a distance 
ro, from elementary electrostatics, is given by

 PE =
Q1Q2

4πεoro

=
(−e) (+e)

4πεoro

= −
e2

4πεoro

 where we substituted Q1 = −e (electron’s charge), and Q2 = +e (charge of the nucleus). 
Thus the radius ro is

  ro = −
(1.6 × 10−19 C)2

4π(8.85 × 10−12 F m−1) (−27.2 eV × 1.6 × 10−19 J/eV)
  = 5.29 × 10−11 m  or  0.0529 nm

 which is called the Bohr radius (also denoted ao).

 EXAMPLE 1.1

Stable orbit has radius ro

ro

v

+e

–e

Figure 1.2 The planetary model of the hydrogen atom in  
which the negatively charged electron orbits the positively 
charged nucleus.
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c. Since KE = 1
2 mev 

2, the average velocity is

 v = √ KE
1
2  me

= √ 13.6 eV × 1.6 × 10−19 J/eV
1
2(9.1 × 10−31 kg)

= 2.19 × 106 m s−1

d. The period of orbital rotation T is

 T =
2πro

v
=

2π(0.0529 × 10−9 m)

2.19 × 106 m s−1 = 1.52 × 10−16 seconds

 The orbital frequency f = 1∕T = 6.59 × 1015 s−1 (Hz).

1.2  ATOMIC MASS AND MOLE

We had defined the atomic number Z as the number of protons in the nucleus of an 
atom. The atomic mass number A is simply the total number of protons and neu-
trons in the nucleus. It may be thought that we can use the atomic mass number A 

of an atom to gauge its atomic mass, but this is done slightly differently to account 
for the existence of different isotopes of an element; isotopes are atoms of a given 
element that have the same number of protons but a different number of neutrons in 
the nucleus. The atomic mass unit (amu) u is a convenient atomic mass unit that 
is equal to 1

12 of the mass of a neutral carbon atom that has a mass number A = 12 
(6 protons and 6 neutrons). It has been found that u = 1.66054 × 10−27 kg.
 The atomic mass or relative atomic mass or simply atomic weight Mat of an 
element is the average atomic mass, in atomic mass units, of all the naturally occurring 
isotopes of the element. Atomic masses are listed in the Periodic Table. Avogadro’s 

number NA is the number of atoms in exactly 12 grams of carbon-12, which is 
6.022 × 1023 to three decimal places. Since the atomic mass Mat is defined as 1

12 of 
the mass of the carbon-12 atom, it is straightforward to show that NA number of atoms 
of any substance have a mass equal to the atomic mass Mat in grams.
 A mole of a substance is that amount of the substance that contains exactly 
Avogadro’s number NA of atoms or molecules that make up the substance. One 
mole of a substance has a mass as much as its atomic (molecular) mass in grams. 
For example, 1 mole of copper contains 6.022 × 1023 number of copper atoms and 
has a mass of 63.55 grams. Thus, an amount of an element that has 6.022 × 1023 
atoms has a mass in grams equal to the atomic mass. This means we can express 
the atomic mass as grams per unit mole (g mol−1). The atomic mass of Au is 
196.97 amu or g mol−1. Thus, a 10 gram bar of gold has (10 g)∕(196.97 g mol−1) 
or 0.0507 moles.
 Frequently we have to convert the composition of a substance from atomic per-
centage to weight percentage, and vice versa. Compositions in materials engineering 
generally use weight percentages, whereas chemical formulas are given in terms of 
atomic composition. Suppose that a substance (an alloy or a compound) is composed 
of two elements, A and B. Let the weight fractions of A and B be wA and wB, 
respectively. Let nA and nB be the atomic or molar fractions of A and B; that is, nA 

represents the fraction of type A atoms, nB represents the fraction of type B atoms 
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in the whole substance, and nA + nB = 1. Suppose that the atomic masses of A and 
B are MA and MB. Then nA and nB are given by

 nA =
wA∕MA

wA∕MA + wB∕MB

  and  nB = 1 − nA [1.2]

where wA + wB = 1. Equation 1.2 can be readily rearranged to obtain wA and wB in 
terms of nA and nB.

Weight to 

atomic 

percentage

Net force

COMPOSITIONS IN ATOMIC AND WEIGHT PERCENTAGES Consider a Pb–Sn solder that 
is 38.1 wt.% Pb and 61.9 wt.% Sn (this is the eutectic composition with the lowest melting 
point). What are the atomic fractions of Pb and Sn in this solder?

SOLUTION

For Pb, the weight fraction and atomic mass are, respectively, wA = 0.381 and MA = 
207.2 g mol−1 and for Sn, wB = 0.619 and MB = 118.71 g mol−1. Thus, Equation 1.2 gives

  nA =
wA∕MA

wA∕MA + wB∕MB

=
(0.381)∕(207.2)

0.381∕207.2 + 0.619∕118.71
  = 0.261  or  26.1 at.%

and  nB =
wB∕MB

wA∕MA + wB∕MB

=
(0.619)∕(118.71)

0.381∕207.2 + 0.619∕118.71
  = 0.739  or  73.9 at.%

 Thus the alloy is 26.1 at.% Pb and 73.9 at.% Sn, which can be written as Pb0.261 Sn0.739.

1.3  BONDING AND TYPES OF SOLIDS

1.3.1 MOLECULES AND GENERAL BONDING PRINCIPLES

When two atoms are brought together, the valence electrons interact with each other 
and with the neighbor’s positively charged nucleus. The result of this interaction is 
often the formation of a bond between the two atoms, producing a molecule. The 
formation of a bond means that the energy of the system of two atoms together must 
be less than that of the two atoms separated, so that the molecule formation is ener-
getically favorable, that is, more stable. The general principle of molecule formation 
is illustrated in Figure 1.3a, showing two atoms brought together from infinity. As 
the two atoms approach each other, the atoms exert attractive and repulsive forces 
on each other as a result of mutual electrostatic interactions. Initially, the attractive 
force FA dominates over the repulsive force FR. The net force FN is the sum of the two,

 FN = FA + FR

and this is initially attractive, as indicated in Figure 1.3a. Note that we have defined 
the attractive force as negative and repulsive force as positive in Figure 1.3a.5

 EXAMPLE 1.2

 5 In some materials science books and in the third edition of this book, the attractive force is shown as positive, 
which is an arbitrary choice. A positive attractive force is more appealing to our intuition.
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 The potential energy E(r) of the two atoms can be found from6

 FN = −
dE

dr

by integrating the net force FN. Figure 1.3a and b show the variation of the net force 
FN(r) and the overall potential energy E(r) with the interatomic separation r as the 
two atoms are brought together from infinity. The lowering of energy corresponds 
to an attractive interaction between the two atoms.
 The variations of FA and FR with distance are different. Force FA varies slowly, 
whereas FR varies strongly with separation and is strongest when the two atoms are 
very close. When the atoms are so close that the individual electron shells overlap, 
there is a very strong electron-to-electron shell repulsion and FR dominates. An 
equilibrium will be reached when the attractive force just balances the repulsive force 
and the net force is zero, or

 FN = FA + FR = 0 [1.3]

 In this state of equilibrium, the atoms are separated by a certain distance ro, as 
shown in Figure 1.3. This distance is called the equilibrium separation and is effectively 

0
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 6 Remember that the change dE in the PE is the work done by the force, dE = −FN dr. In Figure 1.3b, when the 
atoms are far separated, dE/dr is negative, which represents an attractive force.

Figure 1.3 (a) Force versus interatomic separation and (b) potential energy versus interatomic separation. Note that the 
negative sign represents attraction.
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the bond length. On the energy diagram, FN = 0 means dE∕dr = 0, which means 
that the equilibrium of two atoms corresponds to the potential energy of the system 
acquiring its minimum value. Consequently, the molecule will only be formed if 
the  energy of the two atoms as they approach each other can attain a minimum. 
This minimum energy also defines the bond energy of the molecule, as depicted in 
Figure 1.3b. An energy of Ebond is required to separate the two atoms, and this represents 
the bond energy.

 Although we considered only two atoms, similar arguments also apply to bond-
ing between many atoms, or between billions of atoms as in a typical solid. Although 
the actual details of FA and FR will change from material to material, the general 
principle that there is a bonding energy Ebond per atom and an equilibrium interatomic 
separation ro will still be valid. Even in a solid in the presence of many interacting 
atoms, we can still identify a general potential energy curve E(r) per atom similar to 
the type shown in Figure 1.3b. We can also use the curve to understand the properties 
of the solid, such as the thermal expansion coefficient and elastic and bulk moduli.

1.3.2 COVALENTLY BONDED SOLIDS: DIAMOND

Two atoms can form a bond with each other by sharing some or all of their valence 
electrons and thereby reducing the overall potential energy of the combination. The 
covalent bond results from the sharing of valence electrons to complete the subshells 
of each atom. Figure 1.4 shows the formation of a covalent bond between two hydro-
gen atoms as they come together to form the H2 molecule. When the 1s subshells 
overlap, the electrons are shared by both atoms and each atom now has a complete 
subshell. As illustrated in Figure 1.4, electrons 1 and 2 must now orbit both atoms; 

1s

Electron shell

Covalent bond

H atom H atom

H–H molecule
1

1

2

2

12

1s

Figure 1.4 Formation of a covalent bond between 
two H atoms, leading to the H2 molecule. Electrons 
spend a majority of their time between the two  
nuclei, which results in a net attraction between 
the electrons and the two nuclei, which is the origin 
of the covalent bond.
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they therefore cross the overlap region more frequently, indeed twice as often. Thus, 
electron sharing, on average, results in a greater concentration of negative charge in 
the region between the two nuclei, which keeps the two nuclei bonded to each other. 
Furthermore, by synchronizing their motions, electrons 1 and 2 can avoid crossing 
the overlap region at the same time. For example, when electron 1 is at the far right 
(or left), electron 2 is in the overlap region; later, the situation is reversed.
 The electronic structure of the carbon atom is [He]2s22p2 with four empty seats 
in the 2p subshell. The 2s and 2p subshells, however, are quite close. When other 
atoms are in the vicinity, as a result of interatomic interactions, the two subshells 
become indistinguishable and we can consider only the shell itself, which is the L 

shell with a capacity of eight electrons. It is clear that the C atom with four vacan-
cies in the L shell can readily share electrons with four H atoms, as depicted in 
Figure 1.5a and b, whereby the C atom and each of the H atoms attain complete 
shells. This is the CH4 molecule, which is the gas methane. The repulsion between 
the electrons in one bond and the electrons in a neighboring bond causes the bonds 
to spread as far out from each other as possible, so that in three dimensions, the H 
atoms occupy the corners of an imaginary tetrahedron and the CH bonds are at an 
angle of 109.5° to each other, as sketched in Figure 1.5c.
 The C atom can also share electrons with other C atoms, as shown in Figure 1.6. 
Each neighboring C atom can share electrons with other C atoms, leading to a three-
dimensional network of a covalently bonded structure. This is the structure of  the 
precious diamond crystal, in which all the carbon atoms are covalently bonded to 
each other, as depicted in the figure. The coordination number (CN) is the number 
of nearest neighbors for a given atom in the solid. As is apparent in Figure 1.6, the 
coordination number for a carbon atom in the diamond crystal structure is 4.
 Due to the strong Coulombic attraction between the shared electrons and the 
positive nuclei, the covalent bond energy is usually the highest for all bond types, 

H

109.5°

C

H
H

H

H

H H

H

L shell

K shell

Covalent bond

C
C

H

H H

H

Covalent
bonds

(a) (b) (c)

Figure 1.5 (a) Covalent bonding in methane, CH4, which involves four hydrogen atoms sharing electrons with 
one carbon atom. Each covalent bond has two shared electrons. The four bonds are identical and repel each 
other. (b) Schematic sketch of CH4 on paper. (c) In three dimensions, due to symmetry, the bonds are directed 
toward the corners of a tetrahedron.
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leading to very high melting temperatures and very hard solids: diamond is one of 
the hardest known materials.
 Covalently bonded solids are also insoluble in nearly all solvents. The directional 
nature and strength of the covalent bond also make these materials nonductile (or 
nonmalleable). Under a strong force, they exhibit brittle fracture. Further, since all 
the valence electrons are locked in the bonds between the atoms, these electrons are 
not free to drift in the crystal when an electric field is applied. Consequently, the 
electrical conductivity of such materials is very poor.

1.3.3 METALLIC BONDING: COPPER

Metal atoms have only a few valence electrons, which are not very difficult to 
remove. When many metal atoms are brought together to form a solid, these valence 
electrons are lost from individual atoms and become collectively shared by all the 
ions. The valence electrons therefore become delocalized and form an electron gas 
or electron cloud, permeating the space between the ions, as depicted in Figure 1.7. 
The attraction between the negative charge of this electron gas and the metal ions 
more than compensates for the energy initially required to remove the valence elec-
trons from the individual atoms. Thus, the bonding in a metal is essentially due to 
the attraction between the stationary metal ions and the freely wandering electrons 
between the ions.
 The bond is a collective sharing of electrons and is therefore nondirectional. 
Consequently, the metal ions try to get as close as possible, which leads to close-packed 

crystal structures with high coordination numbers, compared to covalently bonded 
solids. In the particular example shown in Figure 1.7, Cu+ ions are packed as closely 
as possible by the gluing effect of the electrons between the ions, forming a crystal 
structure called the face-centered cubic (FCC). The FCC crystal structure, as 
explained later in Section 1.9, has Cu+ ions at the corners of a cube and a Cu+ at 
the center of each cube-face. (See Figure 1.32.)

Figure 1.6 The diamond crystal is a covalently 
bonded network of carbon atoms.

Each carbon atom is bonded covalently to four 
neighbors, forming a regular three-dimensional 
pattern of atoms that constitutes the diamond 
crystal.
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 The results of this type of bonding are dramatic. First, the nondirectional nature 
of the bond means that under an applied force, metal ions are able to move with 
respect to each other, especially in the presence of certain crystal defects (such as 
dislocations). Thus, metals tend to be ductile. Most importantly, however, the “free” 
valence electrons in the electron gas can respond readily to an applied electric field 
and drift along the force of the field, which is the reason for the high electrical 
conductivity of metals. Furthermore, if there is a temperature gradient along a metal 
bar, the free electrons can also contribute to the energy transfer from the hot to the 
cold regions, since they frequently collide with the metal ions and thereby transfer 
energy. Metals therefore, typically, also have good thermal conductivities; that is, 
they easily conduct heat. This is why when you touch your finger to a metal it feels 
cold because it conducts heat “away” from the finger to the ambient (making the 
fingertip “feel” cold).

1.3.4 IONICALLY BONDED SOLIDS: SALT

Common table salt, NaCl, is a classic example of a solid in which the atoms are 
held together by ionic bonding. Ionic bonding is frequently found in materials that 
normally have a metal and a nonmetal as the constituent elements. Sodium (Na) is 
an alkaline metal with only one valence electron that can easily be removed to form 
an Na+ ion with complete subshells. The ion Na+ looks like the inert element Ne, 
but with a positive charge. Chlorine has five electrons in its 3p subshell and can 
readily accept one more electron to close this subshell. By taking the electron given 
up by the Na atom, the Cl atom becomes negatively charged and looks like the inert 
element Ar with a net negative charge. Transferring the valence electron of Na to 
Cl thus results in two oppositely charged ions, Na+ and Cl−, which are called the 
cation and anion, respectively, as shown in Figure 1.8. As a result of the Coulombic 
force, the two ions pull each other until the attractive force is just balanced by the 

Free valence
electrons

forming an
electron gas

Positive
metal ion

cores

Figure 1.7 In metallic bonding, the valence electrons from the metal atoms form a “cloud  
of electrons,” which fills the space between the metal ions and “glues” the ions together 
through Coulombic attraction between the electron gas and the positive metal ions.
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repulsive force between the closed electron shells. Initially, energy is needed to 
remove the electron from the Na atom and transfer it to the Cl atom. However, this 
is more than compensated for by the energy of Coulombic attraction between the 
two resulting oppositely charged ions, and the net effect is a lowering of the potential 
energy of the Na+ and Cl− ion pair.
 When many Na and Cl atoms are ionized and brought together, the resulting 
collection of ions is held together by the Coulombic attraction between the Na+ and 
Cl− ions. The solid thus consists of Na+ cations and Cl− anions holding each other 
through the Coulombic force, as depicted in Figure 1.9. The Coulombic force around 
a charge is nondirectional; also, it can be attractive or repulsive, depending on the 
polarity of the interacting ions. There are also repulsive Coulombic forces between 
the Na+ ions themselves and between the Cl− ions themselves. For the solid to be 
stable, each Na+ ion must therefore have Cl− ions as nearest neighbors and vice versa 
so that like-ions are not close to each other.
 The ions are in equilibrium and the solid is stable when the net potential 
energy is minimum, or dE∕dr = 0. Figure 1.10 illustrates the variation of the net 
potential energy for a pair of ions as the interatomic distance r is reduced from 
infinity to less than the equilibrium separation, that is, as the ions are brought 
together from infinity. Zero energy corresponds to separated Na and Cl atoms. 
Initially, about 1.5 eV is required to transfer the electron from the Na to Cl atom 
and thereby form Na+ and Cl− ions. Then, as the ions come together, the energy 
is lowered, until it reaches a minimum at about 6.3 eV below the energy of the 
separated Na and Cl atoms. When r = 0.28 nm, the energy is minimum and the 

Cl

3p3s

Closed K and L shells

Na

3s

Closed K and L shells

(a)

Cl–

Na+

ro

(c)

Cl–

3p3s
Na+

FA

r

FA

(b)

Figure 1.8 The formation of an ionic 
bond between Na and Cl atoms in NaCl.

The attraction is due to Coulombic forces.
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Figure 1.10 Sketch of the potential  
energy per ion pair in solid NaCl.

Zero energy corresponds to neutral Na 
and Cl atoms infinitely separated.

Cl–Na+ Na+ Na+Cl– Cl–

Cl–Na+ Na+ Na+Cl–Cl–

Cl–Na+ Na+ Na+Cl– Cl–

Cl–Na+ Na+ Na+Cl–Cl–

Cl–Na+ Na+ Na+Cl– Cl–

Cl–Na+ Na+ Na+Cl–Cl–
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Figure 1.9 (a) A schematic illustration of a cross section from solid NaCl. Solid NaCl is made of 
Cl− and Na+ ions arranged alternatingly, so the oppositely charged ions are closest to each other 
and attract each other. There are also repulsive forces between the like-ions. In equilibrium, the 
net force acting on any ion is zero. (b) Solid NaCl.

ions are in equilibrium. The bonding energy per ion in solid NaCl is thus 6.3∕2 
or 3.15 eV, as is apparent in Figure 1.10. The energy required to take solid NaCl 
apart into individual Na and Cl atoms is the atomic cohesive energy of the solid, 
which is 3.15 eV per atom.
 In solid NaCl, the Na+ and Cl− ions are thus arranged with each one having 
oppositely charged ions as its neighbors, to attain a minimum of potential energy. 
Since there is a size difference between the ions and since we must avoid like-ions 
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getting close to each other, if we want to achieve a stable structure, each ion can 
have only six oppositely charged ions as nearest neighbors. Figure 1.9b shows the 
packing of Na+ and Cl− ions in the solid. The number of nearest neighbors, that is, 
the coordination number, for both cations and anions in the NaCl crystal is 6.
 A number of solids consisting of metal–nonmetal elements follow the NaCl 
example and have ionic bonding. They are called ionic crystals and, by virtue of 
their ionic bonding characteristics, share many physical properties. For example, LiF, 
MgO (magnesia), CsCl, and ZnS are all ionic crystals. They are strong, brittle mate-
rials with high melting temperatures compared to metals. Most become soluble in 
polar liquids such as water. Since all the electrons are within the rigidly positioned 
ions, there are no free or loose electrons to wander around in the crystal as in metals. 
Therefore, ionic solids are typically electrical insulators. Compared to metals and 
covalently bonded solids, ionically bonded solids have lower thermal conductivity 
since ions cannot readily pass vibrational kinetic energy to their neighbors.

IONIC BONDING AND LATTICE ENERGY The potential energy E per Na+–Cl− pair within 
the NaCl crystal depends on the interionic separation r as

 E(r) = −
e2M

4πεor
+

B

rm  [1.4]

where the first term is the attractive and the second term is the repulsive potential energy, 
and M, B, and m are constants explained in the following. If we were to consider the poten-
tial energy PE of one ion pair in isolation from all others, the first term would be a simple 
Coulombic interaction energy for the Na+–Cl− pair, and M would be 1. Within the NaCl 
crystal, however, a given ion, such as Na+, interacts not only with its nearest six Cl− neighbors 
(Figure 1.9b), but also with its twelve second neighbors (Na+), eight third neighbors (Cl−), 
and so on, so the total or effective PE has a factor M, called the Madelung constant, that 
takes into account all these different Coulombic interactions. M depends only on the geo-
metrical arrangement of ions in the crystal, and hence on the particular crystal structure; for 
the FCC crystal structure, M = 1.748. The Na+–Cl− ion pair also has a repulsive PE that is 
due to the repulsion between the electrons in filled electronic subshells of the ions. If the 
ions are pushed toward each other, the filled subshells begin to overlap, which results in a 
strong repulsion. The repulsive PE decays rapidly with distance and can be modeled by a 
short-range PE of the form B∕rm as in the second term in Equation 1.4 where for Na+–Cl−, 
m = 8 and B = 6.972 × 10−96 J m8. Find the equilibrium separation (ro) of the ions in the 
crystal and the ionic bonding energy, defined as −E(ro). Given the ionization energy of Na 
(the energy to remove an electron) is 5.14 eV and the electron affinity of Cl (energy released 
when an electron is added) is 3.61 eV, calculate the atomic cohesive energy of the NaCl 
crystal as joules per mole.

SOLUTION

Bonding occurs when the potential energy E(r) is a minimum at r = ro corresponding to the 
equilibrium separation between the Na+ and Cl− ions. We differentiate E(r) and set it to zero 
at r = ro,

 
dE(r)

dr
=

e2M

4πεor
2 −

mB

rm+1 = 0  at r = ro

 EXAMPLE 1.3

Energy per 

ion pair in an 

ionic crystal
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Solving for ro,

 ro = [4πεoBm

e2M ]
1∕(m−1)

 [1.5]

Thus,

  ro = [4π(8.85 × 10−12 F m−1) (6.972 × 10−96 J m8) (8)

(1.6 × 10−19 C)2(1.748) ]
1∕(8−1)

  = 0.281 × 10−9 m  or  0.28 nm

The minimum energy Emin per ion pair is E(ro) and can be simplified further by substituting 
for B in terms of ro:

 Emin = −
e2M

4πεoro

+
B

rm
o

= −
e2M

4πεoro
(1 −

1
m) [1.6]

Thus,

  Emin = −
(1.6 × 10−19 C)2(1.748)

4π(8.85 × 10−12 Fm−1) (2.81 × 10−10 m)(1 −
1
8)

  = −1.256 × 10−18 J  or  −7.84 eV

 This is the energy with respect to two isolated Na+ and Cl− ions. We therefore need 7.84 eV 
to break up a NaCl crystal into isolated Na+ and Cl− ions, which represents the ionic cohesive 

energy. Some authors call this ionic cohesive energy simply the lattice energy. To take the 
crystal apart into its neutral atoms, we have to transfer the electron from the Cl− ion to the Na+ 
ion to obtain neutral Na and Cl atoms. It takes 3.61 eV to remove the electron from the Cl− ion, 
but 5.14 eV is released when it is put into the Na+ ion. Thus, we need 7.84 eV + 3.61 eV but 
get back 5.14 eV.

 Bond energy per Na–Cl pair = 7.84 eV + 3.61 eV − 5.14 eV = 6.31 eV

 The atomic cohesive energy is 3.1 eV/atom. In terms of joules per mole of NaCl, this is

 Ecohesive = (6.31 eV)(1.6022 × 10−19 J/eV)(6.022 × 1023 mol−1) = 608 kJ mol−1

1.3.5 SECONDARY BONDING

Covalent, ionic, and metallic bonds between atoms are known as primary bonds. It 
may be thought that there should be no such bonding between the atoms of the inert 
elements as they have full shells and therefore cannot accept or lose any electrons, nor 
share any electrons. However, the fact that a solid phase of argon exists at low tem-
peratures, below −189 °C, means that there must be some bonding mechanism between 
the Ar atoms. The magnitude of this bond cannot be strong because above −189 °C 
solid argon melts. Although each water molecule H2O is neutral overall, these molecules 
nonetheless attract each other to form the liquid state below 100 °C and the solid state 
below 0 °C. Between all atoms and molecules, there exists a weak type of attraction, 
the so-called van der Waals–London force, which is due to a net electrostatic attraction 
between the electron distribution of one atom and the positive nucleus of the other.
 In many molecules, the concentrations of negative and positive charges do not 
coincide. As apparent in the HCl molecule in Figure 1.11a, the electrons spend most 

Equilibrium 

ionic 

separation

Minimum PE 

at bonding
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of their time around the Cl nucleus, so the positive nucleus of the H atom is exposed 
(H has effectively donated its electron to the Cl atom) and the Cl-region acquires 
more negative charge than the H-region. An electric dipole moment occurs when-
ever a negative and a positive charge of equal magnitude are separated by a distance 
as in the H+–Cl− molecule in Figure 1.11a. Such molecules are polar, and depend-
ing on their relative orientations, they can attract or repel each other as depicted in 
Figure 1.11b. Two dipoles arranged head to tail attract each other because the clos-
est separation between charges on A and B is between the negative charge on A and 
the positive charge on B, and the net result is an electrostatic attraction. The mag-
nitude of the net force between two dipoles A and B, however, does not depend on 
their separation r as 1∕r2 because there are both attractions and repulsions between 
the charges on A and charges on B and the net force is only weakly attractive. (In 
fact, the net force depends on 1∕r4.) If the dipoles are arranged head to head or tail 
to tail, then, by similar arguments, the two dipoles repel each other. Suitably arranged 
dipoles can attract each other and form van der Waals bonds as illustrated in Fig-
ure 1.11c. The energies of such dipole arrangements as in Figure 1.11c are less than 
that of totally isolated dipoles and therefore encourage “bonding.” Such bonds are 
weaker than primary bonds and are called secondary bonds.

 The water molecule H2O is also polar and has a net dipole moment as shown 
in Figure 1.12a. The attractions between the positive charges on one molecule and 
the negative charges on a neighboring molecule lead to van der Waals bonding 
between the H2O molecules in water as illustrated in Figure 1.12b. When the positive 
charge of a dipole as in H2O arises from an exposed H nucleus, van der Waals bond-
ing is referred to as hydrogen bonding. In ice, the H2O molecules, again attracted 
by van der Waals forces, bond to form a regular pattern and hence a crystal structure.
 Van der Waals attraction also occurs between neutral atoms and nonpolar mol-
ecules. Consider the bonding between Ne atoms at low temperatures. Each has closed 
(or full) electron shells. The center of mass of the electrons in the closed shells, 
when averaged over time, coincides with the location of the positive nucleus. At any 
one instant, however, the center of mass is displaced from the nucleus due to various 
motions of the individual electrons around the nucleus as depicted in Figure 1.13. 
In fact, the center of mass of all the electrons fluctuates with time about the nucleus. 

H

Cl

A B

A B'

(a) (b) (c)

Figure 1.11 (a) A permanently polarized molecule is called an electric dipole moment. (b) Dipoles can attract or  
repel each other depending on their relative orientations. (c) Suitably oriented dipoles attract each other to form 
van der Waals bonds.
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Consequently, the electron charge distribution is not static around the nucleus but 
fluctuates asymmetrically, giving rise to an instantaneous dipole moment.
 When two Ne atoms, A and B, approach each other, the rapidly fluctuating neg-
ative charge distribution on one affects the motion of the negative charge distribution 
on the other. A lower energy configuration (i.e., attraction) is produced when the 
fluctuations are synchronized so that the negative charge distribution on A gets closer 
to the nucleus of the other, B, while the negative distribution on B at that instant 
stays away from that on A as shown in Figure 1.13. The strongest electrostatic inter-
action arises from the closest charges that are the displaced electrons in A and the 
nucleus in B. This means that there will be a net attraction between the two atoms 
and hence a lowering of the net energy that in turn leads to bonding.
 This type of attraction between two atoms is due to induced synchronization of 
the electronic motions around the nuclei, and we refer to this as induced-dipole–

induced-dipole interaction. It is weaker than permanent dipole interactions and at 
least an order of magnitude less than primary bonding. This is the reason why the 
inert elements Ne and Ar solidify at temperatures below 25 K (−248 °C) and 84 K 
(−189 °C). Induced dipole–induced dipole interactions also occur between nonpolar 
molecules such as H2, I2, CH4, etc. Methane gas (CH4) can be solidified at very low 
temperatures. Solids in which constituent molecules (or atoms) have been bonded by 
van der Waals forces are known as molecular solids; ice, solidified CO2 (dry ice), 
O2, H2, CH4, and solid inert gases are typical examples.

H

O

H

(a) (b)

Figure 1.12 The origin of van der Waals 
bonding between water molecules.  
(a) The H2O molecule is polar and  
has a net permanent dipole moment.  
(b) Attractions between the various  
dipole moments in water give rise to  
van der Waals bonding.
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Figure 1.13 Induced-dipole–induced-dipole interaction and the resulting van der Waals force.
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 Van der Waals bonding is responsible for holding the carbon chains together in 
polymers. Although the C-to-C bond in a C-chain is due to covalent bonding, the 
interaction between the C-chains arises from van der Waals forces and the interchain 
bonding is therefore of secondary nature. These bonds are weak and can be easily 
stretched or broken. Polymers therefore have substantially lower elastic moduli and 
melting temperatures than metals and ceramics.
 Table 1.2 compares the energies involved in the five types of bonding found in 
materials. It also lists some important properties of these materials to show the 
correlation with the bond type and its energy. The greater is the bond energy, for 
example, the higher is the melting temperature. Similarly, strong bond energies lead 
to greater elastic moduli and smaller thermal expansion coefficients. Metals gener-
ally have the greatest electrical conductivity since only this type of bonding allows 
a very large number of free charges (conduction electrons) to wander in the solid 
and thereby contribute to electrical conduction. Electrical conduction in other types 
of solid may involve the motion of ions or charged defects from one fixed location 
to another.

Table 1.2 Comparison of bond types and typical properties (general trends)

  Bond Melt. Elastic 

Bond Typical Energy Temp. Modulus Density 

Type Solids (eV/atom) (°C) (GPa) (g cm−3) Typical Properties

Ionic NaCl 3.2 801 40 2.17 Generally electrical insulators. May
  (rock salt)      become conductive at high temperatures.
 MgO 10 2852 250 3.58 High elastic modulus. Hard and brittle but
  (magnesia)      cleavable.
      Thermal conductivity less than metals.
Metallic Cu 3.1 1083 120 8.96 Electrical conductor.
 Mg 1.1 650 44 1.74 Good thermal conduction.
      High elastic modulus.
      Generally ductile. Can be shaped.
Covalent Si 4 1410 190 2.33 Large elastic modulus.
      Hard and brittle.
 C (diamond) 7.4 3550 827 3.52 Diamond is the hardest material.
      Good electrical insulator.
      Moderate thermal conduction, though 
       diamond has exceptionally high
       thermal conductivity.
van der PVC  212 4 1.3 Low elastic modulus.
 Waals:  (polymer)     Some ductility.
 hydrogen H2O (ice) 0.52 0 9.1 0.917 Electrical insulator.
 bonding      Poor thermal conductivity.
      Large thermal expansion coefficient.
van der Crystalline 0.09 −189 8 1.8 Low elastic modulus.
 Waals:  argon     Electrical insulator.
 induced      Poor thermal conductivity.
 dipole      Large thermal expansion coefficient.
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1.3.6 MIXED BONDING

In many solids, the bonding between atoms is generally not just of one type; rather, 
it is a mixture of bond types. We know that bonding in the silicon crystal is totally 
covalent, because the shared electrons in the bonds are equally attracted by the 
neighboring positive ion cores and are therefore equally shared. When there is a 
covalent-type bond between two different atoms, the electrons become unequally 
shared, because the two neighboring ion cores are different and hence have different 
electron-attracting abilities. The bond is no longer purely covalent; it has some ionic 
character, because the shared electrons spend more time close to one of the ion cores. 
Covalent bonds that have an ionic character, due to an unequal sharing of electrons, 
are generally called polar bonds. Many technologically important semiconductor 
materials, such as III–V compounds (e.g., GaAs), have polar covalent bonds. In 
GaAs, for example, the electrons in a covalent bond spend slightly more time around 
the As5+ ion core than the Ga3+ ion core.
 Electronegativity is a relative measure of the ability of an atom to attract the 
electrons in a bond it forms with another atom. The Pauling scale of electronegativity 

assigns an electronegativity value X, a pure number, to various elements, the highest 
being 4 for F, and the lowest values being for the alkali metal atoms, for which X 

are less than 1. In this scheme, the difference XA − XB in the electronegativities of 
two atoms A and B is a measure of the polar or ionic character of the bond A–B 

between A and B. There is obviously no electronegativity difference for a covalent 
bond. While it is possible to calculate the fractional ionicity of a single bond between 
two different atoms using XA − XB, inside the crystal the overall ionic character can 
be substantially higher because ions can interact with distant ions further away than 
just the nearest neighbors, as we have found out in NaCl. Many technologically 
important semiconductor materials, such as III–V compounds (e.g., GaAs) have polar 
covalent bonds. In GaAs, for example, the bond in the crystal is about 30 percent 
ionic in character (XAs − XGa = 2.18 − 1.81 = 0.37). In the ZnSe crystal, an important 
II–VI semiconductor, the bond is 63 percent ionic (XSe − XZn = 2.55 − 1.65 = 0.85).7

 Ceramic materials are compounds that generally contain metallic and nonmetal-
lic elements. They are well known for their brittle mechanical properties, hardness, 
high melting temperatures, and electrical insulating properties. The type of bonding 
in a ceramic material may be covalent, ionic, or a mixture of the two, in which the 
bond between the atoms involves some electron sharing and, to some extent, the 
partial formation of cations and anions; the shared electrons spend more time with 
one type of atom, which then becomes a partial anion while the other becomes a 
partial cation. Silicon nitride (Si3N4), magnesia (MgO), and alumina (Al2O3) are all 
ceramics, but they have different types of bonding: Si3N4 has covalent, MgO has 
ionic, and Al2O3 has a mixture of ionic and covalent bonding. All three are brittle, 
have high melting temperatures, and are electrical insulators.

 7 Chemists use “Ionicity = 1 − exp[0.24(XA − XB)]” to calculate the ionicity of the bond between A and B. While 
this is undoubtedly useful in identifying the trend, it substantially underestimates the actual ionicity of bonding 
within the crystal itself. (It is left as an exercise to show this fact from the above XA and XB values.) The quoted 
ionicity percentages are from J. C. Phillips’ book Bonds and Bands in Semiconductors, New York: Academic 
Press, 1973. By the way, the units of X are sometimes quoted as Pauling units, after its originator Linus Pauling.



 1 . 3  BONDING AND TYPES OF SOLIDS 23

ENERGY OF SECONDARY BONDING Consider the van der Waals bonding in solid argon. 
The potential energy as a function of interatomic separation can generally be modeled by the 
Lennard–Jones 6–12 potential energy curve, that is,

 E(r) = −Ar−6 + Br−12

where A and B are constants. Given that A = 8.0 × 10−77 J m6 and B = 1.12 × 10−133 J m12, 
calculate the bond length and bond energy (in eV) for solid argon.

SOLUTION

Bonding occurs when the potential energy is at a minimum. We therefore differentiate 
the Lennard–Jones potential E(r) and set it to zero at r = ro, the interatomic equilibrium 
separation or

 
dE

dr
= 6Ar−7 − 12Br−13 = 0  at r = ro

that is,

 r6
o =

2B

A

or

 ro = [2B

A ]
1∕6

 Substituting A = 8.0 × 10−77 and B = 1.12 × 10−133 and solving for ro, we find

 ro = 3.75 × 10−10 m  or  0.375 nm

 When r = ro = 3.75 × 10−10 m, the potential energy is at a minimum, and the magnitude 
Emin is the bonding energy Ebond, so

 Ebond = ∣−Ar−6
o + Br−12

o ∣ = ∣− 8.0 × 10−77

(3.75 × 10−10)6 +
1.12 × 10−133

(3.75 × 10−10)12 ∣
that is,

 Ebond = 1.43 × 10−20 J  or  0.089 eV

 Notice how small this energy is compared to primary bonding.

 EXAMPLE 1.4

ELASTIC MODULUS The elastic modulus, or Young’s modulus Y, of a solid indicates its 
ability to deform elastically. The greater is the elastic modulus, the more effort is required 
for the same amount of elastic deformation given a constant sample geometry. When a solid 
is subjected to tensile forces F acting on two opposite faces, as in Figure 1.14a, it experiences 
a stress σ defined as the force per unit area F∕A, where A is the area on which F acts. If 
the original length of the specimen is Lo, then the applied stress σ stretches the solid by an 
amount δL. The strain ε is the fractional increase in the length of the solid δL∕Lo. As long 
as the applied force displaces the atoms in the solid by a small amount from their equilibrium 
positions, the deformation is elastic and recoverable when the forces are removed. The applied 
stress σ and the resulting elastic strain ε are related by the elastic modulus Y by

 σ = Yε [1.7]

  EXAMPLE 1.5

Definition  

of elastic 

modulus
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Figure 1.14 (a) Applied forces F stretch the solid elastically from Lo to Lo + δL. The force is divided 
among chains of atoms that make the solid. Each chain carries a force δFN. (b) In equilibrium, the applied 
force is balanced by the net force δFN between the atoms as a result of their increased separation.

 The applied stress causes two neighboring atoms along the direction of force to be fur-
ther separated. Their displacement δr (= r − ro) results in a net attractive force δFN between 
two neighboring atoms as indicated in Figure 1.14b (which is the same as Figure 1.3a) where 
FN is the net interatomic force. δFN attempts to restore the separation to equilibrium. This 
force δFN, however, is balanced by a portion of the applied force acting on these atoms as in 
Figure 1.14a. If we were to proportion the area A in Figure 1.14a among all the atoms on 
this area, each atom would have an area roughly r2

o. (If there are N atoms on A, Nr2
o = A.) 

The force δFN is therefore σr2
o. The strain ε is δr∕ro. Thus, Equation 1.7 gives

δFN

r2
o

= σ = Y 
δr

ro

 

 Clearly, Y depends on the gradient of the FN versus r curve at ro, or the curvature of the 
minimum of E versus r at ro,

 Y =
1
ro

[dFN

dr ]
r=ro

=
1
ro

[d2E

dr2 ]
r=ro

 [1.8]

 The bonding energy Ebond is the minimum of E versus r at ro (Figure 1.3b) and can be 
related to the curvature of E versus r that leads to

 Y ≈ γ 

Ebond

r3
o

 [1.9]

where γ is a numerical factor (constant) that depends on the crystal structure and the type of 
bond (of the order of unity). The well-known Hooke’s law for a spring expresses the magni-
tude of the net force δFN in terms of the displacement δr by δFN = β∣δr∣ where β is the spring 
constant. Thus Y = β∕ro.
 Solids with higher bond energies therefore tend to have higher elastic moduli as apparent 
in Table 1.2. Secondary bonding has both a smaller Ebond and a larger ro than primary bonding 
and Y is much smaller. For NaCl, from Figure 1.10, Ebond = 6.3 eV, ro = 0.28 nm, and Y is of 
the order of ∼45 GPa using Equation 1.9 and γ ≈ 1, and not far out from the value in Table 1.2.
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1.4  KINETIC MOLECULAR THEORY

1.4.1 MEAN KINETIC ENERGY AND TEMPERATURE

The kinetic molecular theory of matter is a classical theory that can explain such seem-
ingly diverse topics as the pressure of a gas, the heat capacity of metals, the average 
speed of electrons in a semiconductor, and electrical noise in resistors, among many 
interesting phenomena. We start with the kinetic molecular theory of gases, which 
considers a collection of gas molecules in a container and applies the classical equa-
tions of motion from elementary mechanics to these molecules. We assume that the 
collisions between the gas molecules and the walls of the container result in the gas 
pressure P. Newton’s second law, dp∕dt = force, where p = mv is the momentum, is 
used to relate the pressure P (force per unit area) to the mean square velocity v 

2, and 
the number of molecules per unit volume N∕V. The result can be stated simply as

 PV =
1
3

 Nmv 

2 [1.10]

where m is the mass of the gas molecule. Comparing this theoretical derivation with 
the experimental observation that

 PV = ( N

NA
)RT

where NA is Avogadro’s number and R is the gas constant, we can relate the mean 
kinetic energy of the molecules to the temperature. Our objective is to derive Equa-
tion 1.10; to do so, we make the following assumptions:

 1. The molecules are in constant random motion. Since we are considering a large 
number of molecules, perhaps 1020 m−3, there are as many molecules traveling in 
one direction as in any other direction, so the center of mass of the gas is at rest.

 2. The range of intermolecular forces is short compared to the average separation 
of the gas molecules. Consequently,

a. Intermolecular forces are negligible, except during a collision.
b. The volume of the gas molecules (all together) is negligible compared to 

the volume occupied by the gas (i.e., the container).

 3. The duration of a collision is negligible compared to the time spent in free 
motion between collisions.

 4. Each molecule moves with uniform velocity between collisions, and the accel-
eration due to the gravitational force or other external forces is neglected.

 5. On average, the collisions of the molecules with one another and with the walls 
of the container are perfectly elastic. Collisions between molecules result in 
exchanges of kinetic energy.

 6. Newtonian mechanics can be applied to describe the motion of the molecules.

 We consider a collection of N gas molecules within a cubic container of side a. 
We focus our attention on one of the molecules moving toward one of the walls. 
The velocity can be decomposed into two components, one directly toward the wall 

Kinetic 

molecular 

theory for 

gases
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vx, and the other parallel to the wall vy, as shown in Figure 1.15. Clearly, the colli-
sion of the molecule, which is perfectly elastic, does not change the component vy 

along the wall, but reverses the perpendicular component vx. The change in the 
momentum of the molecule following its collision with the wall is

Δp = 2mvx

where m is the mass of the molecule. Following its collision, the molecule travels 
back across the box, collides with the opposite face B, and returns to hit face A 

again. The time interval Δt is the time to traverse twice the length of the box, or 
Δt = 2a∕vx. Thus, every Δt seconds, the molecule collides with face A and changes 
its momentum by 2mvx. To find the force F exerted by this molecule on face A, we 
need the rate of change of momentum, or

F =
Δp

Δt
=

2mvx

(2a∕vx)
=

mv 
2
x

a

 The total pressure P exerted by N molecules on face A, of area a2, is due to the 
sum of all individual forces F, or

 P =
Total force

a2 =
mv 

2
x1 + mv 

2
x2 + … + mv 

2
xN

a3

 =
m

a3 (v 
2
x1 + v 

2
x2 + … + v 

2
xN)

that is,

P =
m Nv 

2
x

V

where v 
2
x  is the average of v 2

x for all the molecules and is called the mean square 

velocity, and V is the volume a3.
 Since the molecules are in random motion and collide randomly with each other, 
thereby exchanging kinetic energy, the mean square velocity in the x direction is the 

a

Gas atoms

Area A

a

Square container

a

Face A

Face B

vy

vx

Figure 1.15 The gas molecules in the 
container are in random motion.
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same as those in the y and z directions, or

v 
2
x = v 

2
y = v 

2
z

 For any molecule, the velocity v is given by

v 
2 = v 

2
x + v 

2
y + v 

2
z = 3v 

2
x

 The relationship between the pressure P and the mean square velocity of the 
molecules is therefore

 P =
Nmv 

2

3V
=

1
3

 ρv 
2 [1.11]

where ρ is the density of the gas, or Nm∕V. By using elementary mechanical con-
cepts, we have now related the pressure exerted by the gas to the number of mole-
cules per unit volume and to the mean square of the molecular velocity.
 Equation 1.11 can be written explicitly to show the dependence of PV on the 
mean kinetic energy of the molecules. Rearranging Equation 1.11, we obtain

PV =
2
3

 N(1
2

 mv 
2)

where 1
2 mv 

2 is the average kinetic energy KE per molecule. If we consider 1 mole 
of gas, then N is simply NA, Avogadro’s number.
 Experiments on gases lead to the empirical gas equation

PV = ( N

NA
)RT

where R is the universal gas constant. Comparing this equation with the kinetic 
theory equation shows that the average kinetic energy per molecule must be propor-
tional to the temperature.

 KE =
1
2

 mv 
2 =

3
2

 kT  [1.12]

where k = R∕NA is called the Boltzmann constant. Thus, the mean square velocity 
is proportional to the absolute temperature. This is a major conclusion from the 
kinetic theory, and we will use it frequently.
 When heat is added to a gas, its internal energy and, by virtue of Equation 1.12, 
its temperature both increase. The rise in the internal energy per unit temperature 
is called the heat capacity. If we consider 1 mole of gas, then the heat capacity is 
called the molar heat capacity Cm. The total internal energy U of 1 mole of mon-
atomic gas (i.e., a gas with only one atom in each molecule) is

U = NA(1
2

 mv 
2) =

3
2

 NAkT

so, from the definition of Cm, at constant volume, we have

 Cm =
dU

dT
=

3
2

 NAk =
3
2

 R [1.13]
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 Thus, the heat capacity per mole of a monatomic gas at constant volume is 
simply 3

2 R. By comparison, we will see later that the heat capacity of metals is twice 
this amount. The reason for considering constant volume is that the heat added to 
the system then increases the internal energy without doing mechanical work by 
expanding the volume.8

 There is a useful theorem called Maxwell’s principle of equipartition of 

energy, which assigns an average of 1
2 kT  to each independent energy term in the 

expression for the total energy of a system. A monatomic molecule can only have 
translational kinetic energy, which is the sum of kinetic energies in the x, y, and z 

directions. The total energy is therefore

E =
1
2

 mv 
2
x +

1
2

 mv 
2
y +

1
2

 mv 
2
z

 Each of these terms represents an independent way in which the molecule can 
be made to absorb energy. Each method by which a system can absorb energy is 
called a degree of freedom. A monatomic molecule has only three degrees of free-
dom. According to Maxwell’s principle, for a collection of molecules in thermal 
equilibrium, each degree of freedom has an average energy of 1

2 kT , so the average 
kinetic energy of the monatomic molecule is 3(1

2  
kT) .

 A rigid diatomic molecule (such as an O2 molecule) can acquire energy as 
translational motion and rotational motion, as depicted in Figure 1.16. Assuming the 
moment of inertia Ix about the molecular axis (along x) is negligible, the energy of 
the molecule is

E =
1
2

 mv 
2
x +

1
2

 mv 
2
y +

1
2

 mv 
2
z +

1
2

 Iy 
ω2

y +
1
2

 Iz 
ω2

z

 8 The heat capacity of a substance may be at constant volume or constant pressure, denoted CV and CP, 
respectively. For a solids, CV and CP are approximately the same but for a gas CP = CV + R.

Translational
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y axis out of paper

z

y
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Rotational
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vy
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vx

Figure 1.16 Possible translational 
and rotational motions of a  
diatomic molecule. Vibrational  
motions are neglected.
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where Iy and Iz are moments of inertia about the y and z axes and ωy and ωz are 
angular velocities about the y and z axes (Figure 1.16).
 This molecule has five degrees of freedom and hence an average energy of 
5(1

2 kT) . Its molar heat capacity is therefore 5
2 R.

 The atoms in the molecule will also vibrate by stretching or bending the bond, 
which behaves like a “spring.” At room temperature, the addition of heat generally 
results in the translational and rotational motions becoming more energetic (excited), 
whereas the molecular vibrations remain the same and therefore do not absorb 
energy. This occurs because the vibrational energy of the molecule can only change 
in finite steps; in other words, the vibrational energy is quantized. For many mol-
ecules, the energy required to excite a more energetic vibration is much more than 
the energy possessed by the majority of molecules. Therefore, energy exchanges via 
molecular collisions cannot readily excite more energetic vibrations; consequently, 
the contribution of molecular vibrations to the heat capacity at room temperature 
is negligible.9

 In a solid, the atoms are bonded to each other and can only move by vibrating 
about their equilibrium positions. In the simplest view, a typical atom in a solid is 
joined to its neighbors by “springs” that represent the bonds, as depicted in Fig-
ure 1.17. If we consider a given atom, its potential energy as a function of displace-
ment from the equilibrium position is such that if it is displaced slightly in any 
direction, it will experience a restoring force proportional to the displacement. Thus, 
this atom can acquire energy by vibrations in three directions. The energy associated 
with the x direction, for example, is the kinetic energy of vibration plus the potential 
energy of the “spring,” or 1

2 mv 
2
x + 1

2 Kx 
x2, where vx is the velocity, x is the extension 

of the spring, and Kx is the spring constant, all along the x direction. Clearly, there 

 9 At sufficiently high temperatures, it is indeed possible to excite molecular vibrations. At such high temperatures, 
there are two additional energy terms arising from vibrational kinetic energy and potential energy (stretching 
and compressing the bond). Each, on average, has (1∕2)kT of energy so that Cm = (7∕2)R. See Question 1.14.

x

y

z

(a) (b)

Figure 1.17 (a) The ball-and-spring model of solids, in which the springs represent the interatomic bonds. Each ball 
(atom) is linked to its neighbors by springs. Atomic vibrations in a solid involve three dimensions. (b) An atom vibrating 
about its equilibrium position. The atom stretches and compresses its springs to its neighbors and has both kinetic and 
potential energy.
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are similar energy terms in the y and z directions, so there are six energy terms in 
the total energy equation:

E =
1

2
 mv 

2
x +

1

2
 mv 

2
y +

1

2
 mv 

2
z +

1

2
 Kx x

2 +
1

2
 Ky 

y2 +
1

2
 Kz 

z2

 We know that for simple harmonic motion, the average KE is equal to the aver-
age PE. Since, by virtue of the equipartition of energy principle, each average KE 

term has an energy of 1
2 kT , the average total energy per atom is 6(1

2  
kT) . The inter-

nal energy U per mole is

U = NA6(1

2
 kT) = 3 RT

The molar heat capacity then becomes

 Cm =
dU

dT
= 3R = 25 J K−1 mol−1 [1.14]

This is the Dulong–Petit rule for the molar heat capacity of a solid.10 We can also 
write the Dulong–Petit rule in terms of the contribution cat made by each atom to 
the heat capacity.

 cat = 3k = 4.14 × 10−23 J K−1 atom−1 = 0.258 meV K−1 atom−1 [1.15]

 The kinetic molecular theory of matter is one of the successes of classical phys-
ics, with a beautiful simplicity in its equations and predictions. Its failures, however, 
are numerous. For example, the theory fails to predict that, at low temperatures, the 
heat capacity increases as T 3 and that the resistivity of a metal increases linearly 
with the absolute temperature. We will explain the origins of these phenomena in 
Chapter 4.

Dulong–Petit 

rule per mole 

at constant 

volume

Dulong–Petit 

heat capacity 

of solids per 

atom

 10 Alexis-Thérèse Petit (1791–1820) and Pierre-Louis Dulong (1785–1838) published their empirical rule in Annales 
de Chimie et de Physique, 10, 395, 1819, in which they stated that “The atoms of all simple bodies have exactly 
the same capacity for heat.” This is 3k per atom in kinetic molecular theory.

SPEED OF SOUND IN AIR Calculate the root mean square (rms) velocity of nitrogen mol-
ecules in atmospheric air at 27 °C. Also calculate the root mean square velocity in one direction 
(vrms,x). Compare the speed of propagation of sound waves in air, 350 m s−1, with vrms,x and 
explain the difference.

SOLUTION

From the kinetic theory

1
2

 mv 
2
rms =

3
2

 kT

so that

vrms = √ 3kT

m

 EXAMPLE 1.6
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where m is the mass of the nitrogen molecule N2. The atomic mass of nitrogen is Mat = 
14 g mol−1, so that in kilograms

m =
2Mat(10−3)

NA

Thus

 vrms = [ 3kNAT

2Mat(10−3) ]
1∕2

= [ 3RT

2Mat(10−3) ]
1∕2

 = [3(8.314 J mol−1 K−1) (300 K)

2(14 × 10−3 kg mol−1) ]
1∕2

= 517 m s−1

 Consider the rms velocity in one direction. Then

vrms,x = √v 
2
x = √ 1

3
 v 

2 =
1

√3
 vrms = 298 m s−1

which is slightly less than the velocity of sound in air (350 m s−1). The difference is due to 
the fact that the propagation of a sound wave involves rapid compressions and rarefactions 
of air, and the result is that the propagation is not isothermal. Note that accounting for oxygen 
in air lowers vrms,x. (Why?)

SPECIFIC HEAT CAPACITY OF A METAL Estimate the specific heat capacity of copper, 
that is the heat capacity per unit gram, given that its atomic mass Mat is 63.6 g mol−1 and 
compare with the experimental value of 0.387 J g−1 K−1.

SOLUTION

From the Dulong–Petit rule, Cm = 3 R for NA atoms. Since NA atoms have a mass of Mat 
grams, so the heat capacity per gram, the specific heat capacity cs, is

cs =
3R

Mat
=

25 J mol−1 K−1

63.6 g mol−1 ≈ 0.39 J g−1 K−1

Clearly the predicted value is very close to the experimental value. Nearly all metals at room 
temperature follow the Dulong–Petit rule. It is left as an exercise to pick a light nonmetal 
elemental solid such as Si and show that the Dulong–Petit rule completely fails at room 
temperature.

 EXAMPLE 1.7

SPECIFIC HEAT CAPACITY OF A COMPOUND Consider a compound such as AaBb. This 
could be a CdTe crystal in which A = Cd, B = Te, and a = b = 1. Consider a mass m grams 
of this sample that has a moles of A and b moles of B. Each atom contributes the same 
amount of heat capacity cat to the solid so that the total heat capacity of m grams is (aNA + 
bNA)cat = (a + b)NA(3k) = (a + b)(3R). If MA is the atomic mass of A, then NA atoms of A 

have a mass MA grams; and similarly for B. The mass of m in grams is simply aMA + bMB. 

Thus, the specific heat capacity is

 cs =
Total heat capacity

Mass
=

(a + b)3R

m
=

(a + b)3R

aMA + bMB

  EXAMPLE 1.8
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We can define an average atomic mass as Mat = (aMA + bMB)∕(a + b), which simplifies the 
above equation to

cs =
3R

Mat

which is the same as that for a single elemental material, as shown in the previous example.
 CdTe is a semiconductor that consists of heavy Cd and Te atoms. Calculate its specific 
heat capacity and compare it with the experimental value of 0.210 J g−1 K−1 at room tem-
perature. If the density ρ of CdTe is 5.85 g cm−3, find the heat capacity bet unit volume cv.

SOLUTION

The average atomic mass is

Mat =
1
2

 MCd +
1
2

 MTe = (1∕2)(112.41 g mol−1) + (1∕2)(127.6 mol−1) = 120.01 g mol−1

The specific heat capacity cs is then

cs =
3R

Mat
=

25 J K−1 mol−1

120.1 g mol−1 = 0.208 J g−1 K−1

which is very close to the experimental value. The heat capacity per unit volume cv is

cv = csρ = (0.208 J g−1 K−1)(5.85 g cm−3) = 1.22 J cm−3 K−1

1.4.2 THERMAL EXPANSION

Nearly all materials expand as the temperature increases. This phenomenon is due 
to the asymmetric nature of the interatomic forces and the increase in the amplitude 
of atomic vibrations with temperature as expected from the kinetic molecular theory.
 The potential energy curve U(r) for two atoms separated by a distance r is shown 
in Figure 1.18. In equilibrium the PE is a minimum at Umin = −Uo and the bonding 
energy is simply Uo. The atoms are separated by the equilibrium separation ro. How-
ever, according to the kinetic molecular theory, atoms are vibrating about their equi-
librium positions with a mean vibrational kinetic energy that increases with the 
temperature as 3

2 kT . At any instant the total energy E of the pair of atoms is U + KE, 
and this is constant inasmuch as no external forces are being applied. The atoms will 
be vibrating about their equilibrium positions, stretching and compressing the bond, 
as depicted in Figure 1.19. At positions B and C, U is maximum and the KE is zero; 
the atoms are stationary and about to reverse their direction of oscillation. Thus at 
B and C the total energy E = UB = UC and the PE has increased from its minimum 
value Umin by an amount equal to KE. The line BC corresponds to the total energy 
E. The atoms are confined to vibrate between B and C, executing simple harmonic 
motion and hence maintaining E = U + KE = constant.
 But the PE curve U(r) is asymmetric. U(r) is broader in the r > ro region. Thus, 
the atoms spend more time in the r > ro region, that is, more time stretching the 
bond than compressing the bond (with respect to the equilibrium length ro). The 
average separation corresponds to point A,

rav =
1
2

(rB + rC)

Dulong–Petit 

specific heat 

capacity of a 

compound
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which is clearly greater than ro. As the temperature increases, KE increases, the total 
energy E increases, and the atoms vibrate between wider extremes of the U(r) curve, 
between B′ and C′. The new average separation at A′ is now greater than that at 
A: rA′ > rA. Thus as the temperature increases, the average separation between the 
atoms also increases, which leads to the phenomenon of thermal expansion. If the 
PE curve were symmetric, then there would be no thermal expansion as the atoms 
would spend equal times in the r < ro and r > ro regions.

Interatomic separation, r
0

Uo

ro

B

U(r) = PE

B′

rav

T2

T1A

A′

Umin = −Uo

Energy

Minimum PE

KEC

C ′

Figure 1.18 The potential energy PE curve has a minimum when the atoms in the solid  
attain the interatomic separation at r = ro.

Because of thermal energy, the atoms will be vibrating and will have vibrational kinetic  
energy. At T = T1, the atoms will be vibrating in such a way that the bond will be stretched 
and compressed by an amount corresponding to the KE of the atoms. A pair of atoms will  
be vibrating between B and C. Their average separation will be at A and greater than ro.  
At temperature T2, the KE is larger and the atoms vibrate between B′ and C′.

State A

State A

State B, KE = 0,

E = UB

State C, KE = 0,

E = UC

Figure 1.19 Vibrations of atoms in the solid.

We consider for simplicity a pair of atoms. Total 
energy is E = PE + KE, and this is constant for  
a pair of vibrating atoms executing simple  
harmonic motion. At B and C, KE is zero (atoms 
are stationary and about to reverse direction of 
oscillation) and PE is maximum.
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 When the temperature increases by a small amount δT, the energy per atom 
increases by cat δT where cat is the heat capacity per atom (molar heat capacity 
divided by NA). If cat δT is large, then the line B′C′ in Figure 1.18 will be higher up 
on the energy curve and the average separation A′ will therefore be larger. Thus, the 
increase δrav in the average separation is proportional to δT. If the total length Lo is 
made up of N atoms, Lo = Nrav, then the change δL in Lo is proportional to N δT or 
Lo δT. The proportionality constant is the thermal coefficient of linear expansion, 
or simply, thermal expansion coefficient λ, which is defined as the fractional 
change in length per unit temperature,11

 λ =
1

Lo

·
δL

δT
 [1.16]

 If Lo is the original length at temperature To, then the length L at temperature 
T, from Equation 1.16, is

 L = Lo[1 + λ(T − To)] [1.17]

 We note that λ is a material property that depends on the nature of the bond. 
The variation of rav with T in Figure 1.18 depends on the shape of the PE curve 
U(r). Typically, λ is larger for metallic bonding than for covalent bonding.
 We can use a mathematical procedure (known as a Taylor expansion) to describe 
the U(r) versus r curve in terms of its minimum value Umin, plus correction terms 
that depend on the powers of the displacement (r − ro) from ro, that is

 U(r) = Umin + a2(r − ro)
2 + a3(r − ro)

3 + ⋯ [1.18]

where a2 and a3 are coefficients that are related to the second and third derivatives of 
U at ro. The term a1(r − ro) is missing because dU∕dr = 0 at r = ro where U = Umin. 
The Umin and a2(r − ro)

2 terms in Equation 1.18 give a parabola about Umin which 
is a symmetric curve around ro and therefore does not lead to thermal expansion. 
The average location at any energy on a symmetric curve at ro is always at ro. It is 
the a3 term that gives the expansion because it leads to asymmetry. Thus, λ depends 
on the amount of asymmetry, that is, a3∕a2. The asymmetric PE curve in Figure 1.18 
which has a finite cubic a3 term as in Equation 1.18 does not lead to a perfect 
simple harmonic (sinusoidal) vibration about ro because the restoring force is not 
proportional to the displacement alone. Such oscillations are unharmonic, and the 
PE curve is said to possess an unharmonicity (terms such as a3). Thermal expansion 
is an unharmonic effect.

 The thermal expansion coefficient normally depends on the temperature, λ = λ(T), 
and typically increases with increasing temperature, except at the lowest temperatures. 
We can always expand λ(T ) about some useful temperature such as To to obtain a 
polynomial series in temperature terms up to the most significant term, usually the T2 

Definition of 
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Thermal 

expansion

Potential 

energy of  
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 11 Physicists tend to define λ in terms of the instantaneous length L at T, rather than the original length Lo at To, 
that is, (1∕L)(dL∕dT ) = λ, which is often called the instantaneous thermal expansion coefficient, whereas that in 
Equation 1.16 is the engineering definition. For all practical extensions (in which ΔL∕Lo is very small), the two 
definitions are the same. Nearly all practical measurements of λ are based on the engineering definition. (Why?)
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containing term. Thus, Equation 1.16 becomes

 
dL

Lo dT
= λ(T ) = A + B(T − To) + C(T − To)2 + … [1.19]

where A, B, and C are temperature-independent constants, and the expansion is 
about To. To find the total fractional change in the length ΔL∕Lo from To to T, we 
have to integrate λ(T ) with respect to temperature from To to T. We can still employ 
Equation 1.17 provided that we use a properly defined mean value for the expansion 
coefficient from To to T,
 L = Lo[1 + λ(T − To) ]  [1.20]

where
 λ = 1

(T−To) ∫T

To 
λ(T ) dT  [1.21]

 Figure 1.20 shows the temperature dependence of λ for various materials. In very 
general terms, except at very low (typically below 100 K) and very high temperatures 
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Figure 1.20 Dependence of the linear thermal expansion coefficient λ on 
temperature T on a log–log plot.

HDPE, high-density polyethylene; PMMA, polymethylmethacrylate (acrylic); 
PC, polycarbonate; PET, polyethylene terephthalate (polyester); fused silica, 
SiO2; alumina, Al2O3.
 Data extracted from Slack, G.A. and Bartram, S.F., Journal of Applied Physics, 46, 89, 

1975, along with other sources.

Mean thermal 

expansion 

coefficient

Thermal 

expansion



36 C H A P T E R  1  ∙ ELEMENTARY MATERIALS SCIENCE CONCEPTS

(near the melting temperature), for most metals λ does not depend strongly on the 
temperature; many engineers take λ for a metal to be approximately temperature 
independent. There is a simple relationship between the linear expansion coefficient 
and the heat capacity of a material, which is discussed in Chapter 4.

Volume 

expansion

Volume 

expansion 

coefficient

VOLUME EXPANSION COEFFICIENT Suppose that the volume of a solid body at tempera-
ture To is Vo. The volume expansion coefficient αV of a solid body characterizes the change 
in its volume from Vo to V due to a temperature change from To to T by

 V = Vo[1 + αV(T − To)] [1.22]

 Show that αV is given by

 αV = 3λ [1.23]

 Aluminum has a density of 2.70 g cm−3 at 25 °C. Its thermal expansion coefficient is 
24 × 10−6 °C−1. Calculate the density of Al at 350 °C.

SOLUTION

Consider the solid body in the form of a rectangular parallelepiped with sides xo, yo, and zo. 
Then at To,

 Vo = xoyozo

and at T, V  = [xo(1 + λ ΔT )][yo(1 + λ ΔT )][zo(1 + λ ΔT )]

 = xoyozo(1 + λ ΔT )3

that is V = xoyozo[1 + 3λ ΔT + 3λ2(ΔT )2 + λ3(ΔT )3]

 We can now use Vo = xoyozo, and neglect the λ2(ΔT )2 and λ3(ΔT )3 terms compared 
with the λ ΔT term (λ ≪ 1) and also use Equation 1.22 to obtain,

 V = Vo[1 + 3λ(T − To)] = Vo[1 + αV(T − To)]

 Since density ρ is mass/volume, volume expansion leads to a density reduction. Thus,

 ρ =
ρo

1 + αV(T − To)
≈ ρo[1 − αV(T − To) ]

 For Al, the density at 350 °C is

ρ = 2.70[1 − 3(24 × 10−6)(350 − 25)] = 2.637 g cm−3

 EXAMPLE 1.9

EXPANSION OF Si The expansion coefficient of silicon over the temperature range  
120–1500 K is given by Okada and Tokumaru (1984) as

 λ = 3.725 × 10−6[1 − e−5.88×10−3(T−124)] + 5.548 × 10−10T  [1.24]

where λ is in K−1 (or °C−1) and T is in kelvins. At a room temperature of 20 °C, the above 
gives λ = 2.51 × 10−6 K−1. Calculate the fractional change ΔL∕Lo in the length Lo of an Si 
crystal from 20 to 320 °C, by (a) assuming a constant λ equal to the room temperature value 
and (b) assuming the above temperature dependence. Calculate the mean λ for this tempera-
ture range.

 EXAMPLE 1.10
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SOLUTION

Assuming a constant λ, we have

ΔL

Lo

= λ(T − T0) = (2.51 × 10−6 °C−1) (320 − 20) = 0.753 × 10−3  or  0.075%

With a temperature-dependent λ(T ),

  
ΔL

Lo

= ∫
T

To

λ(T )dT

  = ∫
320+273

20+273

{3.725 × 10−6[1 − e−5.88×10−3(T−124)] + 5.548 × 10−10T}dT

The integration can either be done numerically or analytically (both left as an exercise) with 
the result that

ΔL

Lo

= 1.00 × 10−3                 or      0.1%

which is substantially more than when using a constant λ. The mean λ over this temperature 
range can be found from

ΔL

Lo

= λ(T − To)      or      1.00 × 10−3 = λ(320 − 20)

which gives λ = 3.33 × 10−6 °C−1. A 0.1 percent change in length means that a 1 mm chip 
would expand by 1 micron.

1.5   MOLECULAR VELOCITY AND ENERGY 

DISTRIBUTION

Although the kinetic theory allows us to determine the root mean square velocity 
of the gas molecules, it says nothing about the distribution of velocities. Due to 
random collisions between the molecules and the walls of the container and 
between the molecules themselves, the molecules do not all have the same veloc-
ity. The velocity distribution of molecules can be determined experimentally by 
the simple scheme illustrated in Figure 1.21. Gas molecules are allowed to escape 
from a small aperture of a hot oven in which the substance is vaporized. Two 
blocking slits allow only those molecules that are moving along the line through 
the two slits to pass through, which results in a collimated beam. This beam is 
directed toward two rotating disks, which have slightly displaced slits. The mole-
cules that pass through the first slit can only pass through the second if they have 
a certain speed; that is, the exact speed at which the second slit lines up with the 
first slit. Thus, the two disks act as a speed selector. The speed of rotation of 
the disks determines which molecular speeds are allowed to go through. The exper-
iment therefore measures the number of molecules ΔN with speeds in the range v 

to (v + Δv).
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 It is generally convenient to describe the number of molecules dN with speeds 
in a certain range v to (v + dv) by defining a velocity density function nv as follows:

dN = nv dv

where nv is the number of molecules per unit velocity that have velocities in the 
range v to (v + dv). This number represents the velocity distribution among the 
molecules and is a function of the molecular velocity nv = nv(v). From the experi-
ment, we can easily obtain nv by nv = ΔN∕Δv at various velocities. Figure 1.22 
shows the velocity density function nv of nitrogen gas at two temperatures. The 
average (vav), most probable (v*), and rms (vrms) speeds are marked to show their 
relative positions. As expected, all these speeds increase with increasing temperature. 
From various experiments of the type shown in Figure 1.21, the velocity distribution 
function nv has been widely studied and found to obey the following equation:

 nv = 4πN( m

2πkT)
3∕2

v 
2 exp(−

mv 
2

2kT ) [1.25]

where N is the total number of molecules and m is the molecular mass. This is the 
Maxwell–Boltzmann distribution function, which describes the statistics of particle 
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Figure 1.21 Schematic diagram of a Stern-type experiment for determining the distribution of 
molecular speeds.
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velocities in thermal equilibrium. The function assumes that the particles do not 
interact with each other while in motion and that all the collisions are elastic in the 
sense that they involve an exchange of kinetic energy. Figure 1.22 clearly shows that 
molecules move around randomly, with a variety of velocities ranging from nearly 
zero to almost infinity. The kinetic theory speaks of their rms value only.
 What is the energy distribution of molecules in a gas? In the case of a mona-
tomic gas, the total energy E is purely translational kinetic energy, so we can use 
E = 1

2 mv2. To relate an energy range dE to a velocity range dv, we have dE = mv dv. 
Suppose that nE is the number of atoms per unit volume per unit energy at an energy E. 
Then nE dE is the number of atoms with energies in the range E to (E + dE). These 
are also the atoms with velocities in the range v to (v + dv), because an atom with 
a velocity v has an energy E. Thus,

nE dE = nv dv

i.e.,

nE = nv(dv

dE)
 If we substitute for nv and (dv∕dE), we obtain the expression for nE as a function 
of E:

 nE =
2

π1∕2  N( 1
kT)

3∕2

E1∕2 exp(−
E

kT) [1.26]

 Thus, the total internal energy is distributed among the atoms according to the 
Maxwell–Boltzmann distribution in Equation 1.26. The exponential factor exp(−E∕kT) 
is called the Boltzmann factor. Atoms have widely differing kinetic energies, but a 
mean energy of 3

2 kT . Figure 1.23 shows the Maxwell–Boltzmann energy distribution 
among the gas atoms in a tank at two temperatures. As the temperature increases, 
the distribution extends to higher energies. The area under the curve is the total 
number of molecules, which remains the same for a closed container.
 Equation 1.26 represents the energy distribution among the N gas atoms at any 
time. Since the atoms are continually colliding and exchanging energies, the energy 
of one atom will sometimes be small and sometimes be large, but averaged over a 
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long time, this energy will be 3
2 kT  as long as all the gas atoms are in thermal equi-

librium (i.e., the temperature is the same everywhere in the gas). We can therefore 
also use Equation 1.26 to represent all possible energies an atom can acquire over a 
long period. There are a total of N atoms, and nE dE of them have energies in the 
range E to (E + dE). Thus,

 Probability of energy being in E to (E + dE) =
nE  dE

N
 [1.27]

 When the probability in Equation 1.27 is integrated (i.e., summed) for all energies 
(E = 0 to ∞), the result is unity, because the atom must have an energy somewhere 
in the range of zero to infinity.
 What happens to the Maxwell–Boltzmann energy distribution law in Equation 1.26 
when the total energy is not simply translational kinetic energy? What happens when 
we do not have a monatomic gas? Suppose that the total energy of a molecule (which 
may simply be an atom) in a system of N molecules has vibrational and rotational 
kinetic energy contributions, as well as potential energy due to intermolecular inter-
actions. In all cases, the number of molecules per unit energy nE turns out to contain 
the Boltzmann factor, and the energy distribution obeys what is called the Boltzmann 

energy distribution:

 
nE

N
= C exp(−

E

kT) [1.28]

where E is the total energy (KE + PE), N is the total number of molecules in the 
system, and C is a constant that relates to the specific system (e.g., a monatomic gas 
or a liquid). The constant C may depend on the energy E, as in Equation 1.26, but 
not as strongly as the exponential term. Equation 1.28 is the probability per unit 

energy that a molecule in a given system has an energy E. Put differently, (nE dE)∕N 

is the fraction of molecules in a small energy range E to E + dE.

Ludwig Boltzmann (1844–1906) was an Austrian physicist who made numerous 
contributions relating microscopic properties of matter to their macroscopic 
properties.

 Courtesy of AIP Emilio Segrè Visual Archives, Segrè Collection.

Boltzmann 

energy 

distribution

MEAN AND RMS SPEEDS OF MOLECULES Given the Maxwell–Boltzmann distribution 
law for the velocities of molecules in a gas, derive expressions for the mean speed (vav), most 
probable speed (v*), and rms velocity (vrms) of the molecules and calculate the corresponding 
values for a gas of noninteracting electrons.

 EXAMPLE 1.11
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SOLUTION

The number of molecules with speeds in the range v to (v + dv) is

dN = nv 
 dv = 4πN( m

2πkT)
3∕2

v 
2 exp(−

mv 
2

2kT)dv

We know that nv∕N is the probability per unit speed that a molecule has a speed in the range 
v to (v + dv). By definition, then, the mean speed is given by

 vav =
∫v dN

∫  dN
=

∫vnv dv

∫nv dv
= √ 8kT

πm

where the integration is over all speeds (v = 0 to ∞). The mean square velocity is given by

v 
2 =

∫v 
2 dN

∫  dN
=

∫v 
2nv  dv

∫nv  dv
=

3kT

m

so the rms velocity is

vrms = √ 3kT

m

Differentiating nv with respect to v and setting this to zero, dnv∕dv = 0, gives the position 
of the peak of nv versus v, and thus the most probable speed v*,

v* = [2kT

m ]
1∕2

 Substituting m = 9.1 × 10−31 kg for electrons and using T = 300 K, we find v* = 
95.3 km s−1, vav = 108 km s−1, and vrms = 117 km s−1, all of which are close in value. We 
often use the term thermal velocity to describe the mean speed of particles due to their ther-
mal random motion. Also, the integrations shown above are not trivial and they involve 
substitution and integration by parts.

1.6   MOLECULAR COLLISIONS AND  

VACUUM DEPOSITION

Consider an example in which a tank contains only nitrogen gas. Suppose that we 
wish to find how far a molecule in this gas travels before it collides with another 
molecule. Each molecule has a finite size, which can be roughly represented by a 
sphere of radius of r. The mean free path ℓ is defined as the mean distance a gas 
molecule travels before it collides with another molecule as illustrated in Figure 1.24a. 
We are interested in the mean free path of an N2 molecule. If we consider the motion 
of say one N2 molecule with all the others stationary, then it is apparent that if the 
path of the traveling molecule crosses the cross-sectional area S = π(2r)2 then there 
will be a collision. Since ℓ is the mean distance between collisions, it is apparent 
that there must be at least one stationary molecule within the cylindrical volume Sℓ 

as shown in Figure 1.24a. If n is the concentration of molecules in the gas, we must 
therefore have nSℓ = nπ(2r)2

ℓ = 1 or ℓ = 1∕(4πr2n). This must be corrected for the 
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fact that all the molecules are in motion. This only introduces a numerical factor so 
that eventually we would find

 ℓ =
1

21∕24πr2n
 [1.29]

 Vacuum deposition is a means of depositing a thin film on a substrate under vac-
uum. Suppose that we wish to deposit a gold film onto the surface of a semiconductor 
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Figure 1.24 (a) A molecule moving with a velocity v travels a mean distance ℓ between collisions. Since the collision 
cross-sectional area is S, in the volume Sℓ there must be at least one molecule. Consequently, n(Sℓ) = 1. (b) Vacuum  
deposition of a metal such as gold by thermal evaporation onto a substrate, for example, a semiconductor crystal.  
(c) N2 molecules bombarding the surface of a substrate inside the chamber. (d) Only those N2 molecules that have a 
velocity in the positive x direction can reach the substrate. The volume A(vxΔt) defines the molecules that can reach A 

in a time interval Δt.

Walter Houser Brattain (1902–1987), experimenting with  
metal contacts on copper oxide (1935) at Bell Telephone  
Labs. A vacuum evaporation chamber is used to deposit the 
metal electrode.

 © Emilio Segrè Visual Archives/American Institute of 
Physics/Science Source.
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Pressure and 

molecular 

concentration

PRESSURE FOR PHYSICAL VAPOR DEPOSITION We will estimate typical pressures that 
are needed to carry out a vacuum deposition of a thin film on a substrate as in Figure 1.24b. 
For simplicity, we will take air to be only N2 for calculations. First, we need the concentra-
tion from the pressure P of N2 gas inside the chamber at atmospheric pressure, P = 1 atm = 
1.013 × 105 Pa. If N is the total number of molecules and V is the chamber volume, then

PV = (N∕NA)RT = NkT

where R = kNA. The concentration n is defined as n = N∕V so that substituting for N in the 
above equation, we obtain

 P = nkT [1.30]

 At 1 atm and T = 27 °C or 300 K, we have

n =
P

kT
=

1.013 × 105 Pa
(1.381 × 10−23 J K−1) (300 K)

= 2.45 × 1025 molecules per m3

 EXAMPLE 1.12

sample (such as a crystal) to fabricate an electrical contact between the gold and 
semiconductor crystal. The deposition process is generally carried out in a vacuum 
chamber as shown in Figure 1.24b. It involves the condensation of Au atoms from 
the vapor phase onto a substrate, which is the semiconductor crystal. In one simple 
deposition technique, as in Figure 1.24b, a resistively (or directly) heated boat, made 
from a refractory metal such as tungsten or molybdenum, is used. The evaporant, 
such as pieces of gold, is loaded into the boat and then the boat is heated by passing 
a large current. The gold pieces in the boat melt and gold atoms are vaporized from 
this melt. The evaporated gold atoms leave the boat in straight trajectories and 
impinge on the substrate; that is, they condense onto the semiconductor sample’s 
surface to solidify and form a gold film. It is clear that the vacuum deposition relies 
on maintaining a long mean free path between molecular collisions. Unless the mean 
free path ℓ for the gold atoms is very long, then these atoms would simply collide 
with the air molecules, and not reach the target. Thus, ℓ should be much longer than 
the distance L from the boat to the substrate. In this example, the source material 
(gold) was evaporated and the atoms were condensed onto the surface of a substrate 
(a semiconductor crystal) by thermal evaporation, or physical vapor deposition 

(PVD). While the above example was on depositing a metal film, many other mate-
rials such as semiconductors, oxides, and polymers can also be deposited as thin 
film by using PVD. Other vacuum deposition techniques are needed when the 
source  material cannot be evaporated easily to form the required film on the sub-
strate. Electron beam evaporation is one such technique and is described later in 
Section 1.12.2.
 The simple expression in Equation 1.29 does not consider the case when there 
is a mixture of different types of molecules so that there are also collisions between 
different species of molecules. For example, the air in the chamber will have both 
N2 and O2 molecules, with different partial pressures. O2 and N2 molecules will col-
lide with each other. Further, when Au atoms leave the tungsten surface in a trajec-
tory toward the substrate, they can collide with N2 or O2 molecules, so there are 
three different molecular collisions involved.
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 The mean free path ℓ at 1 atm can be calculated from Equation 1.29 but we need the 
radius r of the N2 molecule, which is approximately 0.16 nm. Thus,

ℓ =
1

21∕24πr2n
=

1
21∕24π(0.16 × 10−9 m)2(2.45 × 1025 m−3)

= 90 nm

which is very short. Suppose that the filament to substrate distance L is 20 cm and we would 
like ℓ to be at least 50L to avoid Au atoms colliding with the N2 molecules. Substituting 
Equation 1.29 into Equation 1.30, we find

 ℓ =
21∕2kT

8πr2P
 [1.31]

 As the pressure decreases, the mean free path becomes longer, as we expect. Setting  
ℓ = 50L = 10 m and T = 300 K

 P =
21∕2(1.38 × 10−23 J K−1) (300 K)

8π(0.19 × 10−9 m)2(10 m)

 = 6.5 × 10−4 Pa, or 6.5 × 10−9 atm or 4.9 × 10−6 torr

 Typically, pressures on the order of 10−6 torr are considered to be sufficient for vacuum 
deposition by thermal evaporation. We should have strictly considered the size of both Au 
and N2 atoms and their relative speeds in a more rigorous calculation but P as an order of 
magnitude would not have been too different.

Flux density 

along +x

PARTICLE FLUX DENSITY AND PRESSURE Consider a vacuum deposition process in 
which atoms will be deposited onto a substrate. We wish to calculate the rate of impingement 
of atmospheric molecules in the chamber on to a surface area A on the substrate as shown 
in Figure 1.24c. Put differently, we wish to calculate the flux of molecules arriving on the 
area A. Suppose that ΔN number of molecules reach the area A in time Δt as shown in Fig-
ure 1.24c. The flux density Γ that characterizes the flow rate of such particles per unit area 
is generally defined by

 Γ =
ΔN

AΔt
 [1.32]

 It is clear in Figure 1.24c that only those molecules with a velocity component along 
the positive x-direction can reach A. Suppose that the average speed parallel to the x-direction 
is vx. In a time interval Δt, those molecules will travel vxΔt along x. Only those molecules 
that are a distance vxΔt away from A and also within the area A can reach A as shown in 
Figure 1.24d. The number of these molecules in the volume AvxΔt is n(AvxΔt), where n is 
the number of molecules per unit volume. However, only half of these will be moving along 
+x and the other half along −x, so the actual ΔN reaching A is 1

2 nAvxΔt. Substituting this 
into Equation 1.32, the flux density along the positive +x direction is

 Γx =
1
2

 nvx [1.33]

Calculate the flux density of impinging N2 molecules on a semiconductor substrate in a 
vacuum chamber maintained at 1 atm (760 torr) and 10−9 torr, which represents ultra-high 
vacuum. What is the rate at which a typical atom on the substrate surface gets bombarded 
by N2 molecules, assuming that an atom on the surface is roughly a square with a side a on 
the order of 0.2 nm? Assume the temperature is 300 K. What is your conclusion?

 EXAMPLE 1.13
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SOLUTION

We can use the effective velocity along x for the average velocity along this direction, that is, 
1
2 Mv 

2
x = 1

2 kT  in which M is the mass of the N2 molecule, given by 2Mat∕NA = 2(14 g mol−1)∕ 
(6.022 × 1023 mol−1) = 4.65 × 10−26 kg. Substituting T = 300 K, we find the rms velocity 
along x, vx(rms) = 298.5 m s−1.
 We have already calculated the N2 concentration n under a pressure of 1 atm in the 
chamber in Example 1.12 by using Equation 1.30, that is, n = 2.45 × 1025 m−3.
 The flux density of N2 molecules impinging on the substrate is then

 Γx =
1
2

 nvx ≈
1
2

 (2.45 × 1025 m−3) (298.5 m s−1) = 3.65 × 1027 m−2 s−1

 A typical size a of an atom is on the order of 0.2 nm so that an atom on the surface of a 
substrate typically occupies an area a2 of 0.04 nm2 or 4 × 10−20 m2. A particular atom on the 
surface is then bombarded at a rate a2Γx per second, that is, (4 × 10−20 m2)(3.65 × 1027 m−2 s−1) 
or 146 million times every second.
 If we repeat the calculations at a pressure of 10−9 torr (1.33 × 10−7 Pa), we would find 
that n = 3.22 × 1013 m−3 and Γx = 4.8 × 1015 m−2 s−1 so that a particular atom on the sub-
strate surface is hit 1.9 × 10−4 times per second, or it takes 1.4 hours for this atom to be hit 
by an N2 molecule. It is obvious that at atmospheric pressure we cannot deposit the evaporant 
atoms onto the substrate while the substrate is bombarded at an astronomic rate. On the other 
hand, under suitable vacuum conditions, we can easily deposit evaporant atoms and grow the 
layer we need on the substrate without air and other contaminant molecules interfering with 
the growth.

1.7  HEAT, THERMAL FLUCTUATIONS, AND NOISE

Generally, thermal equilibrium between two objects implies that they have the same 
temperature, where temperature (from the kinetic theory) is a measure of the mean 
kinetic energy of the molecules. Consider a solid in a monatomic gas atmosphere 
such as He gas, as depicted in Figure 1.25. Both the gas and the solid are at the 
same temperature. The gas molecules move around randomly, with a mean kinetic 
energy given by 1

2 mv2 = 3
2 kT , where m is the mass of the gas molecule. We also know 

that the atoms in the solid vibrate with a mean kinetic energy given by 1
2 MV 

2 = 3
2 kT, 

where M is the mass of the solid atom and V is the velocity of vibration. The gas 
molecules will collide with the atoms on the surface of the solid and will thus 

M
V

m
Gas
atom

Solid

Gas

v

Figure 1.25 Solid in equilibrium in air.

During collisions between the gas and solid atoms,  
kinetic energy is exchanged. (For simplicity, the 
gas molecule is assumed to be monatomic.)
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exchange energy with those solid atoms. Since both are at the same temperature, the 
solid atoms and gas molecules have the same mean kinetic energy, which means that 
over a long time, there will be no net transfer of energy from one to the other. This 
is basically what we mean by thermal equilibrium.

 If, on the other hand, the solid is hotter than the gas, Tsolid > Tgas, and thus 
1
2 MV 

2 > 1
2 mv2, then when an average gas molecule and an average solid atom col-

lide, energy will be transferred from the solid atom to the gas molecule. As many 
more gas molecules collide with solid atoms, more and more energy will be trans-
ferred, until the mean kinetic energy of atoms in each substance is the same and 
they reach the same temperature: the bodies have equilibrated. The amount of 
energy transferred from the kinetic energy of the atoms in the hot solid to the kinetic 
energy of the gas molecules is called heat. Heat represents the energy transfer from 
the hot body to the cold body by virtue of the random motions and collisions of the 
atoms and molecules.
 Although, over a long time, the energy transferred between two systems in thermal 
equilibrium is certainly zero, this does not preclude a net energy transfer from one to 
the other at one instant. For example, at any one instant, an average solid atom may 
be hit by a fast gas molecule with a speed at the far end of the Maxwell–Boltzmann 
distribution. There will then be a transfer of energy from the gas molecule to the solid 
atom. At another instant, a slow gas molecule hits the solid, and the reverse is true. 
Thus, although the mean energy transferred from one atom to the other is zero, the 
instantaneous value of this energy is not zero and varies randomly about zero.
 As an example, consider a small mass attached to a spring, as illustrated in 
Figure 1.26. The gas or air molecules will bombard and exchange energy with the 
solid atoms. Some air molecules will be fast and some will be slow, which means 
that there will be an instantaneous exchange of energy. Consequently, the spring will 
be compressed when the bombarding air molecules are fast (more energetic) and 
extended when they are less energetic. This leads to a mechanical fluctuation of the 
mass about its equilibrium position, as depicted in Figure 1.26. These fluctuations 
make the measurement of the exact position of the mass uncertain, and it is futile 
to try to measure the position more accurately than these fluctuations permit.
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Figure 1.26 Fluctuations of 
a mass attached to a spring, 
due to random bombardment 
by air molecules.
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 If the mass m compresses the spring by Δx, then at time t, the energy stored as 
potential energy in the spring is

 PE(t) =
1
2

 K(Δx)2 [1.34]

where K is the spring constant. At a later instant, this energy will be returned to the 
gas by the spring. The spring will continue to fluctuate because of the fluctuations 
in the velocity of the bombarding air molecules. Over a long period, the average 
value of PE will be the same as KE and, by virtue of the Maxwell equipartition of 
energy theorem, it will be given by

 1
2

 K(Δx)2 =
1
2

 kT
 

[1.35]

 Thus, the rms value of the fluctuations of the mass about its equilibrium position is

 (Δx)rms = √ kT

K
 [1.36]

 To understand the origin of electrical noise, for example, we consider the ther-
mal fluctuations in the instantaneous local electron concentration in a conductor, 
such as that shown in Figure 1.27. Because of fluctuations in the electron concentra-
tion at any one instant, end A of the conductor can become more negative with 
respect to end B, which will give rise to a voltage across the conductor. This fluc-
tuation in the electron concentration is due to more electrons at that instant moving 
toward end A than toward B. At a later instant, the situation reverses and more 
electrons move toward B than toward A, resulting in end B becoming more negative 
and leading to a reversal of the voltage between A and B. Clearly, there will there-
fore be voltage fluctuations across the conductor, even though the mean voltage 
across it over a long period is always zero. If the conductor is connected to an 
amplifier, these voltage fluctuations will be amplified and recorded as noise at the 
output. This noise corrupts the actual signal at the amplifier input and is obviously 
undesirable. As engineers, we have to know how to calculate the magnitude of this 
noise. Although the mean voltage due to thermal fluctuations is zero, the rms value 
is not. The average voltage from a power outlet is zero, but the rms value is 120 V. 
We use the rms value to calculate the amount of average power available.
 Consider a conductor of resistance R. To derive the noise voltage generated by 
R we place a capacitor C across this conductor, as in Figure 1.28, and we assume 
that both are at the same temperature; they are in thermal equilibrium. The capacitor 
is placed as a convenient device to obtain or derive the noise voltage generated by 
R. It should be emphasized that C itself does not contribute to the source of the 
fluctuations (it generates no noise) but is inserted into the circuit to impose a finite 
bandwidth over which we will calculate the noise voltage. The reason is that all 
practical electric circuits have some kind of bandwidth, and the noise voltage we 
will derive depends on this bandwidth. Even if we remove the capacitor, there will 
still be stray capacitances; and if we short the conductor, the shorting wires will have 
some inductance that will also impose a bandwidth. As we mentioned previously, 
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thermal fluctuations in the conductor give rise to voltage fluctuations across R. There 
is only so much average energy available in these thermal fluctuations, and this is 
the energy that is used to charge and discharge the external capacitor C. The voltage 
v across the capacitor depends on how much energy that can be stored on it, which 
in turn depends on the thermal fluctuations in the conductor. Charging a capacitor 
to a voltage v implies that an energy E = 1

2 Cv2 is stored on the capacitor. The mean 
stored energy E in a thermal equilibrium system can only be 1

2 kT , according to the 
Maxwell energy equipartition theorem. Thus E(t) , the mean energy stored on C due 
to thermal fluctuations, is given by

 E(t) =
1
2

 Cv(t)2 =
1
2

 kT

We see that the mean square voltage across the capacitor is given by

 v(t)2 =
kT

C
 [1.37]
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Figure 1.27 Random motion of conduction  
electrons in a conductor, resulting in electrical 
noise.

Figure 1.28 Charging and  
discharging of a capacitor by a  
conductor, due to the random thermal 
motions of the conduction electrons.
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 Interestingly, the rms noise voltage across an RC network seems to be indepen-
dent of the resistance. However, the origin of the noise voltage arises from the 
electron fluctuations in the conductor and we must somehow re-express Equation 1.37 
to reflect this fact; that is, we must relate the electrical fluctuations to R.

 The voltage fluctuations across the network will have many sinusoidal compo-
nents, but only those below the cutoff frequency of the RC network will contribute 
to the mean square voltage (that is, we effectively have a low-pass filter). If B is the 
bandwidth of the RC network,12 then B = 1∕(2πRC) and we can eliminate C in 
Equation 1.37 to obtain

v(t)2 = 2πkTRB

 This is the key equation for calculating the mean square noise voltage from a 
resistor over a bandwidth B. A more rigorous derivation makes the numerical factor 4 
rather than 2π. For a network with a bandwidth B, the rms noise voltage is therefore

 vrms = √4kTRB [1.38]

 Equation 1.38 is known as the Johnson resistor noise equation, and it sets the 
lower limit of the magnitude of small signals that can be amplified. Note that Equa-
tion 1.38 basically tells us the rms value of the voltage fluctuations within a given 
bandwidth (B) and not the origin and spectrum (noise voltage vs. frequency) of the 
noise. The origin of noise is attributed to the random motions of electrons in the 
conductor (resistor), and Equation 1.38 is the fundamental description of electrical 
fluctuations; that is, the fluctuations in the conductor’s instantaneous local electron 
concentration that charges and discharges the capacitor. To determine the rms noise 
voltage across a network with an impedance Z( jω), all we have to do is find the real 
part of Z, which represents the resistive part, and use this for R in Equation 1.38.

Root mean 

square noise 

voltage 

across a 

resistance

 12 A low-pass filter allows all signal frequencies up to the cutoff frequency B to pass. B is 1∕(2πRC).

NOISE IN AN RLC CIRCUIT Most radio receivers have a tuned parallel-resonant circuit, 
which consists of an inductor L, capacitor C, and resistance R in parallel. Suppose L is 100 μH; 
C is 100 pF; and R, the equivalent resistance due to the input resistance of the amplifier and 
to the loss in the coil (coil resistance plus ferrite losses), is about 200 kΩ. What is the minimum 
rms radio signal that can be detected?

SOLUTION

Consider the bandwidth of this tuned RLC circuit, which can be found in any electrical engi-
neering textbook:

 B =
fo

Q

where fo = 1∕[2π√LC]  is the resonant frequency and Q = 2π foCR is the quality factor. 
Substituting for L, C, and R, we get, fo = 107∕2π = 1.6 × 106 Hz and Q = 200, which gives 
B = 107∕[2π(200)] Hz, or 8 kHz. The rms noise voltage is

  vrms = [4kTRB]1∕2 = [4(1.38 × 10−23 J K−1) (300 K)(200 × 103 Ω)(8 × 103 Hz)]1∕2

  = 5.1 × 10−6 V  or  5.1 μV

 EXAMPLE 1.14
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 This rms voltage is within a bandwidth of 8 kHz centered at 1.6 MHz. This last informa-
tion is totally absent in Equation 1.38. If we attempt to use

vrms = [kT

C ]
1∕2

we get

vrms = [ (1.38 × 10−23 J K−1) (300 K)

100 × 10−12 F ]
1∕2

= 6.4 μV

 However, Equation 1.37 was derived using the RC circuit in Figure 1.28, whereas we 
now have an LCR circuit. The correct approach uses Equation 1.38, which is generally valid, 
and the appropriate bandwidth B.

1.8  THERMALLY ACTIVATED PROCESSES

1.8.1 ARRHENIUS RATE EQUATION

Many physical and chemical processes strongly depend on temperature and exhibit 
what is called an Arrhenius type behavior, in which the rate of change is propor-
tional to exp(−EA∕kT ), where EA is a characteristic energy parameter applicable to 
the particular process. For example, when we store food in the refrigerator, we are 
effectively using the Arrhenius rate equation: cooling the food diminishes the rate 
of decay. Processes that exhibit an Arrhenius type temperature dependence are 
referred to as thermally activated.

 For an intuitive understanding of a thermally activated process, consider a verti-
cal filing cabinet that stands in equilibrium, with its center of mass at A, as sketched 
in Figure 1.29. Tilting the cabinet left or right increases the potential energy PE and 
requires external work. If we could supply this energy, we could move the cabinet 
over its edge and lay it flat, where its PE would be lower than at A. Clearly, since 
the PE at B is lower, this is a more stable position than A. Further, in going from 
A to B, we had to overcome a potential energy barrier of amount EA, which cor-
responds to the cabinet standing on its edge with the center of mass at the highest 
point at A*. To topple the cabinet, we must first provide energy13 equal to EA to take 
the center of mass to A*, from which point the cabinet, with the slightest encourage-
ment, will fall spontaneously to B to attain the lowest PE. At the end of the whole 
tilting process, the internal energy change for the cabinet, ΔU, is due to the change 
in the PE (=mgh) from A to B, which is negative; B has lower PE than A.
 Suppose, for example, a person with an average energy less than EA tries to 
topple the cabinet. Like everyone else, that person experiences energy fluctuations 
as a result of interactions with the environment (e.g., what type of day the person 
had). During one of those high-energy periods, he can topple the cabinet, even 
though most of the time he cannot do so because his average energy is less then EA. 

 13 According to the conservation of energy principle, the increase in the PE from A to A* must come from the 
external work.
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The rate at which the cabinet is toppled depends on the number of times (frequency) 
the person tries and the probability that he possesses energy greater than EA.

 As an example of a thermally activated process, consider the diffusion of impu-
rity atoms in a solid, one of which is depicted in Figure 1.30. In this example, the 
impurity atom is at an interatomic void A in the crystal, called an interstitial site. 
For the impurity atom to move from A to a neighboring void B, the atom must push 
the host neighbors apart as it moves across. This requires energy in much the same 
way as does toppling the filing cabinet. There is a potential energy barrier EA to the 
motion of this atom from A to B.
 Both the host and the impurity atoms in the solid vibrate about their equilibrium 
positions, with a distribution of energies, and they also continually exchange energies, 
which leads to energy fluctuations. In thermal equilibrium, at any instant, we can expect 
the energy distribution of the atoms to obey the Boltzmann distribution law (see Equa-
tion 1.28). The average kinetic energy per atom is vibrational and is 3

2 kT , which will not 
allow the impurity simply to overcome the PE barrier EA, because typically EA ≫ 3

2 kT.

X
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Unstable (activated state)
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ΔU

System coordinate, X = Position of center of mass

U(X) = PE = mgh Figure 1.29 Tilting a filing cabinet from 
state A to its edge in state A* requires an  
energy EA.

After reaching A*, the cabinet spontaneously 
drops to the stable position B. The PE of 
state B is lower than A, and therefore state B 
is more stable than A.
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Figure 1.30 Diffusion of an  
interstitial impurity atom in a  
crystal from one void to a  
neighboring void.

The impurity atom at position A 
must possess an energy EA to push 
the host atoms away and move 
into the neighboring void at B.
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 The rate of jump, called the diffusion, of the impurity from A to B depends on 
two factors. The first is the number of times the atom tries to go over the potential 
barrier, which is the vibrational frequency fo, in the AB direction. The second factor 
is the probability that the atom has sufficient energy to overcome the PE barrier. 
Only during those times when the atom has an energy greater than the potential 
energy barrier EA = UA* − UA will it jump across from A to B. During this diffusion 
process, the atom attains an activated state, labeled A* in Figure 1.30, with an 
energy EA above UA, so the crystal internal energy is higher than UA. EA is called 
the activation energy.

 Suppose there are N impurity atoms. At any instant, according to the Boltzmann 
distribution, nE dE of these will have kinetic energies in the range E to (E + dE), 
so the probability that an impurity atom has an energy E greater than EA is

 Probability (E > EA) =
Number of impurities with E > EA

Total number of impurities

 =
∫ ∞
EA

nE dE

N
= A exp (−

EA

kT)
where A is a dimensionless constant that has only a weak temperature dependence 
compared with the exponential term.14 The rate of jumps, jumps per seconds, or 
simply the frequency of jumps f from void to void is

  f = (Frequency of attempts along AB)(Probability of E > EA)

  = fo A exp(−
EA

kT)  EA = UA* − UA  [1.39]

 Equation 1.39 describes the rate of a thermally activated process, for which 
increasing the temperature causes more atoms to be energetic and hence results in 
more jumps over the potential barrier. Equation 1.39 is the well-known Arrhenius 

rate equation and is generally valid for a vast number of transformations, both 
chemical and physical.

1.8.2 ATOMIC DIFFUSION AND THE DIFFUSION COEFFICIENT

Consider the motion of the impurity atom in Figure 1.30. For simplicity, assume a 
two-dimensional crystal in the plane of the paper, as in Figure 1.31. The impurity 
atom has four neighboring voids into which it can jump. If θ is the angle with respect 
to the x axis, then these voids are at directions θ = 0°, 90°, 180°, and 270°, as 
depicted in Figure 1.31. Each jump is in a random direction along one of these four 
angles. As the impurity atom jumps from void to void, it leaves its original location 
at O, and after N jumps, after time t, it has been displaced from O to O′.
 Let a be the closest void-to-void separation. Each jump results in a displacement 
along x which is equal to a cos θ, with θ = 0°, 90°, 180°, or 270°. Thus, each jump 

 14 The integration of nE dE above from EA to infinity tacitly assumes that EA is well above the peak of the 
distribution as in Figure 1.23, so that nE is taken to be proportional to exp(−E∕kT ). Put differently, it assumes that 
EA is greater than the mean thermal energy.
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results in a displacement along x which can be a, 0, −a, or 0, corresponding to the 
four possibilities. After N jumps, the mean displacement along x will be close to 
zero, just as the mean voltage of the ac voltage from a power outlet is zero, even 
though it has an rms value of 120 V. We therefore consider the square of the dis-
placements. The total square displacement, denoted X2, is

 X2 = a2 cos2 θ1 + a2 cos2 θ2 + ⋯ + a2 cos2 θN

 Clearly, θ = 90° and 270° give cos2 θ = 0. Of all N jumps, 1
2 N  are θ = 0 and 

180°, each of which gives cos2 θ = 1. Thus,

 X2 =
1
2

 a2N

 There will be a similar expression for Y 2, which means that after N jumps, the 
total square distance L2 from O to O′ in Figure 1.31 is

 L2 = X2 + Y 2 = a2N

The rate of jumping (frequency of jumps) is given by Equation 1.39

 f = fo A exp(−
EA

kT)
so the time per jump is 1∕f. Time t for N jumps is N∕f. Thus, N = ft and

 L2 = a2ft = 2Dt [1.40]

where, by definition, D = 1
2 a

2f , which is a constant that depends on the diffusion 
process, as well as the temperature, by virtue of f. This constant is generally called 
the diffusion coefficient. Substituting for f, we find

 D =
1
2

 a2fo A exp(−
EA

kT)
or

 D = Do exp(−
EA

kT) [1.41]
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Figure 1.31 An impurity atom has four site choices for diffusion to a neighboring interstitial vacancy.

After N jumps, the impurity atom would have been displaced from the original position at O.
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where Do is a constant. The root square displacement L in time t, from Equation 
1.40, is given by L = [2Dt]1∕2. Since L2 is evaluated from X2 and Y 2, L is known as 
the root mean square (rms) displacement.

 The preceding specific example considered the diffusion of an impurity in a void 
between atoms in a crystal; this is a simple way to visualize the diffusion process. 
An impurity, indeed any atom, at a regular atomic site in the crystal can also diffuse 
around by various other mechanisms. For example, such an impurity can simultane-
ously exchange places with a neighbor. But, more significantly, if a neighboring 
atomic site has a vacancy that has been left by a missing host atom, then the impu-
rity can simply jump into this vacancy. (Vacancies in crystals are explained in detail 
in Section 1.10.1; for the present, they simply correspond to missing atoms in the 
crystal.) The activation energy EA in Equation 1.41 is a measure of the difficulty of 
the diffusion process. It may be as simple as the energy (or work) required for an 
impurity atom to deform (or strain) the crystal around it as it jumps from one inter-
stitial site to a neighboring interstitial site, as in Figure 1.30; or it may be more 
complicated, for example, involving vacancy creation.
 Various Si semiconductor devices are fabricated by doping a single Si crystal 
with impurities (dopants) at high temperatures. For example, doping the Si crystal 
with phosphorus (P) gives the crystal a higher electrical conductivity. The P atoms 
substitute directly for Si atoms in the crystal. These dopants migrate from high to 
low dopant concentration regions in the crystal by diffusion, which occurs efficiently 
only at sufficiently high temperatures.

DIFFUSION OF DOPANTS IN SILICON The diffusion coefficient of P atoms in the Si 
crystal follows Equation 1.41 with Do = 10.5 cm2 s−1 and EA = 3.69 eV. What is the diffusion 
coefficient at a temperature of 1100 °C at which dopants such as P are diffused into Si to 
fabricate various devices? What is the rms distance diffused by P atoms in 5 minutes? Estimate, 
as an order of magnitude, how many jumps the P atom makes in 1 second if you take the 
jump distance to be roughly the mean interatomic separation, ∼0.27 nm.

SOLUTION

From Equation 1.41,

D = Do exp(−
EA

kT) = (10.5 cm2 s−1) exp[−
(3.69 eV)(1.602 × 10−19 J eV−1)

(1.381 × 10−23 J K−1) (1100 + 273 K) ]
 = 3.0 × 10−13 cm2 s−1

The rms distance L diffused in a time t = 5 min = 5 × 60 seconds is

L = √2Dt = [2(3.0 × 10−13 cm2 s−1) (5 × 60 s)]1∕2 = 1.3 × 10−5 cm or 0.13 μm

Equation 1.40 was derived for a two-dimensional crystal as in Figure 1.31, and for an impu-
rity diffusion. Nonetheless, we can still use it to estimate how many jumps a P atom makes 
in 1 second. From Equation 1.40, f ≈ 2D∕a2 ≈ 2(3.0 × 10−17 m2 s−1)∕(0.27 × 10−9 m)2 = 823 
jumps per second. It takes roughly 1 ms to make one jump. It is left as an exercise to show 
that at room temperature it will take a P atom 1046 years to make a jump! (Scientists and 
engineers know how to use thermally activated processes.)

 EXAMPLE 1.15
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1.9  THE CRYSTALLINE STATE

1.9.1 TYPES OF CRYSTALS

A crystalline solid is a solid in which the atoms bond with each other in a regular 
pattern to form a periodic collection (or array) of atoms, as shown for the copper 
crystal in Figure 1.32. The most important property of a crystal is periodicity, 
which leads to what is termed long-range order. In a crystal, the local bonding 
geometry is repeated many times at regular intervals, to produce a periodic array 
of atoms that constitutes the crystal structure. The location of each atom is well 
known by virtue of periodicity. There is therefore a long-range order, since we can 
always predict the atomic arrangement anywhere in the crystal. Nearly all metals, 
many ceramics and semiconductors, and various polymers are crystalline solids in 
the sense that the atoms or molecules are positioned on a periodic array of points 

in space.

 All crystals can be described in terms of a lattice and a basis.15 A lattice is an 
infinite periodic array of geometric points in space, without any atoms. When we 
place an identical group of atoms (or molecules), called a basis, at each lattice 
point, we obtain the actual crystal structure. The crystal is thus a lattice plus a 
basis at each lattice point. In the copper crystal in Figure 1.32a, each lattice point 
has one Cu atom and the basis is a single Cu atom. As apparent from Figure 1.32a, 
the lattice of the copper crystal has cubic symmetry and is one of many possi-
ble  lattices.
 Since the crystal is essentially a periodic repetition of a small volume (or cell) 
of atoms in three dimensions, it is useful to identify the repeating unit so that the 

 15 Lattice is a purely imaginary geometric concept whose only requirement is that the infinite array of points has 
periodicity. In many informal discussions, the term lattice or crystal lattice is used to mean the crystal structure 
itself. These concepts are further developed in Section 1.14 under Additional Topics.

Figure 1.32 (a) The crystal structure of copper which is face-centered cubic (FCC). The atoms are positioned at well-
defined sites arranged periodically, and there is a long-range order in the crystal. (b) An FCC unit cell with close-packed 
spheres. (c) Reduced-sphere representation of the FCC unit cell. Examples: Ag, Al, Au, Ca, Cu, γ-Fe (>912 °C), Ni, Pd, Pt, 
and Rh.
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FCC unit cell
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crystal properties can be described through this unit. The unit cell is the most con-
venient small cell in the crystal structure that carries the properties of the crystal. 
The repetition of the unit cell in three dimensions generates the whole crystal struc-
ture, as is apparent in Figure 1.32a for the copper crystal.
 The unit cell of the copper crystal is cubic with Cu atoms at its corners and one 
Cu atom at the center of each face, as indicated in Figure 1.32b. The unit cell of Cu 
is thus said to have a face-centered cubic (FCC) structure. The Cu atoms are shared 
with neighboring unit cells. Effectively, then, only one-eighth of a corner atom is in 
the unit cell and one-half of the face-centered atom belongs to the unit cell, as shown 
in Figure 1.32b. This means there are effectively four atoms in the unit cell. The 
length of the cubic unit cell is termed the lattice parameter a of the crystal struc-
ture. For Cu, for example, a is 0.362 nm, whereas the radius R of the Cu atom in 
the crystal is 0.128 nm. Assuming the Cu atoms are spheres that touch each other, 
we can geometrically relate a and R. For clarity, it is often more convenient to draw 
the unit cell with the spheres reduced, as in Figure 1.32c.
 The FCC crystal structure of Cu is known as a close-packed crystal structure 
because the Cu atoms are packed as closely as possible, as is apparent in Figure 1.32a 
and b. The volume of the FCC unit cell is 74 percent full of atoms, which is the 
maximum packing possible with identical spheres. By comparison, iron has a body-

centered cubic (BCC) crystal structure, and its unit cell is shown in Figure 1.33. 
The BCC unit cell has Fe atoms at its corners and one Fe atom at the center of the 
cell. The volume of the BCC unit cell is 68 percent full of atoms, which is lower 
than the maximum possible packing.
 The FCC crystal structure is only one way to pack the atoms as closely as pos-
sible. For example, in zinc, the atoms are arranged as closely as possible in a hex-
agonal symmetry, to form the hexagonal close-packed (HCP) structure shown in 
Figure 1.34a. This structure corresponds to packing spheres as closely as possible 
first as one layer A, as shown in Figure 1.34b. You can visualize this by arranging 
six pennies as closely as possible on a table top. On top of layer A we can place an 
identical layer B, with the spheres taking up the voids on layer A, as depicted in 
Figure 1.34b. The third layer can be placed on top of B and lined up with layer A. 
The stacking sequence is therefore ABAB. . . . A unit cell for the HCP structure is 
shown in Figure 1.34c, which shows that this is not a cubic structure. The unit cell 

a

Figure 1.33 Body-centered  
cubic (BCC) crystal structure.  
(a) A BCC unit cell with close-
packed hard spheres representing 
the Fe atoms. (b) A reduced-
sphere unit cell.



 1 . 9  THE CRYSTALLINE STATE 57

shown, although convenient, is not the smallest unit cell. The smallest unit cell for 
the HCP structure is shown in Figure 1.34d and is called the hexagonal unit cell. 
The repetition of this unit cell will generate the whole HCP structure. The atomic 
packing density in the HCP crystal structure is 74 percent, which is the same as that 
in the FCC structure.
 Covalently bonded solids, such as silicon and germanium, have a diamond crys-
tal structure brought about by the directional nature of the covalent bond, as shown 
in Figure 1.35 (see also Figure 1.6). The rigid local bonding geometry of four Si–Si 
bonds in the tetrahedral configuration forces the atoms to form what is called the 
diamond cubic crystal structure. The unit cell in this case can be identified with 
the cubic structure. Although there are atoms at each corner and at the center of 
each face, indicating an FCC-like structure, there are four atoms within the cell as 
well. Thus, there are eight atoms in the unit cell. The diamond unit cell can actually 
be described in terms of an FCC lattice (a geometric arrangement of points) with 
each lattice point having a basis of two Si atoms. If we place the two Si atoms at 
each site appropriately, for example, one right at the lattice point, and the other 
displaced from it by a quarter lattice distance a∕4 along the cube edges, we can 
easily generate the diamond unit cell. In the copper crystal, each FCC lattice point 
has one Cu atom, whereas in the Si crystal each lattice point has two Si atoms; thus 
there are 4 × 2 = 8 atoms in the diamond unit cell.
 In the GaAs crystal, as in the silicon crystal, each atom forms four directional 
bonds with its neighbors. The unit cell looks like a diamond cubic, as indicated in 
Figure 1.36 but with the Ga and As atoms alternating positions. This unit cell is 
termed the zinc blende structure after ZnS, which has this type of unit cell. Many 
important compound semiconductors have this crystal structure, GaAs being the 
most commonly known. The zinc blende unit cell can also be described in terms of 
a fundamental FCC lattice and a basis that has two atoms, Zn and S (or Ga and As). 
For example, we can place one S at each lattice point and one Zn atom displaced 
from the Zn by a∕4 along the cube edges.

(a) (b)

Layer A

Layer B

Layer A

c

a

(c) (d)

Layer A

Layer B

Layer A

Figure 1.34 The hexagonal close-packed (HCP) crystal structure. (a) The hexagonal close-packed (HCP) structure.  
A collection of many Zn atoms. Color difference distinguishes layers (stacks). (b) The stacking sequence of closely 
packed layers is ABAB. (c) A unit cell with reduced spheres. (d) The smallest unit cell with reduced spheres.
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 In ionic solids, the cations (e.g., Na+) and the anions (Cl−) attract each other 
nondirectionally. The crystal structure depends on how closely the opposite ions can 
be brought together and how the same ions can best avoid each other while maintain-
ing long-range order, or maintaining symmetry. These depend on the relative charge 
and relative size per ion.
 To demonstrate the importance of the size effect in two dimensions, consider 
identical coins, say pennies (1-cent coins). At most, we can make six pennies 
touch one penny, as shown in Figure 1.37. On the other hand, if we use quarters16 

a

C

a

a

Figure 1.35 The diamond unit cell 
which is cubic. The cell has eight  
atoms.

Gray Sn (α-Sn) and the elemental 
semiconductors Ge and Si have this 
crystal structure.

S

Z n

a

a

a

Figure 1.36 The zinc blende (ZnS) 
cubic crystal structure.

Many important compound crystals 
have the zinc blende structure.  
Examples: AlAs, GaAs, GaP, GaSb, 
InAs, InP, InSb, ZnS, ZnTe.

 16 Although many are familiar with the United States coinage, any two coins with a size ratio of about 0.75 would 
work out the same.
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Figure 1.37 Packing of coins on a table top to build a two-dimensional crystal.
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(25-cent coins) to touch one penny, at most only five quarters can do so. However, 
this arrangement cannot be extended to the construction of a two-dimensional 
crystal with periodicity. To fulfill the long-range symmetry requirement for crys-
tals, we can only use four quarters to touch the penny and thereby build a two-
dimensional “penny–quarter” crystal, which is shown in the figure. In the 
two-dimensional crystal, a penny has four quarters as nearest neighbors; similarly, 
a quarter has four pennies as nearest neighbors. A convenient unit cell is a square 
cell with one-quarter of a penny at each corner and a full penny at the center (as 
shown in the figure).
 The three-dimensional equivalent of the unit cell of the penny–quarter crystal is 
the NaCl unit cell shown in Figure 1.38. The Na+ ion is about half the size of the 
Cl− ion, which permits six nearest neighbors while maintaining long-range order. 
The repetition of this unit cell in three dimensions generates the whole NaCl crystal, 
which was depicted in Figure 1.9b.
 A similar unit cell with Na+ and Cl− interchanged is also possible and equally 
convenient. We can therefore describe the whole crystal with two interpenetrating 
FCC unit cells, each having oppositely charged ions at the corners and face centers. 
Many ionic solids have the rock salt (NaCl) crystal structure.
 When the cation and anions have equal charges and are about the same size, 
as in the CsCl crystal, the unit cell is called the CsCl unit cell, which is shown 
in Figure 1.39. Each cation is surrounded by eight anions (and vice versa), 
which are at the corners of a cube. This is not a true BCC unit cell because the 
atoms at various BCC lattice points are different. (As discussed in Section 1.14, 
CsCl has a simple cubic lattice with a basis that has one Cl− ion and one 
Cs+  ion.)
 Table 1.3 summarizes some of the important properties of the main crystal 
structures considered in this section.

Cl–

Na+

Figure 1.38 A possible reduced-
sphere unit cell for the NaCl (rock 
salt) crystal.

An alternative unit cell may have  
Na+ and Cl− interchanged. Examples: 
AgCl, CaO, CsF, LiF, LiCl, NaF, NaCl, 
KF, KCl, and MgO.

Cl–

Cs+

Figure 1.39 A possible reduced-sphere 
unit cell for the CsCl crystal.

An alternative unit cell may have Cs+ and 
Cl− interchanged. Examples: CsCl, CsBr, 
CsI, TlCl, TlBr, and TlI.



60 C H A P T E R  1  ∙ ELEMENTARY MATERIALS SCIENCE CONCEPTS

Table 1.3 Properties of some important crystal structures

 a and R  Number of Atomic 

Crystal (R is the Radius Coordination Atoms per Packing 

Structure of the Atom) Number (CN) Unit Cell Factor Examples

Simple cubic a = 2R 6 1 0.52 No metals (Except Po)

BCC a = 4R
√3  8 2 0.68 Many metals: α−Fe, Cr, Mo, W

FCC a = 4R
√2  12 4 0.74 Many metals: Ag, Au, Cu, Pt

HCP a = 2R 12 2 0.74 Many metals: Co, Mg, Ti, Zn
 c = 1.633a

Diamond a = 8R
√3   4 8 0.34 Covalent solids:

      Diamond, Ge, Si, α-Sn

Zinc blende  4 8 0.34 Many covalent and ionic solids.
      Many compound semiconductors.
      ZnS, GaAs, GaSb, InAs, InSb

NaCl  6 4 cations 0.67 Ionic solids such as NaCl, AgCl,
      LiF, MgO, CaO

   4 anions (NaCl) Ionic packing factor depends on  
      relative sizes of ions.

CsCl  8 1 cation  Ionic solids such as CsCl, CsBr, CsI
   1 anion

THE COPPER (FCC) CRYSTAL Consider the FCC unit cell of the copper crystal shown in 
Figure 1.40.

a. How many atoms are there per unit cell?
b. If R is the radius of the Cu atom, show that the lattice parameter a is given by a = R2√2.
c. Calculate the atomic packing factor (APF) defined by

 APF =
Volume of atoms in unit cell

Volume of unit cell

d.  Calculate the atomic concentration (number of atoms per unit volume) in Cu and the 
density of the crystal given that the atomic mass of Cu is 63.55 g mol−1 and the radius 
of the Cu atom is 0.128 nm.

SOLUTION

a. There are four atoms per unit cell. The Cu atom at each corner is shared with eight other 
adjoining unit cells. Each Cu atom at the face center is shared with the neighboring unit 
cell. Thus, the number of atoms in the unit cell = 8 corners (1

8 atom) + 6 faces (1
2 atom) = 

4 atoms.
b. Consider the unit cell shown in Figure 1.40 and one of the cubic faces. The face is a 

square of side a and the diagonal is √a2 + a2 or a√2. The diagonal has one atom at 
the center of diameter 2R, which touches two atoms centered at the corners. The diago-
nal, going from corner to corner, is therefore R + 2R + R. Thus, 4R = a√2 and 
a = 4R∕√2 = R2√2. Therefore, a = 0.3620 nm.

 EXAMPLE 1.16
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c.  APF =
(Number of atoms in unit cell) × (Volume of atom)

Volume of unit cell

 =
4 ×

4
3

 πR3

a3 =

42

3
 πR3

(R2√2)3 =
42π

3(2√2)3 = 0.74

d. In general, if there are x atoms in the unit cell, the atomic concentration is

nat =
Number of atoms in unit cell

Volume of unit cell
=

x

a3

 Thus, for Cu

nat =
4

(0.3620 × 10−7 cm)3 = 8.43 × 1022 cm−3

 There are x atoms in the unit cell, and each atom has a mass of Mat∕NA grams. The 
density ρ is

 ρ =
Mass of all atoms in unit cell

Volume of unit cell
=

x(Mat

NA
)

a3

 that is,

 ρ =
natMat

NA

=
(8.43 × 1022 cm−3) (63.55 g mol−1)

6.022 × 1023 mol−1 = 8.9 g cm−3

 Note that the expression ρ = (natMat)∕NA is particularly useful in finding the atomic 
concentration nat from the density since the latter can be easily measured or available in 
various data resources.

1.9.2 CRYSTAL DIRECTIONS AND PLANES

There can be a number of possibilities for choosing a unit cell for a given crystal 
structure, as is apparent in Figure 1.34c and d for the HCP crystal. As a convention, 
we generally represent the geometry of the unit cell as a parallelepiped with sides 
a, b, and c and angles α, β, and γ, as depicted in Figure 1.41a. The sides a, b, and c 

and angles α, β, and γ are referred to as the lattice parameters. To establish a ref-
erence frame and to apply three-dimensional geometry, we insert an xyz coordinate 
system. The x, y, and z axes follow the edges of the parallelepiped and the origin is 

th of an atom

Half of an atom

1
8

a

a

aR

2R

R

Figure 1.40 The FCC unit cell.

The atomic radius is R and the lattice  
parameter is a.
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at the lower-left rear corner of the cell. The unit cell extends along the x axis from 
0 to a, along y from 0 to b, and along z from 0 to c.

 For Cu and Fe, the unit-cell geometry has a = b = c, α = β = γ = 90°, and cubic 
symmetry. For Zn, the unit cell has hexagonal geometry, with a = b ≠ c, α = β = 90°, 
and γ = 120°, as shown in Figure 1.34d.
 In explaining crystal properties, we must frequently specify a direction in a 
crystal, or a particular plane of atoms. Many properties, for example, the elastic 
modulus, electrical resistivity, magnetic susceptibility, etc., are directional within the 
crystal. We use the convention described here for labeling crystal directions based 
on three-dimensional geometry.
 All parallel vectors have the same indices. Therefore, the direction to be labeled 
can be moved to pass through the origin of the unit cell. As an example, Figure 1.41b 

a

b

γ

c

z

x

y
yo

xo

Pzo [121]

Unit cell

[010]

[100]

[001]

[010]

[110]

[111]

[110]

–a–y

ax

y

[111]

[111] [111]

[111]

[111]

[111]
[111]

[111] Family of <111> directions

b
a

O

Unit cell geometry

a

b
c

z

x

y

c

(a) A parallelepiped is chosen to describe
the geometry of a unit cell. We line the
x, y, and z axes with the edges of the
parallelepiped taking the lower-left rear
corner as the origin.

(b) Identification of a direction in a crystal.

(c) Directions in the cubic crystal system.

α
β

Figure 1.41
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shows a direction whose indices are to be determined. A point P on the vector can 
be expressed by the coordinates xo, yo, zo where xo, yo, and zo are projections from 
point P onto the x, y, and z axes, respectively, as shown in Figure 1.41b. It is gener-
ally convenient to place P where the line cuts a surface (though this is not necessary). 
We can express these coordinates in terms of the lattice parameters a, b, and c, 
respectively. We then have three coordinates, say x1, y1, and z1, for point P in terms 
of a, b, and c. For example, if

 xo, yo, zo      are          
1
2

 a, b, 
1
2

 c

then P is at

 x1, y1, z1      i.e.,       
1
2

, 1, 
1
2

 We then multiply or divide these numbers until we have the smallest integers 
(which may include 0). If we call these integers u, v, and w, then the direction is writ-
ten in square brackets without commas as [uvw]. If any integer is a negative number, 
we use a bar on top of that integer. For the particular direction in Figure 1.41b, we 
therefore have [121].
 Some of the important directions in a cubic lattice are shown in Figure 1.41c. 
For example, the x, y, and z directions in the cube are [100], [010], and [001], as 
shown. Reversing a direction simply changes the sign of each index. The negative 
x, y, and z directions are [100], [010] , and [001] , respectively.
 Certain directions in the crystal are equivalent because the differences between them 
are based only on our arbitrary decision for labeling x, y, and z directions. For example, 
[100] and [010] are different simply because of the way in which we labeled the x and 
y axes. Indeed, directional properties of a material (e.g., elastic modulus, and dielectric 
susceptibility) along the edge of the cube [100] are invariably the same as along the 
other edges, for example, [010] and [001]. All of these directions along the edges of 
the cube constitute a family of directions, which is any set of directions considered to 
be equivalent. We label a family of directions, for example, [100], [010], [001], . . . , 
by using a common notation, triangular brackets. Thus, ⟨100⟩ represents the family of 
six directions, [100], [010], [001], [100], [010], and [001] in a cubic crystal. Similarly, 
the family of diagonal directions in the cube, shown in Figure 1.41c, is denoted ⟨111⟩.
 We also frequently need to describe a particular plane in a crystal. Figure 1.42 
shows a general unit cell with a plane to be labeled. We use the following conven-
tion, called the Miller indices of a plane, for this purpose.
 We take the intercepts xo, yo, and zo of the plane on the x, y, and z axes, respec-
tively. If the plane passes through the origin, we can use another convenient parallel 
plane, or simply shift the origin to another point. All planes that have been shifted 
by a lattice parameter have identical Miller indices.
 We express the intercepts xo, yo, and zo in terms of the lattice parameters a, b, 
and c, respectively, to obtain x1, y1, and z1. We then invert these numbers. Taking 
the reciprocals, we obtain

 
1

x1

, 
1

y1

, 
1

z1
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 We then clear all fractions, without reducing to lowest integers, to obtain a set 
of integers, say h, k, and ℓ. We then put these integers into parentheses, without 
commas, that is, (hkℓ). For the plane in Figure 1.42a, we have

Intercepts xo, yo, and zo are 1
2a, 1b, and ∞c.

Intercepts x1, y1, and z1, in terms of a, b, and c, are 1
2, 1, and ∞.

Reciprocals 1∕x1, 1∕y1, and 1∕z1 are 1∕1
2, 1∕1, 1∕∞ = 2, 1, 0.

 This set of numbers does not have fractions, so it is not necessary to clear frac-
tions. Hence, the Miller indices (hkℓ) are (210).
 If there is a negative integer due to a negative intercept, a bar is placed across 
the top of the integer. Also, if parallel planes differ only by a shift that involves a 
multiple number of lattice parameters, then these planes may be assigned the same 
Miller indices. For example, the plane (010) is the xz plane that cuts the y axis at −b. 

Miller Indices (hkℓ):
1 1

11
2

1 (210)

z intercept at ∞

a

b

c

z

x

y

x intercept at a/2

Unit cell

(111)

–z

y

x

z

x

(110)
z

–y
y

y

z
(010) (010)

x (100)

(010)

x

z

y

(001)

(110) (111)

(a) Identification of a plane in a crystal

(b) Various planes in the cubic lattice.

y intercept at b

(010)(010)

Figure 1.42 Labeling of crystal planes and typical examples in the cubic lattice.
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If we shift the plane along y by two lattice parameters (2b), it will cut the y axis at 
b and the Miller indices will become (010). In terms of the unit cell, the (010)  plane 
is the same as the (010) plane, as shown in Figure 1.42b. Note that not all parallel 
planes are identical. Planes can have the same Miller indices only if they are sepa-
rated by a multiple of the lattice parameter. For example, the (010) plane is not 
identical to the (020) plane, even though they are geometrically parallel. In terms of 
the unit cell, plane (010) is a face of the unit cell cutting the y axis at b, whereas 
(020) is a plane that is halfway inside the unit cell, cutting the y axis at 1

2 b. The 
planes contain different numbers of atoms. The (020) plane cannot be shifted by the 
lattice parameter b to coincide with plane (010).
 It is apparent from Figure 1.42b that in the case of the cubic crystal, the [hkℓ] 
direction is always perpendicular to the (hkℓ) plane.
 Certain planes in the crystal belong to a family of planes because their indices 
differ only as a consequence of the arbitrary choice of axis labels. For example, the 
indices of the (100) plane become (010) if we switch the x and y axes. All the (100), 
(010), and (001) planes, and hence the parallel (100), (010), (001)  planes, form a 
family of planes, conveniently denoted by curly brackets as {100}.
 Frequently we need to know the number of atoms per unit area on a given plane 
(hkℓ). For example, if the surface concentration of atoms is high on one plane, then 
that plane may encourage oxide growth more rapidly than another plane where there 
are less atoms per unit area. Planar concentration of atoms is the number of atoms 
per unit area, that is, the surface concentration of atoms, on a given plane in the 
crystal. Among the {100}, {110}, and {111} planes in FCC crystals, the most 
densely packed planes, those with the highest planar concentration, are {111} planes 
and the least densely packed are {110}.

MILLER INDICES AND PLANAR CONCENTRATION Consider the plane shown in Figure 1.43a, 
which passes through one side of a face and the center of an opposite face in the FCC lattice. 
The plane passes through the origin at the lower-left rear corner. We therefore shift the origin 
to say point O′ at the lower-right rear corner of the unit cell. In terms of a, the plane cuts 
the x, y, and z axes at ∞, −1, 1

2 , respectively. We take the reciprocals to obtain, 0, −1, 2. 
Therefore, the Miller indices are (012) .
 To calculate the planar concentration n(hkℓ) on a given (hkℓ) plane, we consider a bound 
area A of the (hkℓ) plane within the unit cell as in Figure 1.43b. Only atoms whose centers lie 
on A are involved in n(hkℓ). For each atom, we then evaluate what portion of the atomic cross 
section (a circle in two dimensions) cut by the plane (hkℓ) is contained within A. Consider 
the Cu FCC crystal with a = 0.3620 nm.
 The (100) plane corresponds to a cube face and has an area A = a2. There is one full 
atom at the center; that is, the (100) plane cuts through one full atom, one full circle in two 
dimensions, at the face center as in Figure 1.43b. However, not all corner atoms are within 
A. Only a quarter of a circle is within the bound area A in Figure 1.43b.

Number of atoms in A = (4 corners) × (1
4 atom) + 1 atom at face center = 2

Planar concentration n(100) of (100) is

n(100) =
4(1

4) + 1

a2 =
2
a2 =

2
(0.3620 × 10−9 m)2 = 15.3 atoms nm−2

 EXAMPLE 1.17
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 Consider the (110) plane as in Figure 1.43c. The number of atoms in the area 
A = (a)(a√2) defined by two face diagonals and two cube sides is

 (4 corners) × (1
4 atom) + (2 face diagonals) × (1

2 atom at diagonal center) = 2

 Planar concentration on (110) is

 n(110) =
4(1

4) + 2(1
2)

(a) (a√2)
=

2
a2 √2

= 10.8 atoms nm−2

 Similarly, for the (111) plane, n(111) is 17.0 atoms nm−2. Clearly the (111) planes are the 
most and (110) planes are the least densely packed among the (100), (110), and (111) planes.
 We can estimate the surface concentration nsurf of atoms from the bulk concentration 
nbulk. The quantity 1∕n1∕3

bulk represents the separation of the atoms d. Taking each atom to be 
a cube then d is the side of this cube. An atom on the surface occupies an area d 2 and there-
fore the surface concentration is 1∕d2, or nsurf ≈ n2∕3

bulk. Using nbulk = 8.43 × 1028 m−3 for 
copper from Example 1.16, nsurf ≈ n2∕3

bulk = (8.43 × 1028 m−3)2∕3 = 1.92 × 1019 m−2 which is 
19 atoms nm−2. This is roughly the same order of magnitude as planar concentrations above 
and not too far out from n(111). (Question 1.4 explores this further.)

1.9.3 ALLOTROPY AND CARBON

Certain substances can have more than one crystal structure, iron being one of 
the best-known examples. This characteristic is termed polymorphism or allotropy. 
Below 912 °C, iron has the BCC structure and is called α-Fe. Between 912 °C and 
1400 °C, iron has the FCC structure and is called γ-Fe. Above 1400 °C, iron again 
has the BCC structure and is called δ-Fe. Since iron has more than one crystal 
structure, it is called polymorphic. Each iron crystal structure is an allotrope or 
a polymorph.
 The allotropes of iron are all metals. Furthermore, one allotrope changes to 
another at a well-defined temperature called a transition temperature, which in this 
case is 912 °C.

FCC unit cell

z =   a 1
2a

z

y

x

y = –a

O′

(012)

a a

a

(a) (012) plane

(b) (100) plane (c) (110) plane

a√2

A = a2

A = a2√2

Figure 1.43 The (012)  plane and planar concentrations in an FCC crystal.
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 Many substances have allotropes that exhibit widely different properties. More-
over, for some polymorphic substances, the transformation from one allotrope to 
another cannot be achieved by a change of temperature, but requires the application 
of pressure, as in the transformation of graphite to diamond.
 Carbon has three important crystalline allotropes: diamond, graphite, and the 
recently discovered buckminsterfullerene. These crystal structures are shown in 
Figure 1.44a, b, and c, respectively, and their properties are summarized in Table 1.4. 
Graphite is the carbon form that is stable at room temperature. Diamond is the 
stable form at very high pressures. Once formed, diamond continues to exist at 
atmospheric pressures and below about 900 °C, because the transformation rate of 
diamond to graphite is virtually zero under these conditions. Graphite and diamond 
have widely differing properties, which lead to diverse applications. For example, 
graphite is an electrical conductor, whereas diamond is an insulator. Diamond is the 
hardest substance known. On the other hand, the carbon layers in graphite can read-
ily slide over each other under shear stresses, because the layers are only held together 

Covalently
bonded network
of atoms

Cubic crystal

Covalently bonded layer

Layers bonded by van der
Waals bonding

Hexagonal unit cell

Covalently bonded
layer

(a) Diamond unit cell (b) Graphite

Buckminsterfullerene (C60) molecule (the
“buckyball” molecule)

The FCC unit cell of the
Buckminsterfullerene crystal. Each
lattice point has a C60 molecule

(c) Buckminsterfullerene

Figure 1.44 The three allotropes of carbon.
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by weak secondary bonds (van der Waals bonds). This is the reason for graphite’s 
lubricating properties.
 Buckminsterfullerene is another polymorph of carbon. In the buckminsterfullerene 
molecule (called the “buckyball”), 60 carbon atoms bond with each other to form a 
perfect soccer ball–type molecule. The C60 molecule has 12 pentagons and 20 hexa-
gons joined together to form a spherical molecule, with each C atom at a corner, as 
depicted in Figure 1.44c. The molecules are produced in the laboratory by a carbon 
arc in a partial atmosphere of an inert gas (He); they are also found in the soot of 
partial combustion. The crystal form of buckminsterfullerene has the FCC structure, 
with each C60 molecule occupying a lattice point and being held together by van der 
Waals forces, as shown in Figure 1.44c. The Buckminsterfullerene crystal is a semi-
conductor, and its compounds with alkali metals, such as K3C60, exhibit supercon-
ductivity at low temperatures (below 18 K). Mechanically, it is a soft material.
 Diamond, graphite, and the fullerene crystals are not the only crystalline allo-
tropes of carbon, and neither are they the only structural forms of carbon. For exam-
ple, lonsdaleite, which is another crystalline allotrope, is hexagonal diamond in 
which each C atom covalently bonds to four neighbors, as in diamond, but the 
crystal structure has hexagonal symmetry. (It forms from graphite on meteors when 

Table 1.4 Crystalline allotropes of carbon (ρ is the density and Y is the elastic modulus or Young’s modulus)

   Buckminsterfullerene 

 Graphite Diamond Crystal

Structure Covalent bonding within layers. Covalently bonded network. Covalently bonded C60

  Van der Waals bonding  Diamond crystal structure.  spheroidal molecules held in
  between layers. Hexagonal   an FCC crystal structure by
  unit cell.   van der Waals bonding.

Electrical Good electrical conductor. Very good electrical Semiconductor. Compounds
 and  Thermal conductivity  insulator. Excellent  with alkali metals
 thermal  comparable to metals.  thermal conductor, about  (e.g., K3C60) exhibit
 properties   five times more than silver  superconductivity.
   or copper.

Mechanical Lubricating agent. Machinable. The hardest material. Mechanically soft.
 properties  Bulk graphite:  Y = 827 GPa  Y ≈ 18 GPa
  Y ≈ 27 GPa  ρ = 3.25 g cm−3  ρ = 1.65 g cm−3

  ρ = 2.25 g cm−3

Comment Stable allotrope at atmospheric High-pressure allotrope. Laboratory synthesized.
  pressure   Occurs in the soot of partial
    combustion.

Uses, Metallurgical crucibles, welding Cutting tool applications. Possible future semiconductor
 potential  electrodes, heating elements,  Diamond anvils. Diamond  or superconductivity
 uses  electrical contacts, refractory  film coated drills, blades,  applications.
  applications.  bearings, etc. Jewelry. Heat
   conductor for ICs. Possible
   thin-film semiconductor
   devices, as the charge
   carrier mobilities are large.



 1 .1 0  CRYSTALLINE DEFECTS AND THEIR SIGNIFICANCE 69

the meteors impact the Earth; currently it is only found in Arizona.) Amorphous 

carbon has no crystal structure (no long-range order), so it is not a crystalline allo-
trope, but many scientists define it as a form or phase of carbon, or as a structural 
“allotrope.” The recently discovered carbon nanotubes are thin and long carbon 
tubes, perhaps 10 to 100 microns long but only several nanometers in diameter, hence 
the name nanotube. They are tubes made from rolling a graphite sheet into a tube 
and then capping the ends with hemispherical buckyballs. The carbon tube is really 
a single macromolecule rather than a crystal in its traditional sense17; it is a structural 
form of carbon. Carbon nanotubes have many interesting and remarkable properties 
and offer much potential for various applications in electronics; the most topical cur-
rently being carbon nanotube field emission devices. (See, for example, Figure 4.47d.)

1.10   CRYSTALLINE DEFECTS AND THEIR 

SIGNIFICANCE

By bringing all the atoms together to try to form a perfect crystal, we lower the total 
potential energy of the atoms as much as possible for that particular structure. What 
happens when the crystal is grown from a liquid or vapor; do you always get a 
perfect crystal? What happens when the temperature is raised? What happens when 
impurities are added to the solid?
 There is no such thing as a perfect crystal. We must therefore understand the 
types of defects that can exist in a given crystal structure. Quite often, key mechan-
ical and electrical properties are controlled by these defects.

1.10.1 POINT DEFECTS: VACANCIES AND IMPURITIES

Above the absolute zero temperature, all crystals have atomic vacancies or atoms 
missing from lattice sites in the crystal structure. The vacancies exist as a require-
ment of thermal equilibrium and are called thermodynamic defects. Vacancies 
introduce disorder into the crystal by upsetting the perfect periodicity of atomic 
arrangements.
 We know from the kinetic molecular theory that all the atoms in a crystal vibrate 
about their equilibrium positions with a distribution of energies, a distribution that 
closely resembles the Boltzmann distribution. At some instant, there may be one atom 
with sufficient energy to break its bonds and jump to an adjoining site on the surface, 
as depicted in Figure 1.45. This leaves a vacancy behind, just below the surface. 
This vacancy can then diffuse into the bulk of the crystal, because a neighboring 
atom can diffuse into it.
 This latter process of vacancy creation has been shown to be a sequence of 
events in Figure 1.45. Suppose that Ev is the average energy required to create such 
a vacancy. Then only a fraction, exp(−Ev∕kT), of all the atoms in the crystal can 

 17 It is possible to define a unit cell on the surface of a carbon nanotube and apply various crystalline concepts, 
as some scientists have done. To date, however, there seems to be no single crystal of carbon nanotubes in 
the same way that there is a fullerene crystal in which the C60 molecules are bonded to form an FCC structure.
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have sufficient energy to create vacancies. If the number of atoms per unit volume 
in the crystal is N, then the vacancy concentration nv is given by18

 nv = N exp(−
Ev

kT) [1.42]

 At all temperatures above absolute zero, there will always be an equilibrium 
concentration of vacancies, as dictated by Equation 1.42. Although we considered 
only one possible vacancy creation process in Figure 1.45, there are other processes 
that also create vacancies. Furthermore, we have shown the vacancy to be the same 
size in the lattice as the missing atom, which is not entirely true. The neighboring 
atoms around a vacancy close in to take up some of the slack, as shown in Fig-
ure  1.46a. This means that the crystal lattice around the vacancy is distorted from 
the perfect arrangement over a few atomic dimensions. The vacancy volume is there-
fore smaller than the volume of the missing atom.
 Vacancies are only one type of point defect in a crystal structure. Point defects 
generally involve lattice changes or distortions of a few atomic distances, as depicted 
in Figure 1.46a. The crystal structure may contain impurities, either naturally or as 
a consequence of intentional addition, as in the case of silicon crystals grown for 
microelectronics. If the impurity atom substitutes directly for the host atom, the result 
is called a substitutional impurity and the resulting crystal structure is that of a 
substitutional solid solution, as shown in Figure 1.46b and c. When a Si crystal is 
“doped” with small amounts of arsenic (As) atoms, the As atoms substitute directly 
for the Si atoms in the Si crystal; that is, the arsenic atoms are substitutional impurities. 
The impurity atom can also place itself in an interstitial site, that is, in a void between 

(a) Perfect crystal
without vacancies

(b) An energetic
atom at the surface
breaks bonds and
jumps on to a new
adjoining position on
the surface. This
leaves behind a
vacancy.

(c) An atom in the
bulk di�uses to fill
the vacancy thereby
displacing the
vacancy toward the
bulk.

(d) Atomic di�usions
cause the vacancy to
di�use into the bulk.

Figure 1.45 Generation of a vacancy by the diffusion of an atom to the surface and the subsequent diffusion 
of the vacancy into the bulk.

 18 The proper derivation of the vacancy concentration involves considering thermodynamics and equilibrium 
concepts. In the actual thermodynamic expression, the pre-exponential term in Equation 1.42 is not unity but a 
factor that depends on the change in the entropy of the crystal upon vacancy creation. For nearly all practical 
purposes, Equation 1.42 is sufficient.

Equilibrium 

concentration 

of vacancies
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the host atoms, as carbon does in the BCC iron crystal. In that case, the impurity is 
called an interstitial impurity, as shown in Figure 1.46d.
 In general, the impurity atom will have both a different valency and a different 
size. It will therefore distort the lattice around it. For example, if a substitutional 
impurity atom is larger than the host atom, the neighboring host atoms will be pushed 
away, as in Figure 1.46b. The crystal region around an impurity is therefore distorted 
from the perfect periodicity and the lattice is said to be strained around a point 

defect. A smaller substitutional impurity atom will pull in the neighboring atoms, 
as in Figure 1.46c. Typically, interstitial impurities tend to be small atoms compared to 
the host atoms, a typical example being the small carbon atom in the BCC iron crystal.
 In an ionic crystal, such as NaCl, which consists of anions (Cl−) and cations 
(Na+), one common type of defect is called a Schottky defect. This involves a miss-
ing cation–anion pair (which may have migrated to the surface), so the neutrality is 
maintained, as indicated in Figure 1.47a. These Schottky defects are responsible for 

(a) A vacancy in the
crystal.

(b) A substitutional
impurity in the crystal.
The impurity atom is
larger than the
host atom.

(c) A substitutional
impurity in the crystal.
The impurity atom is
smaller than the host
atom.

(d) An interstitial
impurity in the crystal.
The impurity occupies
an empty space
between host atoms.

Figure 1.46 Point defects in the crystal structure.

The regions around the point defect become distorted; the lattice becomes strained.

(a) Schottky and Frenkel defects in

an ionic crystal.

Frenkel
defect

Schottky
defect

(b) Two possible imperfections caused by ionized

substitutional impurity atoms in an ionic crystal.

Substitutional
impurity. Doubly
charged

Figure 1.47 Point defects in ionic crystals.
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the major optical and electrical properties of alkali halide crystals. Another type of 
defect in the ionic crystal is the Frenkel defect, which occurs when a host ion is 
displaced into an interstitial position, leaving a vacancy at its original site. The 
interstitial ion and the vacancy pair constitute the Frenkel defect, as identified in 
Figure 1.47a. For the AgCl crystal, which has predominantly Frenkel defects, an Ag+ 
is in an interstitial position. The concentration of such Frenkel defects is given by 
Equation 1.42, with an appropriate defect creation energy Edefect instead of Ev.
 Ionic crystals can also have substitutional and interstitial impurities that become 
ionized in the lattice. Overall, the ionic crystal must be neutral. Suppose that an 
Mg2+ ion substitutes for an Na+ ion in the NaCl crystal, as depicted in Figure 1.47b. 
Since the overall crystal must be neutral, either one Na+ ion is missing somewhere 
in the crystal, or an additional Cl− ion exists in the crystal. Similarly, when a doubly 
charged negative ion, such as O2−, substitutes for Cl−, there must either be an addi-
tional cation (usually in an interstitial site) or a missing Cl− somewhere in order to 
maintain charge neutrality in the crystal. The most likely type of defect depends on 
the composition of the ionic solid and the relative sizes and charges of the ions.

VACANCY CONCENTRATION IN A METAL The energy of formation of a vacancy in the 
aluminum crystal is about 0.70 eV. Calculate the fractional concentration of vacancies in Al at 
room temperature, 300 K, and very close to its melting temperature 660 °C. What is the vacancy 
concentration at 660 °C given that the atomic concentration in Al is about 6.0 × 1022 cm−3?

SOLUTION

Using Equation 1.42, the fractional concentration of vacancies are as follows:
At 300 K,

nv

N
=  exp(−

Ev

kT) = exp[−
(0.70 eV)(1.6 × 10−19 J eV−1)

(1.38 × 10−23 J K−1) (300 K) ]
 = 1.7 × 10−12

At 660 °C or 933 K,

nv

N
= exp(−

Ev

kT) = exp[−
(0.70 eV)(1.6 × 10−19 J eV−1)

(1.38 × 10−23 J K−1) (933 K) ]
 = 1.7 × 10−4

That is, almost 1 in 6000 atomic sites is a vacancy. The atomic concentration N in Al is about 
6.0 × 1022 cm−3, which means that the vacancy concentration nv at 660 °C is

 nv = (6.0 × 1022 cm−3)(1.7 × 10−4) = 1.0 × 1019 cm−3

The mean vacancy separation (on the order of nv
−1∕3) at 660 °C is therefore roughly 5 nm. 

The mean atomic separation in Al is ∼0.3 nm (∼N−1∕3), so the mean separation between 
vacancies is only about 20 atomic separations! (A more accurate version of Equation 1.42, 
with an entropy term, shows that the vacancy concentration is even higher than the estimate 
in this example.) The increase in the linear thermal expansion coefficient of a metal with 
temperature near its melting temperature, as shown for Mo in Figure 1.20, has been attributed 
to the generation of vacancies in the crystal.

 EXAMPLE 1.18
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VACANCY CONCENTRATION IN A SEMICONDUCTOR The energy of vacancy formation 
in the Ge crystal is about 2.2 eV. Calculate the fractional concentration of vacancies in Ge 
at 938 °C, just below its melting temperature. What is the vacancy concentration given that 
the atomic mass Mat and density ρ of Ge are 72.64 g mol−1 and 5.32 g cm−3, respectively? 
Neglect the change in the density with temperature which is small compared with other 
approximations in Equation 1.42.

SOLUTION

Using Equation 1.42, the fractional concentration of vacancies at 938 °C or 1211 K is

 
nv

N
= exp(−

Ev

kT) = exp[−
(2.2 eV)(1.6 × 10−19 J eV−1)

(1.38 × 10−23 J K−1) (1211 K) ] = 7.0 × 10−10

which is orders of magnitude less than that for Al at its melting temperature in Example 1.18; 
vacancies in covalent crystals cost much more energy than those in metals.
 The number of Ge atoms per unit volume is

 N =
ρNA

Mat
=

(5.32 g cm−3) (6.022 × 1023 g mol−1)

72.64 g mol−1 = 4.41 × 1022 cm−3

so that at 938 °C,

 nv = (4.4 × 1022 cm−3)(7.0 × 10−10) = 3.1 × 1013 cm−3

Only 1 in 109 atoms is a vacancy. A better calculation would also consider the decrease in 
the atomic concentration N with temperature (due to the expansion of the crystal). The final 
nv is still about 3 × 1013 cm−3.

1.10.2 LINE DEFECTS: EDGE AND SCREW DISLOCATIONS

A line defect is formed in a crystal when an atomic plane terminates within the 
crystal instead of passing all the way to the end of the crystal, as depicted in Fig-
ure 1.48a. The edge of this short plane of atoms is therefore like a line running inside 
the crystal. The planes neighboring (i.e., above) this short plane are dislocated (dis-
placed) with respect to those below the line. We therefore call this type of defect an 
edge dislocation and use an inverted ⊤ symbol. The vertical line corresponds to 
the half-plane of atoms in the crystal, as illustrated in Figure 1.48a. It is clear that the 
atoms around the dislocation line have been effectively displaced from their perfect-
crystal equilibrium positions, which results in atoms being out of registry above and 
below the dislocation. The atoms above the dislocation line are pushed together, 
whereas those below it are pulled apart, so there are regions of compression and 
tension above and below the dislocation line, respectively, as depicted by the shaded 
region around the dislocation line in Figure 1.48b. Therefore, around a dislocation 
line, we have a strain field due to the stretching or compressing of bonds.
 The energy required to create a dislocation is typically on the order of 100 eV 
per nm of dislocation line. On the other hand, it takes only a few eV to form a point 
defect, which is a few nanometers in dimension. In other words, forming a number 
of point defects is energetically more favorable than forming a dislocation. Disloca-
tions are not equilibrium defects. They normally arise when the crystal is deformed 
by stress, or when the crystal is actually being grown.

 EXAMPLE 1.19
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 Another type of dislocation is the screw dislocation, which is essentially a 
shearing of one portion of the crystal with respect to another, by one atomic dis-
tance, as illustrated in Figure 1.49a. The displacement occurs on either side of the 
screw dislocation line. The circular arrow around the line symbolizes the screw 
dislocation. As we move away from the dislocation line, the atoms in the upper 
portion become more out of registry with those below; at the edge of the crystal, 
this displacement is one atomic distance, as illustrated in Figure 1.49b. Line defects 
are easily observable by examining a thin slice of the material under a transmission 
electron microscope (TEM). They often appear as dark lines as apparent in the TEM 
photos on page 76.

Edge dislocation line

Compression

Tension

(a) Dislocation is a line defect. The dislocation

shown runs into the paper.

(b) Around the dislocation there is a strain field as

the atomic bonds have been compressed above

and stretched below the dislocation line.

Figure 1.48 Dislocation in a crystal. This is a line defect, which is accompanied by lattice distortion and hence a lattice 
strain around it.

A

D

B

C

Atoms in
the upper
portion

Atoms in
the lower
portion

Dislocation
line

(b) The screw dislocation in (a) as viewed from above(a) A screw dislocation in a crystal

A

C

D

Dislocation line

Figure 1.49 A screw dislocation, which involves shearing one portion of a perfect crystal with respect to another, on one 
side of a line (AB).
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 Both edge and screw dislocations are generally created by stresses resulting from 
thermal and mechanical processing. A line defect is not necessarily either a pure 
edge or a pure screw dislocation; it can be a mixture, as depicted in Figure 1.50. 
Screw dislocations frequently occur during crystal growth, which involves atomic 
stacking on the surface of a crystal. Such dislocations aid crystallization by provid-
ing an additional “edge” to which the incoming atoms can attach, as illustrated in 
Figure 1.51. If an atom arrives at the surface of a perfect crystal, it can only attach 
to one atom in the plane below. However, if there is a screw dislocation, the incom-
ing atom can attach to an edge and thereby form more bonds; hence, it can lower 
its potential energy more than anywhere else on the surface. With incoming atoms 
attaching to the edges, the growth occurs spirally around the screw dislocation, and 
the final crystal surface reflects this spiral growth geometry.
 The phenomenon of plastic or permanent deformation of a metal depends 
totally on the presence and motions of dislocations, as discussed in elementary books 
on the mechanical properties of materials. In the case of electrical properties of 
metals, we will see in Chapter 2 that dislocations increase the resistivity of materi-
als, cause significant leakage current in a pn junction, and give rise to unwanted 
electronic noise in various semiconductor devices. Fortunately, the occurrence of 
dislocations in semiconductor crystals can be controlled and nearly eliminated. In a 
metal interconnection line on a chip, there may be an average of 104−105 dislocation 
lines per mm2 of crystal, whereas a silicon crystal wafer that is carefully grown may 
typically have only 1 dislocation line per mm2 of crystal.
 Modern electronic and optoelectronic devices are fabricated commonly by epitaxy, 

in which a new crystalline layer of a semiconductor is grown on top of another 
semiconductor crystal, called the substrate. The new layer that is grown is called 
the epitaxial layer or epilayer. In heteroepitaxy, the new layer is a different semi-
conductor than the substrate. For example, in one technique (molecular beam epi-
taxy), the new layer is grown on a substrate crystal essentially by the deposition of 

Dislocation line

Figure 1.50 A mixed dislocation.

New molecule

Figure 1.51 Screw dislocation aids 
crystal growth because the newly 
arriving atom can attach to two or 
three atoms instead of one atom 
and thereby form more bonds.

A photograph of a growth spiral on the 
surface of a synthetic diamond grown on the 
(111) surface of natural diamond from sodium 
carbonate solvent at 5.5 GPa and 1600 °C.

 Courtesy of Dr. Hisao Kanda, National 
Institute for Materials Science, Ibaraki, 
Japan.
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new semiconductor atoms, which build up on the substrate crystal surface and form 
the new epitaxial layer. If the lattice constants ae and as for epitaxial and the substrate 
crystals respectively are the same (ae = as), the growth is lattice matched and “free” 
of defects at the interface as shown in Figure 1.52a. In practice, there is some mis-
match in ae and as, usually due to a limited choice of substrate crystals available for 
the epitaxial semiconductor. Consider an epitaxial layer in which ae > as; the case 
shown in Figure 1.52b. Initially, the epitaxial layer grows with the same crystal 
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Lattice matched
(a) (b)

(c)

Unstrained with misfit dislocations

Growth
plane

ae

as

Misfit dislocation

Threading
dislocations

Misfit and threading dislocations

Substrate

Epilayer

Figure 1.52 (a) The epitaxial layer crystal has the same lattice constant (ae) as the substrate (as). The crystals are matched 
and there are no defects at the interface. (b) The epitaxial layer has a larger lattice constant than the substrate, ae > as,  
and misfit dislocations are created; otherwise, the epitaxial layer becomes highly strained. The example here may be a  
Si substrate on which Si1−xGex alloy is grown or a GaAs substrate on which an InxGa1−xAs epilayer is grown.

TEM

1 μm

Misfit dislocations

Left: Misfit dislocations at the interface between a Si substrate and a Si0.96Ge0.04 epilayer under a transmission electron 
microscope (TEM). This is the view of the interface plane. The dark lines are the misfit dislocations. Right: TEM of the 
cross section of a Si0.8Ge0.2/Si heterostructure in which the dark region at the interface is the misfit dislocations and 
the black lines from the interface toward the surface are the threading dislocations.

 Courtesy of Vladimir Vdovin, Institute of Semiconductor Physics, Novosibirsk.
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structure as the substrate but that means the epilayer is compressed in the plane of 
growth and under tensile strain in the perpendicular direction. At some critical thick-
ness, it becomes energetically more favorable to create dislocations and have the 
epilayer follow its own crystal structure as in Figure 1.52b. These interface disloca-
tions are called misfit dislocations and appear in the plane of growth as shown in 
Figure 1.52b and c. It may be thought that, as in Figure 1.52b, these are the only 
dislocations formed during a mismatched epilayer growth but there are also disloca-
tions that penetrate the epilayer from the interface as shown in Figure 1.52c, similar 
to the way in which an edge dislocation and a screw dislocation may be parts of the 
same line defect as in Figure 1.50. These are called threading dislocations, and they 
come out of the plane of growth and penetrate the epilayer.19 Electronic devices are 
formed within the epilayer and we need to eliminate the appearance of dislocations 
in this layer. This is quite often done by having an intermediate buffer layer between 
the substrate and the actual epilayer or having the devices fabricated in the epilayer 
away from the interface.

1.10.3 PLANAR DEFECTS: GRAIN BOUNDARIES

Many materials are polycrystalline; that is, they are composed of many small crystals 
oriented in different directions. In fact, the growth of a flawless single crystal from 
what is called the melt (liquid) requires special skills, in addition to scientific knowl-
edge. When a liquid is cooled to below its freezing temperature, solidification does 
not occur at every point in the liquid; rather, it occurs at certain sites called nuclei, 
which are small crystal-like structures containing perhaps 50 to 100 atoms. Figure 
1.53a to c depicts a typical solidification process from the melt. The liquid atoms 
adjacent to a nucleus diffuse into the nucleus, thereby causing it to grow in size to 
become a small crystal, or a crystallite, called a grain. Since the nuclei are randomly 
oriented when they are formed, the grains have random crystallographic orientations 

 19 The science of dislocations appearing during epitaxial growth is quite complicated but this simple example 
illustrates how easily they can form in a mismatched epitaxial crystal growth. Lattice matching the epilayer and 
the substrate is obviously an important field of research in today’s modern optoelectronic devices.

TEM of the cross section of a GaAs substrate on which 
there are four epitaxial layers of InGaAs of varying 
composition from GaAs to In0.20Ga0.80As, and hence 
lattice constant. The top layer has the photodetector 
device and is free of threading dislocations. The misfit 
and threading dislocations are clearly visible in the first 
two layers. The layers between the substrate and the 
device layer in which the dislocations are contained are 
known as buffer layers.

 From Figure 3a in “Metamorphic In0.20Ga0.80As p-i-n 
photodetectors grown on GaAs substrates for near 
infrared applications” K. Swaminathan et al, Optics 
Express, 19, 7280, 2011. (©2011 OSA)
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during crystallite growth. As the liquid between the grains is consumed, some grains 
meet and obstruct each other. At the end of solidification, therefore, the whole struc-
ture has grains with irregular shapes and orientations, as shown in Figure 1.53c.
 It is apparent from Figure 1.53c that in contrast to a single crystal, a polycrystal-
line material has grain boundaries where differently oriented crystals meet. As indi-
cated in Figure 1.54, the atoms at the grain boundaries obviously cannot follow their 
natural bonding habits, because the crystal orientation suddenly changes across the 
boundary. Therefore, there are both voids at the grain boundary and stretched and 
broken bonds. In addition, in this region, there are misplaced atoms that do not follow 
the crystalline pattern on either side of the boundary. Consequently, the grain boundary 
represents a high-energy region per atom with respect to the energy per atom within 
the bulk of the grains themselves. The atoms can diffuse more easily along a grain 
boundary because (a) less bonds need to be broken due to the presence of voids and 
(b) the bonds are strained and easily broken anyway. In many polycrystalline materials, 
impurities therefore tend to congregate in the grain boundary region. We generally 
refer to the atomic arrangement in the grain boundary region as being disordered 
due to the presence of the voids and misplaced atoms.

(c) The solidified

polycrystalline solid

(b) Growth

Crystallite

Liquid

(a) Nucleation

Nuclei

Grain
Grain
boundary

Figure 1.53 Solidification of a polycrystalline solid from the melt. For simplicity, cubes represent atoms.

Figure 1.54 The grain boundaries have 
broken bonds, voids, vacancies, strained 
bonds, and interstitial-type atoms.

The structure of the grain boundary is  
disordered, and the atoms in the grain 
boundaries have higher energies than 
those within the grains.

Strained bond

Broken bond
(dangling bond)

Grain boundary

Void, vacancy

Self-interstitial-type atom

Foreign impurity
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 Since the energy of an atom at the grain boundary is greater than that of an atom 
within the grain, these grain boundaries are nonequilibrium defects; consequently, 
they try to reduce in size to give the whole structure a lower potential energy. At or 
around room temperature, the atomic diffusion process is slow; thus, the reduction in 
the grain boundary is insignificant. At elevated temperatures, however, atomic dif-
fusion allows big grains to grow, at the expense of small grains, which leads to grain 

coarsening (grain growth) and hence to a reduction in the grain boundary area.
 Mechanical engineers have learned to control the grain size, and hence the 
mechanical properties of metals to suit their needs, through various thermal treatment 
cycles. For electrical engineers, the grain boundaries become important when design-
ing electronic devices based on polysilicon or any polycrystalline semiconductor. For 
example, in highly polycrystalline materials, particularly thin-film semiconductors 
(e.g., polysilicon), the resistivity is invariably determined by polycrystallinity, or 
grain size, of the material, as discussed in Section 2.10.2.

1.10.4 CRYSTAL SURFACES AND SURFACE PROPERTIES

In describing crystal structures, we assume that the periodicity extends to infinity 
which means that the regular array of atoms is not interrupted anywhere by the 
presence of real surfaces of the material. In practice, we know that all substances 
have real surfaces. When the crystal lattice is abruptly terminated by a surface, the 
atoms at the surface cannot fulfill their bonding requirements as illustrated in Fig-
ure 1.55. For simplicity, the figure shows a Si crystal schematically sketched in two 
dimensions where each atom in the bulk of the crystal has four covalent bonds, each 
covalent bond having two electrons.20 The atoms at the surface are left with dangling 

bonds, bonds that are half full, only having one electron. These dangling bonds are 
looking for atoms to which they can bond. Two neighboring surface atoms can share 

 20 Not all possibilities shown in Figure 1.55 occur in practice; their occurrences depend on the preparation 
method of the crystal.

Left: A diamond film deposited onto the (100) surface of a single crystal silicon wafer where the growth chemistry has 
been changed to produce predominantly square-faceted (100) diamond crystallites. The film thickness is 6 microns 
and the SEM magnification is 6000. Right: A 6-micron-thick polycrystalline CVD diamond film grown on a single crystal 
silicon wafer where the crystallites have random orientation. SEM magnification is 8000.

 Courtesy of Professor Paul May, The School of Chemistry, University of Bristol, England. Used with permission.
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each other’s dangling bond electrons, that is, form a surface bond with each other. 
This bonding between surface atoms causes a slight displacement of the surface 
atoms and leads to a surface that has been reconstructed.

 Atoms from the environment can also bond with the atoms on the crystal surface. 
For example, a hydrogen atom can be captured by a dangling bond at the surface to 
form a chemical bond as a result of which hydrogen becomes absorbed. Primary 
bonding of foreign atoms to a crystal surface is called chemisorption. The H atom in 
Figure 1.55 forms a covalent bond with a Si atom and hence becomes chemisorbed. 
However, the H2O molecule cannot form a covalent bond, but, because of hydrogen 
bonding, it can form a secondary bond with a surface Si atom and become adsorbed. 
Secondary bonding of foreign atoms or molecules to a crystal surface is called 
physisorption (physical adsorption). Water molecules in the air can readily become 
adsorbed at the surface of a crystal. Although the figure also shows a physisorbed 
H2 molecule as an example, this normally occurs at very low temperatures where 
crystal vibrations are too weak to quickly dislodge the H2 molecule. It should be 
remarked that in many cases, atoms or molecules from the environment become 
adsorbed at the surface for only a certain period of time; they have a certain sticking 
or dwell time. For example, at room temperature, inert gases stick to a metal surface 
only for a duration of the order of microseconds, which is extremely long compared 
with the vibrational period of the crystal atoms (~10−12 seconds). A dangling bond 
can capture a free electron from the environment if one is available in its vicinity. 
The same idea applies to a dangling bond at a grain boundary as in Figure 1.54.
 At sufficiently high temperatures, some of the absorbed foreign surface atoms 
can diffuse into the crystal volume to become bulk impurities. Many substances have 
a natural oxide layer on the surface that starts with the chemical bonding of oxygen 
atoms to the surface atoms and the subsequent growth of the oxide layer. For example, 
aluminum surfaces always have a thin aluminum oxide layer. In addition, the surface 
of the oxide often has adsorbed organic species of atoms usually from machining 

Bulk crystal

Surface
Surface atoms

Reconstructed
surface

O
H

Absorbed
oxygen

H2O

O
H2

Dangling bond

Figure 1.55 At the surface of a hypothetical two-dimensional crystal, the atoms cannot fulfill their 
bonding requirements and therefore have broken, or dangling, bonds.

Some of the surface atoms bond with each other; the surface becomes reconstructed. The surface 
can have physisorbed and chemisorbed atoms.
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and handling. The surface condition of a Si crystal wafer in microelectronics is 
normally controlled by first etching the surface and then oxidizing it at a high tem-
perature to form a SiO2 passivating layer on the crystal surface. This oxide layer is 
an excellent barrier against the diffusion of impurity atoms into the crystal. (It is 
also an excellent electrical insulator.)
 Figure 1.55 shows only some of the possibilities at the surface of a crystal. Gen-
erally the surface structure depends greatly on the mode of surface formation, which 
invariably involves thermal and mechanical processing, and previous environmental 
history. One visualization of a crystal surface is based on the terrace-ledge-kink 

model, the so-called Kossel model, as illustrated in Figure 1.56a and b. The surface 

Atomic arrangements on a reconstructed (111) surface of 
a Si crystal as seen by a surface tunneling microscope 
(STM). STM is able to see individual atoms and is 
described in Chapter 3.

 Courtesy of Jun’ichi Kanasaki, Osaka University.

Atomic resolution study of SnO2 crystal growth at 200 °C 
in a 2 × 10−2 Pa air environment. Single atoms (or 
atomic columns), a terrace, and a ledge on surfaces 
are indicated by arrows. The image was obtained on 
a Hitachi 300 kV high-resolution H-9500 transmission 
electron microscope.

 Courtesy of Hitachi High Technologies America, Inc.
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Figure 1.56 (a) Typically, a crystal surface has many types of imperfections, such as steps, ledges, kinks, crevices, vacancies, 
and dislocations. (b) Scanning tunneling microscope (STM) image of the Si (001) crystal surface. Single-atom-height steps and 
various surface atoms are observed.
 (b) Courtesy of Brian Swartzentruber, Sandia National Labs.
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has ledges, kinks, and various imperfections such as holes and dislocations, as well as 
impurities which can diffuse to and from the surface. The dimensions of the various 
imperfections (e.g., the step size) depend on the process that generated the surface.

1.10.5 STOICHIOMETRY, NONSTOICHIOMETRY, AND DEFECT STRUCTURES

Stoichiometric compounds are those that have an integer ratio of atoms, for exam-
ple, as in CaF2 where two F atoms bond with one Ca atom. Similarly, in the com-
pound ZnO, if there is one O atom for every Zn atom, the compound is 
stoichiometric, as schematically illustrated in Figure 1.57a. Since there are equal 
numbers of O2− anions and Zn2+ cations, the crystal overall is neutral. It is also 
possible to have a nonstoichiometric ZnO in which there is excess zinc. This may 
result if, for example, there is insufficient oxygen during the preparation of the 
compound. The Zn2+ ion has a radius of 0.074 nm, which is about 1.9 times smaller 
than the O2− anion (radius of 0.14 nm), so it is much easier for a Zn2+ ion to enter 
an interstitial site than the O2− ion or the Zn atom itself, which has a radius of 0.133 
nm. Excess Zn atoms therefore occupy interstitial sites as Zn2+ cations. Even though 
the excess zinc atoms are still ionized within the crystal, their lost electrons cannot 
be taken by oxygen atoms, which are all O2− anions, as indicated in Figure 1.57b. 
Thus, the nonstoichiometric ZnO with excess Zn has Zn2+ cations in interstitial sites 
and mobile electrons within the crystal, which can contribute to the conduction of 
electricity. Overall, the crystal is neutral, as the number of Zn2+ ions is equal to the 
number of O2− ions plus two electrons from each excess Zn. The structure shown in 
Figure 1.57b is a defect structure, since it deviates from the stoichiometry.

1.11  SINGLE-CRYSTAL CZOCHRALSKI GROWTH

The fabrication of discrete and integrated circuit (IC) solid-state devices requires 
semiconductor crystals with impurity concentrations as low as possible and crystals 
that contain very few imperfections. A number of laboratory techniques are available 
for growing high-purity semiconductor crystals. Generally, they involve either solid-
ification from the melt or condensation of atoms from the vapor phase. The initial 

(a) Stoichiometric ZnO
crystal with equal number
of anions and cations and
no free electrons

O2–

Zn2+

“Free” (or mobile) electron
within the crystal

(b) Nonstoichiometric ZnO
crystal with excess Zn in
interstitial sites as Zn2+

cations

Figure 1.57 Stoichiometry and nonstoichiometry and the resulting defect structure.
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process in IC fabrication requires large single-crystal wafers that are typically 15–30 cm 
in diameter and 0.6 mm thick. These wafers are cut from a long, cylindrical single 
Si crystal (typically, 1–2 m in length).
 Large, single Si crystals for IC fabrication are often grown by the Czochralski 

method, which involves growing a single-crystal ingot from the melt, using solidi-
fication on a seed crystal, as schematically illustrated in Figure 1.58a. Molten Si is 
held in a quartz (crystalline SiO2) crucible in a graphite susceptor, which is either 
heated by a graphite resistance heater or by a radio frequency induction coil (a process 
called RF heating).21 A small dislocation-free crystal, called a seed, is lowered to 
touch the melt and then slowly pulled out of the melt; a crystal grows by solidifying 
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(a) Schematic illustration of the growth of

a single-crystal Si ingot by the Czochralski

technique.
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(b) The crystallographic orientation of the silicon ingot

is marked by grounding a flat. The ingot can be as long

as 2 m. Wafers are cut using a rotating annular

diamond saw. Typical wafer thickness is 0.6–0.7 mm.

Figure 1.58

 21 The induced eddy currents in the graphite give rise to I2R heating of the graphite susceptor.

Silicon ingot being pulled from the melt in a 
Czochralski crystal drawer.

 Courtesy of SunEdison Semiconductor.
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on the seed crystal. The seed is rotated during the pulling stage, to obtain a cylindri-
cal ingot. To suppress evaporation from the melt and prevent oxidation, argon gas 
is passed through the system.
 Initially, as the crystal is withdrawn, its cross-sectional area increases; it then 
reaches a constant value determined by the temperature gradients, heat losses, and 
the rate of pull. As the melt solidifies on the crystal, heat of fusion is released 
and must be conducted away; otherwise, it will raise the temperature of the crystal 
and remelt it. The area of the melt–crystal interface determines the rate at which this 
heat can be conducted away through the crystal, whereas the rate of pull determines 
the rate at which latent heat is released. Although the analysis is not a simple one, 
it is clear that to obtain an ingot with a large cross-sectional area, the pull speed 
must be slow. Typical growth rates are a few millimeters per minute.

Jan Czochralski (1885–1953) was a Polish chemist who discovered the crystal 
growth technique that is named after him in 1916. He apparently, by accident, 
dipped his pen into molten tin instead of the ink pot. When he pulled it out, he 
discovered solidified tin hanging from the nib. Further experiments lead to the 
development of this crystal growth technique, which was published in 1918 in  
a well-known German chemistry journal Zeitschrift für Physikalische Chemie.  
In the 1950s, the US researchers Gordon Teal and J.B. Little at Bell Labs (see 
page 123) started to use the technique to grow Ge single crystals, which opened 
the transistor era. Information from Pawel E. Tomaszewski Jan Czochralski 
Restored, Atut, Wroclaw (Poland), 2013.

 Photo courtesy of Pawel Tomaszewski, Institute of Low Temperature and 
Structure Resarch of Polish Academy of Sciences, Wroclaw.

Above: 200 mm and 300 mm Si wafers  
Left: Silicon crystal ingots grown by the 
Czochralski crystal drawers in the background.

 Courtesy of SunEdison Semiconductor.



 1 .1 2  GLASSES AND AMORPHOUS SEMICONDUCTORS 85

 The sizes and diameters of crystals grown by the Czochralski method are obvi-
ously limited by the equipment, though crystals 20–30 cm in diameter and 1–2 m 
in length are routinely grown for the IC fabrication industry. Also, the crystal ori-
entation of the seed and its flatness with melt surface are important engineering 
requirements. For example, for very large scale integration (VLSI), the seed is placed 
with its (100) plane flat to the melt, so that the axis of the cylindrical ingot is along 
the [100] direction.
 Following growth, the Si ingot is usually ground to a specified diameter. Using 
X-ray diffraction, the crystal orientation is identified and either a flat or an edge is 
ground along the ingot, as shown in Figure 1.58b. Subsequently, the ingot is cut into 
thin wafers by a rotating annular diamond saw. To remove any damage to the wafer 
surfaces caused by sawing and obtain flat, parallel surfaces, the wafers are lapped 
(ground flat with alumina powder and glycerine), chemically etched, and then pol-
ished. The wafers are then used in IC fabrication, usually as a substrate for the growth 
of a thin layer of crystal from the vapor phase.
 The Czochralski technique is also used for growing Ge, GaAs, and InP single 
crystals, though each case has its own particular requirements. The main drawback 
of the Czochralski technique is that the final Si crystal inevitably contains oxygen 
impurities dissolved from the quartz crucible.

1.12  GLASSES AND AMORPHOUS SEMICONDUCTORS

1.12.1 GLASSES AND AMORPHOUS SOLIDS

A characteristic property of the crystal structure is its periodicity and degree of 
symmetry. For each atom, the number of neighbors and their exact orientations are 
well defined; otherwise, the periodicity would be lost. There is therefore a long-range 

order resulting from strict adherence to a well-defined bond length and relative 

bond angle (or exact orientation of neighbors). Figure 1.59a schematically illustrates 
the presence of a clear, long-range order in a hypothetical two-dimensional crystal. 
Taking an arbitrary origin, we can predict the position of each atom anywhere in the 
crystal. We can perhaps use this to represent crystalline SiO2 (silicon dioxide), for 
example, in two dimensions. In reality, a Si atom bonds with four oxygen atoms to 
form a tetrahedron, and the tetrahedra are linked at the corners to create a three-
dimensional crystal structure.
 Not all solids exhibit crystallinity. Many substances exist in a noncrystalline or 
amorphous form, due to their method of formation. For example, SiO2 can have an 
amorphous structure, as illustrated schematically in two dimensions in Figure 1.59b. 
In the amorphous phase, SiO2 is called vitreous silica, a form of glass, which has 
wide engineering applications, including optical fibers. The structure shown in the 
figure for vitreous silica is essentially that of a frozen liquid, or a supercooled liquid. 
Vitreous silica is indeed readily obtained by cooling the melt.
 Many amorphous solids are formed by rapidly cooling or quenching the liquid 
to temperatures where the atomic motions are so sluggish that crystallization is 
virtually halted. (The cooling rate is measured relative to the crystallization rate, 
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which depends on atomic diffusion.) We refer to these solids as glasses. In the liquid 
state, the atoms have sufficient kinetic energy to break and make bonds frequently 
and to bend and twist their bonds. There are bond angle variations, as well as rota-
tions of various atoms around bonds (bond twisting). Thus, the bonding geometry 
around each atom is not necessarily identical to that of other atoms, which leads to 
the loss of long-range order and the formation of an amorphous structure, as illus-
trated in Figure 1.59b for the same material in Figure 1.59a. We may view Figure 
1.59b as a snapshot of the structure of a liquid. As we move away from a reference 
atom, after the first and perhaps the second neighbors, random bending and twisting 
of the bonds is sufficient to destroy long-range order. The amorphous structure there-
fore lacks the long-range order of the crystalline state.
 To reach the glassy state, the temperature is rapidly dropped well below the 
melting temperature where the atomic diffusion processes needed for arranging the 
atoms into a crystalline structure are infinitely slow on the time scale of the obser-
vation. The liquid structure thus becomes frozen. Figure 1.59b shows that for an 
amorphous structure, the coordination of each atom is well defined, because each 
atom must satisfy its chemical bonding requirement, but the whole structure lacks 
long-range order. Therefore, there is only a short-range order in an amorphous 
solid. The structure is a continuous random network of atoms (often called a CRN 
model of an amorphous solid). As a consequence of the lack of long-range order, 
amorphous materials do not possess such crystalline imperfections as grain boundar-
ies and dislocations, which is a distinct advantage in certain engineering applications.
 Whether a liquid forms a glass or a crystal structure on cooling depends on a 
combination of factors, such as the nature of the chemical bond between the atoms 
or molecules, the viscosity of the liquid (which determines how easily the atoms move), 
the rate of cooling, and the temperature relative to the melting temperature. For 

Silicon (or arsenic) atom Oxygen (or selenium) atom

(a) A crystalline solid reminiscent of

crystalline SiO2 (density = 2.6 g cm–3)

(b) An amorphous solid reminiscent

of vitreous silica (SiO2) cooled from

the melt (density = 2.27 g cm–3)

Figure 1.59 Crystalline and amorphous structures illustrated schematically in two  
dimensions.
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example, the oxides SiO2, B2O3, GeO2, and P2O5 have directional bonds that are a 
mixture of covalent and ionic bonds and the liquid is highly viscous. These oxides 
readily form glasses on cooling from the melt. On the other hand, it is virtually 
impossible to quench a pure metal, such as copper, from the melt, bypass crystalliza-
tion, and form a glass. The metallic bonding is due to an electron gas permeating 
the space between the copper ions, and that bonding is nondirectional, which means 
that on cooling, copper ions are readily (and hence, quickly) shifted with respect to 
each other to form the crystal. There are, however, a number of metal–metal (Cu66Zr33) 
and metal–metalloid alloys (Fe80B20, Pd80Si20) that form glasses if quenched at ultra-
high cooling rates of 106–108 °C s−1. In practice, such cooling rates are achieved by 
squirting a thin jet of the molten metal against a fast-rotating, cooled copper cylinder. 
On impact, the melt is frozen within a few milliseconds, producing a long ribbon of 
metallic glass. The process is known as melt spinning and is depicted in Figure 1.60.
 Many solids used in various applications have an amorphous structure. The 
ordinary window glass (SiO2)0.8(Na2O)0.2 and the majority of glassware are common 
examples. Vitreous silica (SiO2) mixed with germania (GeO2) is used extensively in 
optical fibers. The insulating oxide layer grown on the Si wafer during IC fabrication 
is the amorphous form of SiO2. Some intermetallic alloys, such as Fe0.8B0.2, can be 
rapidly quenched from the liquid (as shown in Figure 1.60) to obtain a glassy metal 
used in low-loss transformer cores. Arsenic triselenide, As2Se3, has a crystal structure 
that resembles the two-dimensional sketch in Figure 1.59a, where an As atom 
(valency III) bonds with three Se atoms, and a Se atom (valency VI) bonds with two 

Inert gas pressure

Molten alloy

Heater coil

Quartz tube

Rotating
cooled metal
drum

Jet of molten metal

Ribbon of
glassy
metal

Figure 1.60 It is possible to rapidly 
quench a molten metallic alloy, thereby  
bypassing crystallization, and forming 
a glassy metal commonly called a  
metallic glass.

The process is called melt spinning.

Melt spinning involves squirting a jet of molten metal onto a rotating 
cool metal drum. The molten jet is instantly solidified into a glassy 
metal ribbon which is a few microns in thickness. The process 
produces roughly 1–2 km of ribbon per minute.

 Photo courtesy of the Estate of Fritz Goro (Goreau).
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As atoms. In the amorphous phase, this crystal structure looks like the sketch in 
Figure 1.59b, in which the bonding requirements are only locally satisfied. The 
crystal can be prepared by condensation from the vapor phase, or by cooling the 
melt. Large area films of As2Se3 can be readily deposited from the vapor, and form 
one of the layers in multilayer selenium-based X-ray detectors used in mammography.

1.12.2 CRYSTALLINE AND AMORPHOUS SILICON

A silicon atom in the silicon crystal forms four tetrahedrally oriented, covalent bonds 
with four neighbors, and the repetition of this exact bonding geometry with a well-
defined bond length and angle leads to the diamond structure shown in Figure 1.6. 
A simplified two-dimensional sketch of the Si crystal is shown in Figure 1.61. The 
crystal has a clear long-range order. Single crystals of Si are commercially grown 
by the Czochralski crystal pulling technique.
 It is also possible to grow amorphous silicon, denoted by a-Si, by the condensa-
tion of Si vapor onto a solid surface, called a substrate. For example, an electron 
beam is used to vaporize a silicon target in a vacuum; the Si vapor then condenses 
on a metallic substrate to form a thin layer of solid noncrystalline silicon. The tech-
nique, which is schematically depicted in Figure 1.62, is referred to as electron beam 

deposition. The structure of amorphous Si (a-Si) lacks the long-range order of crys-
talline Si (c-Si), even though each Si atom in a-Si, on average, prefers to bond with 
four neighbors. The difference is that the relative angles between the Si–Si bonds in 
a-Si deviate considerably from those in the crystal, which obey a strict geometry. 
Therefore, as we move away from a reference atom in a-Si, eventually the periodic-
ity for generating the crystalline structure is totally lost, as illustrated schematically 
in Figure 1.61. Furthermore, because the Si–Si bonds do not follow the equilibrium 
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H

H

H

Dangling
bond

(a) Two-dimensional
schematic representation
of a silicon crystal.

(c) Two-dimensional schematic
representation of the structure of
hydrogenated amorphous silicon.
The number of hydrogen atoms
shown is exaggerated.

(b) Two-dimensional schematic
representation of the structure
of amorphous silicon.
The structure has voids and
dangling bonds and there is
no long-range order.

Figure 1.61 Silicon can be grown as a semiconductor crystal or as an amorphous semiconductor film. Each line 
represents an electron in a bond. A full covalent bond has two lines, and a broken bond has one line.
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geometry, the bonds are strained and some are even missing, simply because the 
formation of a bond causes substantial bond bending. Consequently, the a-Si structure 
has many voids and incomplete bonds, or dangling bonds, as schematically depicted 
in Figure 1.61.
 One way to reduce the density of dangling bonds is simply to terminate a dan-
gling bond using hydrogen. Since hydrogen only has one electron, it can attach itself 
to a dangling bond, that is, passivate the dangling bond. The structure resulting from 
hydrogen in amorphous silicon is called hydrogenated amorphous Si (a-Si:H).

 Many electronic devices, such as a-Si:H solar cells, are based on a-Si being 
deposited with H to obtain a-Si:H, in which the hydrogen concentration is typically 
10 at.% (atomic %). The process involves the decomposition of silane gas, SiH4, in 
an electrical plasma in a vacuum chamber. Called plasma-enhanced chemical vapor 

deposition (PECVD), the process is illustrated schematically in Figure 1.63. The 
silane gas molecules are dissociated in the plasma, and the Si and H atoms then 
condense onto a substrate to form a film of a-Si:H. If the substrate temperature is 
too hot, the atoms on the substrate surface will have sufficient kinetic energy, and 
hence the atomic mobility, to orient themselves to form a polycrystalline structure. 
Typically, the substrate temperature is ∼250 °C. The advantage of a-Si:H is that it can 
be grown on large areas, for such applications as photovoltaic cells and flat panel thin-
film transistor (TFT) displays. There are also digital flat panel indirect conversion 
X-ray detectors that use a-Si:H TFTs in the detector panel. Table 1.5 summarizes the 
properties of crystalline and amorphous silicon, in terms of structure and applications.

Crucible

Silicon for
deposition

Evaporated Si atoms Electron beam
guided by a
magnetic field

Heated substrate

a-Si film

Vacuum

Vacuum
pump

Deposition
chamber

Electron gun

Figure 1.62 Amorphous silicon, a-Si, can be 
prepared by an electron beam evaporation  
of silicon.

Silicon has a high melting temperature, so an 
energetic electron beam is used to melt the 
crystal in the crucible locally and thereby  
vaporize Si atoms. Si atoms condense on a 
substrate placed above the crucible, to form 
a film of a-Si.

Heated substrate
a-Si:H film

Vacuum
 pump

Electrode

Electrode
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(SiH4)
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Figure 1.63 Hydrogenated amorphous silicon, a-Si:H, is generally 
prepared by the decomposition of silane molecules in a radio  
frequency (RF) plasma discharge.

Si and H atoms condense on a substrate to form a film of a-Si:H.
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1.13  SOLID SOLUTIONS AND TWO-PHASE SOLIDS

1.13.1 ISOMORPHOUS SOLID SOLUTIONS: ISOMORPHOUS ALLOYS

A phase of a material has the same composition, structure, and properties every-
where, so it is a homogeneous portion of the chemical system under consideration. 
In a given chemical system, one phase may be in contact with another phase. For 
example, at 0 °C, iced water will have solid and liquid phases in contact. Each phase, 
ice and water, has a distinct structure.
 A bartender knows that alcohol and water are totally miscible; she can dilute 
whisky with as much water as she likes. When the two liquids are mixed, the mol-
ecules are randomly mixed with each other and the whole liquid is a homogenous 
mixture of the molecules. The liquid therefore has one phase; the properties of the 
liquid are the same everywhere. The same is not true when we try to mix water and 
oil. The mixture consists of two distinctly separate phases, oil and water, in contact. 
Each phase has a different composition, even though both are liquids.
 Many solids are a homogeneous mixture of two types of separate atoms. For 
example, when nickel atoms are added to copper, Ni atoms substitute directly for the 
Cu atoms, and the resulting solid is a solid solution, as depicted in Figure 1.64a. 
The structure remains an FCC crystal whatever the amount of Ni we add, from 100% 
Cu to 100% Ni. The solid is a homogenous mixture of Cu and Ni atoms, with the 
same structure everywhere in the solid solution, which is called an isomorphous 

solid solution. The atoms in the majority make up the solvent, whereas the atoms 
in the minority are the solute, which is dissolved in the solvent. For a Cu–Ni alloy 
with a Ni content of less than 50 at.%, copper is the solvent and nickel is the solute.
 The substitution of solute atoms for solvent atoms at various lattice sites of the 
solvent can be either random (disordered) or ordered. The two cases are schemati-
cally illustrated in Figure 1.64a and b, respectively. In many solid solutions, the 
substitution is random, but for certain compositions, the substitution becomes ordered. 

Table 1.5 Crystalline and amorphous silicon

 Crystalline Si (c-Si) Amorphous Si (a-Si) Hydrogenated a-Si (a-Si:H)

Structure Diamond cubic. Short-range order only. On average,  Short-range order only.
   each Si covalently bonds with four  Structure typically contains
   Si atoms.  10% H. Hydrogen atoms
  Has microvoids and dangling bonds.  passivate dangling bonds and
    relieve strain from bonds.

Typical preparation Czochralski technique. Electron beam evaporation of Si. Chemical vapor deposition 
    of silane gas by RF plasma.

Density (g cm−3) 2.33 About 3–10% less dense. About 1–3% less dense.

Electronic Discrete and integrated None Large-area electronic devices such
 applications  electronic devices.   as solar cells, thin film transistors
     (TFTs) in flat panel displays and 

flat panel indirect conversion 
X-ray detectors.
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There is a distinct ordering of atoms around each solute atom such that the crystal 
structure resembles that of a compound. For example, β′ brass has the composition 
50 at.% Cu–50 at.% Zn. Each Zn atom is surrounded by eight Cu atoms and vice 
versa, as depicted in two dimensions in Figure 1.64b. The structure is that of a 
metallic compound between Cu and Zn.
 Another type of solid solution is the interstitial solid solution, in which solute 
atoms occupy interstitial sites, or voids between atoms, in the crystal. Figure 1.64c 
shows an example in which a small number of carbon atoms have been dissolved in 
a γ-iron crystal (FCC) at high temperatures.

1.13.2 PHASE DIAGRAMS: Cu–Ni AND OTHER ISOMORPHOUS ALLOYS

The Cu–Ni alloy is isomorphous. Unlike pure copper or pure nickel, when a Cu–Ni 
alloy melts, its melting temperature is not well defined. The alloy melts over a range 
of temperatures in which both the liquid and the solid coexist as a heterogeneous 
mixture. It is therefore instructive to know the phases that exist in a chemical system 
at various temperatures as a function of composition, and this need leads to the use 
of phase diagrams.
 Suppose we take a crucible of molten copper and allow it to cool. Above its 
melting temperature (1083 °C), there is only the liquid phase. The temperature drops 
with time, as shown in Figure 1.65a, until at the melting or fusion temperature at 
point L0 when copper crystals begin to nucleate (solidify) in the crucible. During 
solidification, the temperature remains constant. As long as we have both the liquid 
and solid phases coexisting, the temperature remains constant at 1083 °C. During 
this time, heat is given off as the Cu atoms in the melt attach themselves to the Cu 
crystals. This heat is called the heat of fusion. Once all the liquid has solidified 
(point S0), the temperature begins to drop as the solid cools. There is therefore a 
sharp melting temperature for copper, at 1083 °C.
 If we were to cool pure nickel from its melt, we would observe a behavior 
similar to that of pure copper, with a well-defined melting temperature at 1453 °C.

(a) Disordered substitutional
solid solution. Example:
Cu–Ni alloys ({100} planes)

(c) Interstitial solid solution.
Example: Small number of C
atoms in FCC Fe (austenite).
({100} planes)

(b) Ordered substitutional
solid solution. Example:
Cu–Zn alloy of composition
50% Cu–50% Zn. ({110} planes)

Figure 1.64 Solid solutions can be disordered substitutional, ordered substitutional, and interstitial  
substitutional.

Only one phase within the alloy has the same composition, structure, and properties everywhere.
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 Now suppose we cool the melt of a Cu–Ni alloy with a composition22 of 80 wt.% 
Cu and 20 wt.% Ni. In the melt, the two species of atoms are totally miscible, and 
there is only a single liquid phase. As the cooling proceeds, we reach the temperature 
1195 °C, identified as point L20 in Figure 1.65a, where the first crystals of Cu–Ni 
alloy begin to appear. In this case, however, the temperature does not remain constant 
until the liquid is solidified, but continues to drop. Thus, there is no single melting 
temperature, but a range of temperatures over which both the liquid and the solid 
phases coexist in a heterogeneous mixture. We find that when the temperature 
reaches 1130 °C, corresponding to point S20, all the liquid has solidified. Below 
1130 °C, we have a single-phase solid that is an isomorphous solid solution of Cu 

 22 In materials science, we generally prefer to give alloy composition in wt.%, which henceforth will simply be %.
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Figure 1.65 Solidification of an isomorphous alloy such as Cu–Ni.  
(a) Typical cooling curves. (b) The phase diagram marking the regions of 
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and Ni. If we repeat these experiments for other compositions, we find a similar 
behavior; that is, freezing occurs over a transition temperature range. The beginning 
and end of solidification, at points L and S, respectively, depend on the specific 
composition of the alloy.
 To characterize the freezing or melting behavior of other compositions of Cu–Ni 
alloys, we can plot the temperatures for the beginning and end of solidification ver-
sus the composition and identify those temperature regions where various phases 
exist, as shown in Figure 1.65b. When we join all the points corresponding to the 
beginning of freezing, that is, all the L points, we obtain what is called the liquidus 

curve. For any given composition, only the liquid phase can exist above the liquidus 
curve. If we join all the points where the liquid has totally solidified, that is, all the 
S points, we have a curve called the solidus curve. At any temperature and compo-
sition below the solidus curve, we can only have the solid phase. The region between 
the liquidus and solidus curves marks where a heterogeneous mixture of liquid and 
solid phases exists.
 Let’s follow the cooling behavior of the 80% Cu–20% Ni alloy from the melt at 
1300 °C down to the solid state at 1000 °C, as shown in Figure 1.66. The vertical 
dashed line at 20% Ni represents the overall composition of the alloy (the whole 
chemical system) and the cooling process corresponds to movement down this dashed 
line, starting from the liquid phase at L0.
 When the Cu–Ni alloy begins to solidify at 1195 °C, at point L1, the first solid 
that forms is richer in Ni content. The only solid that can exist at this temperature 
has a composition S1, which has a greater Ni content than the liquid, as shown in 
Figure 1.66. Intuitively, we can see this by noting that Cu, the component with the 
lower melting temperature, prefers to remain in the liquid, whereas Ni, which has a 
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higher melting temperature, prefers to remain in the solid. When the temperature 
drops further, say to 1160 °C (indicated by X in the figure), the alloy is a heteroge-
neous mixture of liquid and solid. At this temperature, the only solid that can coex-
ist with the liquid has a composition S2. The liquid has the composition L2. Since 
the liquid has lost some of its Ni atoms, the liquid composition is less than that at 
L1. The liquidus and solidus curves therefore give the compositions of the liquid and 
solid phases coexisting in the heterogeneous mixture during melting.
 At 1160 °C, the overall composition of the alloy (the whole chemical system) 
is still 20% Ni and is represented by point X in the phase diagram. When the tem-
perature reaches 1130 °C, nearly all the liquid has been solidified. The solid has the 
composition S3, which is 20% Ni, as we expect since the whole alloy is almost all 
solid. The last drops of the liquid in the alloy have the composition L3, since at this 
temperature, only the liquid with this composition can coexist with the solid at S3. 
Table 1.6 summarizes the phases and their compositions, as observed during the 
cooling process depicted in Figure 1.66. By convention, all solid phases that can 
exist are labeled by different Greek letters. Since we can only have one solid phase, 
this is labeled the α-phase.
 During the solidification process depicted in Figure 1.66, the solid composition 
changes from S1 to S2 to S3. We tacitly assume that the cooling is sufficiently slow 
to allow time for atomic diffusion to change the composition of the whole solid. 
Therefore, the phase diagram in Figure 1.65b, which assumes near equilibrium condi-
tions during cooling, is termed an equilibrium phase diagram. If the cooling is fast, 
there will be limited time for atomic diffusion in the solid phase, and the resulting 
solid will have a composition variation. The inner core will correspond to the solid-
ification at S1 and will be Ni rich. Since the solidification occurs quickly, the Ni atoms 
do not have time to diffuse out from the inner core to allow the composition in the 
solid to change from S1 to S2 to S3. Thus, the outer region, the final solidification, 
will be Ni deficient (or Cu rich); its composition is not S3 but less, because S3 is the 
average composition in the whole solid. The solid structure will be cored, as depicted 
in Figure 1.67. The cooling process is then said to have occurred under nonequilib-
rium conditions, which leads to a segregation of the elements in the grains. Under 
nonequilibrium cooling conditions we cannot quantitatively use the equilibrium phase 
diagram in Figure 1.65b. The diagram can only serve as a qualitative guide.

Table 1.6 Phase in the 80% Cu–20% Ni isomorphous alloy

Temperature, °C Phases Composition Amount

 1300 Liquid only L0 = 20% Ni 100%
 1195 Liquid and solid L1 = 20% Ni 100%
   S1 = 36% Ni First solid appears
 1160 Liquid and solid L2 = 13% Ni 53.3%
   S2 = 28% Ni 46.7%
 1130 Liquid and solid L3 = 7% Ni The last liquid drop
   S3 = 20% Ni 100%
 1050 Solid only S4 = 20% Ni 100%
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 The amounts of liquid and solid in the mixture can be determined from the phase 
diagram using the lever rule, which is based on the fact that the total mass of 
the  alloy remains the same throughout the entire cooling process. Let WL and WS 
be the weight (or mass) fraction of the liquid and solid phases in the alloy mixture. 
The compositions of the liquid and solid are denoted as CL and CS, respectively. The 
overall composition of the alloy is denoted CO, which is the overall weight fraction 
of Ni in the alloy.
 If we take the alloy to have a weight of unity, then the conservation of mass 
means that

 WL + WS = 1

Further, the weight fraction of Ni in both the liquid and solid must add up to the 
composition CO of Ni in the whole alloy, or

 CLWL + CSWS = CO

 We can substitute for WS in the above equation to find the weight fraction of the 
liquid and then that of the solid phase, as follows:

 WL =
CS − CO

CS − CL

  and  WS =
CO − CL

CS − CL

 [1.43]

 To apply Equation 1.43, we first draw a line, called a tie line, from L2 to S2 
corresponding to CL and CS, as shown in Figure 1.66. The line represents a “hori-
zontal lever” and point X at CO at this temperature is the lever’s fulcrum. The lengths 
of the lever arms from the fulcrum to the liquidus and solidus curves are (CO − CL) 
and (CS − CO), respectively. The lever must be balanced by the weights WL and WS 
attached to the ends. The total length of the lever is (CS − CL). At 1160 °C,  
CL = 0.13 (13% Ni) and CS = 0.28 (28% Ni), so the weight fraction of the liquid 
phase is

 WL =
CS − CO

CS − CL

=
0.28 − 0.20
0.28 − 0.13

= 0.533  or  53.3%

Similarly, the weight fraction of the solid phase is 1 − 0.533 or 0.467.

1.13.3 ZONE REFINING AND PURE SILICON CRYSTALS

Zone refining is used for the production of high-purity crystals. Silicon, for exam-
ple, has a high melting temperature, so any impurities present in the crystal decrease 

First solidification
(❙1) Ni rich

Grain boundary

Last solidification
Ni deficient
Cu rich

Figure 1.67 Segregation in a grain due to rapid cooling 
(nonequilibrium cooling).

Lever rules
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the melting temperature. This is similar to the depression of the melting temperature 
of pure Ni by the addition of Cu, as shown by the right-hand side of Figure 1.65b. 
We can represent the phase diagram of Si with small impurities as shown in Fig-
ure 1.68. Consider what happens if we have a rod of the solid and we melt only the 
left end by applying heat locally (using RF heating, for example). At the same time, 
we move the melted zone toward the right by moving the heater. We therefore melt 
the solid at A and refreeze it at B, as shown in Figure 1.69a.
 The solid has an impurity concentration of CO; when it melts at A, the melt 
initially also has the same concentration CL = CO. However, at temperature TB, 
the melt begins to solidify. At the start of solidification the solid that freezes has 
a composition CB, which is considerably less than CO, as is apparent in Fig-
ure 1.68. The cooling at B occurs rapidly, so the concentration CB cannot adjust 
to the equilibrium value at the end of freezing. Thus, the solid that freezes at B 
has a lower concentration of impurities. The impurities have been pushed out 
of  the solid at B and into the melt, whose impurity concentration increases from 
CL to CL′.
 Next, refreezing at B′, shown in Figure 1.69b, occurs at a lower temperature 
TB′, because the melt concentration CL′ is now greater than CO. The solid that 
freezes at B′ has the concentration CB′, shown in Figure 1.68, which is greater 
than CB but less than CO. As the melted zone is floated toward the right, the melt 
that is solidified at B, B′, etc., has a higher and higher impurity concentration, 
until its impurity content reaches that of the impure solid, at which point the 
concentration remains at CO. When the melted zone approaches the far right where 
the freezing is halted, the impurities in the final melt appear in the last frozen 
region at the far right. The resulting impurity concentration profile is schemati-
cally depicted in Figure 1.69c. The region of impurity concentration below CO is 
the zone refined section of the rod. The zone refining procedure can be 
repeated  again, starting from the left toward the right, to reduce the impurity 
concentration even lower. The impurity concentration profile after many passes 
is sketched in Figure 1.69d. Although the profile is nonuniform, due to the seg-
regation effect, the impurity concentrations in the zone refined section may be as 
low as a factor of 10−6.

Liquidus

Solidus

Impurity content

Temperature

Liquid

▲ + ✥

1412 °C ❈�

B
TB ❈�′

B′
TB′

Solid

❈B ❈B′ ❈O

Figure 1.68 The phase diagram of Si with impurities 
near the low-concentration region.
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1.13.4 BINARY EUTECTIC PHASE DIAGRAMS AND Pb–Sn SOLDERS

When we dissolve salt in water, we obtain a brine solution. If we continue to add 
more salt, we eventually reach the solubility limit of salt in the solution, and the 
excess salt remains as a solid at the bottom of the container. We then have two coex-
isting phases: brine (liquid solution) and salt (solid), as shown in Figure 1.70. The 
solubility limit of one component in another in a mixture is represented by a solvus 

curve shown schematically in Figure 1.70 for salt in brine. In the solid state, there 
are many elements that can only be dissolved in small amounts in another solid.
 Lead in the solid phase has an FCC crystal structure, and tin has a BCT (body-
centered tetragonal) structure. Although the two elements are totally miscible in any 
proportion when melted, this is not so in the solid state. We can only dissolve so 
much Sn in solid Pb, and vice versa. We quickly reach the solubility limit, and the 
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resulting solid is a mixture of two distinctly different solid phases. One solid phase, 
labeled α, is Pb rich and has the FCC structure with some Sn atoms dissolved in the 
crystal. The amount of Sn dissolved in α is given by the solvus curve of Sn in α at 
that temperature. The other phase, labeled β, is Sn rich and has the BCT structure 
with some Pb atoms dissolved in it. The amount of Pb dissolved in β is given by 
the solvus curve of Pb in β at that temperature.
 The existence of various phases and their compositions as a function of tem-
perature are given by the equilibrium phase diagram for the Pb–Sn alloy, shown in 
Figure 1.71. This is called an equilibrium eutectic phase diagram. The liquidus and 
solidus curves, as usual, mark the borders for the liquid and solid phases. Between 
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The microstructures on the left show the observations at various points during the cooling of a 
90% Pb–10% Sn from the melt along the dashed line (the overall alloy composition remains  
constant at 10% Sn).
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the liquidus and solidus curves, we have a heterogeneous mixture of melt and solid. 
Unlike the Cu–Ni case, the melting temperature of both elements here is depressed 
with alloying. The liquidus and solidus curves thus decrease from both ends, starting 
at A and B. They meet at a point E, called the eutectic point, at 61.9% Sn and 183 °C. 
This point has a special significance: No liquid can exist below this temperature, so 
183 °C is the lowest melting temperature of the alloy.
 In addition, we must insert the solvus curves at both the Pb and Sn ends to mark 
the extent of solid-state solubility and hence identify the two-phase solid region. The 
solvus curve for the solubility limit of Sn in Pb meets the solidus curve at point C, 
19.2% Sn. Similarly, the solubility limit of Pb in Sn meets the solvus curve at D. A 
characteristic feature of this phase diagram is that CD is a straight line through E at 
183 °C. Below 183 °C, between the two solvus curves, we have a solid with two 
phases, α and β. This is identified as α + β in the diagram.
 The usefulness of such a phase diagram is best understood by examining the 
phase transformations and microstructures during the cooling of a melt of a given 
composition alloy. Consider a 90% Pb–10% Sn alloy being cooled from the melt at 
350 °C (point L) where there is only one phase, the liquid phase. At point M, 315 °C, 
few nuclei of the α-phase appear in the liquid. The composition of the α-phase is 
given by the solidus curve at 315 °C and is about 5% Sn. At point N, 290 °C, there 
is more α-phase in the mixture. The compositions of the liquid and α-phases are given 
respectively by the liquidus and solidus curves at 290 °C. At point O, 275 °C, all 
liquid has been solidified into the α-phase, which then has the composition 10% Sn.
 Between M and O, the alloy is a coexistent mixture of the liquid phase (melt) 
and the solid α-phase. At point P, 175 °C, we still have only the α-phase. When we 
reach the solvus curve at point Q, 140 °C, we can no longer keep all the Sn dissolved 
in the α-phase, as we have reached the solubility limit of Sn in α. Some of the Sn 
atoms must diffuse out from the α-phase; they do so by forming a second solid phase, 
which is the β-phase. The β-phase nucleates within the α-phase (usually at the grain 
boundaries, where atomic diffusion occurs readily). The β-phase will contain as 
much dissolved Pb as is allowed by the solubility of Pb in the β-phase, which is 
given by the solvus curve on the Sn side and marked as point Q′, about 98% Sn. 
Thus, the microstructure is now a mixture of the α and β phases.
 As cooling proceeds, the two phases continue to coexist, but their relative propor-
tions change. At R, 50 °C, the alloy is a mixture of the α-phase given by R′(4% Sn) 
and the β-phase given by R″(99% Sn). The relative amounts of α and β phases are given 
by the lever rule. Figure 1.71 illustrates the microstructure of the 90% Pb–10% Sn 
alloy as it is cooled.
 An interesting phenomenon can be observed when we cool an alloy of the eutec-
tic composition 38.1% Pb–61.9% Sn from the melt. The cooling process and the 
observed microstructures are illustrated in Figure 1.72; the microstructures are on the 
right. The temperature–time profile is also depicted in Figure 1.72. At point L, 350 °C, 
the alloy is all liquid; as it cools, its temperature drops until point E at 183 °C. At E, 
the temperature remains constant and a solid phase nucleates within the melt. With 
time, the amount of solid grows until all the liquid is solidified and the temperature 
begins to drop again. This behavior is much like that of a pure element, for which 
melting occurs at a well-defined temperature. This behavior only occurs for the eutectic 
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composition (61.9% Sn), because this is the composition at which the liquidus and 
solidus curves meet at one temperature. Generally, the liquid with the eutectic compo-
sition will solidify through the eutectic transformation at the eutectic temperature, or

 L61.9% Sn → α19.2% Sn + β97.5% Sn                (183 °C) [1.44]

 The solid that forms from the eutectic solidification has a special microstructure, 
consisting of alternating plates, or lamellae, of α and β phases, as shown in Figure 
1.72. This is called the eutectic microstructure (or eutectic solid). The formation 
of a Pb-rich α-phase and an Sn-rich β-phase from the 61.9% Sn liquid requires the 
redistribution of the two types of atoms by atomic diffusion. Atomic diffusions are 
easier in the liquid than in the solid. The formation of a solid with alternating α and 
β layers allows the Pb and Sn atoms to diffuse in the liquid without having to move 
over long distances. The eutectic structure is not a phase itself, but a mixture of the 
two phases, α and β.
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 When cooled from the melt, an alloy with a composition between 19.2% Sn and 
61.9% Sn solidifies into a mixture of α-phase and a eutectic solid (a mixture of α and 
β phases). Consider the cooling of an alloy with a composition of 40% Sn, starting 
from the liquid phase L at 350 °C, as shown in Figure 1.72. At point M (235 °C), the 
first solid, the α-phase, nucleates. Its composition is about 15% Sn. At N, 210 °C, the 
alloy is a mixture of liquid, composition 50% Sn, and α-phase, composition 18% Sn. 
The composition of the liquid thus moves along the liquidus line from M toward E. 
At 183 °C, the liquid has the composition 61.9% Sn, or the eutectic composition, and 
therefore undergoes the eutectic transformation indicated in Equation 1.44. There is 
still α-phase in the alloy, but its composition is now 19.2% Sn; it does not take part 
in the eutectic transformation of the liquid. During the eutectic transformation, the 
temperature remains constant. When all the liquid has been solidified, we have a mix-
ture of the preexisting α-phase, called primary α (or proeutectic α), and the newly 
formed eutectic solid. The final microstructure is shown in Figure 1.72 and consists 
of a primary α and a eutectic solid; therefore, two solid phases, α and β, coexist.
 During cooling between points M and O, the alloy 60% Pb–40% Sn is a mixture 
of melt and α-phase, and it exhibits plastic-like characteristics while solidifying. 
Further, the temperature range for the solidification is about 183–235 °C, or about 
50 °C. Such an alloy is preferable for such uses as soldering wiped joints to join 
pipes together, giving the plumber sufficient play for adjusting and wiping the joint. 
On the other hand, a solder with the eutectic composition (commercially, this is 40% 
Pb–60% Sn solder, which is close to the eutectic) has the lowest melting temperature 
and solidifies quickly. The liquid also has good wetting properties. Therefore, 40% 
Pb–60% Sn is widely used for soldering semiconductor devices, where good wetting 
and minimal exposure to high temperature are required.

THE 60% Pb–40% Sn ALLOY Consider the solidification of the 60% Pb–40% Sn alloy. 
What are the phases, compositions, and weight fractions of various phases existing in the 
alloy at 250, 210, 183.5 ( just above 183 °C), and 182.5 °C (just below 183 °C)?

SOLUTION

We again refer to the phase diagram in Figure 1.72 to identify which phases exist at what 
temperatures. At 250 °C, we only have the liquid phase. At 210 °C, point N, the liquid and 
the α-phase are in equilibrium. The composition of the α-phase is given by the solidus line; 
at 210 °C, Cα = 18% Sn. The composition of the liquid is given by the liquidus line; at 
210 °C, CL = 50% Sn. To find the weight fraction of α in the alloy, we use the lever rule,

Wα =
CL − CO

CL − Cα

=
50 − 40
50 − 18

= 0.313

From Wα + WL = 1, we obtain the weight fraction of the liquid phase, WL = 1 − 0.313 = 0.687.
 At 183.5 °C, point O, the composition of the α-phase is 19.2% Sn corresponding to C 
and that of the liquid is 61.9% Sn corresponding to E. The liquid therefore has the eutectic 
composition. The weight fractions are

 Wα =
CL − CO

CL − Cα

=
61.9 − 40

61.9 − 19.2
= 0.513

 WL = 1 − 0.513 = 0.487

 EXAMPLE 1.20
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 As expected, the amount of α-phase increases during solidification; at the same time, its 
composition changes along the solidus curve. Just above 183 °C, about half the alloy is the 
solid α-phase and the other half is liquid with the eutectic composition. Thus, on solidifica-
tion, the liquid undergoes the eutectic transformation and forms the eutectic solid. Just below 
183 °C, therefore, the microstructure is the primary α-phase and the eutectic solid. Stated 
differently, below 183 °C, the α and β phases coexist, and β is in the eutectic structure. The 
weight fraction of the eutectic phase is the same as that of the liquid just above 183 °C, from 
which it was formed. The weight fractions of α and β in the whole alloy are given by the 
lever rule applied at point P, or

  Wα =
Cβ − CO

Cβ − Cα

=
97.5 − 40

97.5 − 19.2
= 0.734

  Wβ =
CO − Cα

Cβ − Cα

=
40 − 19.2

97.5 − 19.2
= 0.266

 The microstructure at room temperature will be much like that just below 183 °C, at 
which the alloy is a two phase solid because atomic diffusions in the solid will not be suf-
ficiently fast to allow the compositions to change. Table 1.7 summarizes the phases that exist 
in this alloy at various temperatures.

ADDITIONAL TOPICS

1.14  BRAVAIS LATTICES

An infinite periodic array of geometric points in space defines a space lattice or 
simply a lattice. Strictly, a lattice does not contain any atoms or molecules because 
it is simply an imaginary array of geometric points. A two-dimensional simple square 
lattice is shown in Figure 1.73a. In three dimensions, Figure 1.73a would correspond 
to the simple cubic (SC) lattice. The actual crystal is obtained from the lattice by 
placing an identical group of atoms (or molecules) at each lattice point. The identi-
cal group of atoms is called the basis of the crystal structure. Thus, conceptually, 

Table 1.7 The 60% Pb–40% Sn alloy

 Temperature (°C) Phases Composition Mass (g) Microstructure and Comment

 250 L 40% Sn 100
 235 L 40% Sn 100 The first solid (α-phase) nucleates in the
  α 15% Sn   0  liquid.
 210 L 50% Sn  68.7 Mixture of liquid and α phases. More solid
  α 18% Sn  31.3  forms. Compositions change.
 183.5 L 61.9% Sn  48.7 Liquid has the eutectic composition.
  α 19.2% Sn  51.3
 182.5 α 19.2% Sn  73.4 Eutectic (α and β phases) and primary
  β 97.5% Sn  26.6  α-phase.

 Assume mass of the alloy is 100 g.



 1 .1 4  BRAVAIS LATTICES 103

as illustrated in Figure 1.73a to c,

Crystal = Lattice + Basis

 The unit cell of the two-dimensional lattice in Figure 1.73a is a square which is 
characterized by the length a of one of the sides; a is called a lattice parameter. 
A given lattice can generate different patterns of atoms depending on the basis. The 
lattice in Figure 1.73a with the two-atom basis in Figure 1.73b produces the crystal 
in Figure 1.73c. Although the latter crystal appears as a body-centered square (sim-
ilar to BCC in three dimensions), it is nonetheless a simple square lattice with two 
atoms comprising the basis. Suppose that the basis had only one atom; then the 
crystal would appear as the simple square lattice in Figure 1.73a (with each point 
now being an atom). The patterns in Figure 1.73a and c are different but the under-
lying lattice is the same. Because they have the same lattice, the two crystals would 
have certain identical symmetries. For example, for both crystals, a rotation by 90° 
about a lattice point would produce the same crystal structure.
 To fully characterize the crystal, we also have to specify the locations of the basis 
atoms in the unit cell as in Figure 1.73d. By convention, we place a Cartesian coordinate 
system at the rear-left corner of the unit cell with the x and y axes along the square 
edges. We indicate the coordinates (xi, yi) of each ith atom in terms of the lattice 
parameters along x and y. Thus, the atoms in the unit cell in Figure 1.73d are at (0, 0) 
and at (1

2, 
1
2) . The CsCl unit cell in Figure 1.39 appears as BCC, but it can be described 

by a SC lattice and a basis that has one Cl− ion and one Cs+ ion. The ions in the SC 
unit cell are located at (0, 0, 0) and at the cell center at (1

2, 
1
2, 

1
2) . Similarly, the NaCl 

crystal in Figure 1.38 is an FCC lattice with a basis of Na+ and Cl− ions.
 The diamond unit cell of silicon is an FCC lattice with two Si atoms constitut-
ing the basis. The two Si atoms are placed at (0, 0, 0) and (1

4, 
1
4, 

1
4) . Most of the 

important III–V compound semiconductors such as GaAs, AlAs, InAs, InP, etc., 
which are widely used in numerous optoelectronic devices, have the zinc blende 
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Figure 1.73 (a) A simple square lattice. The unit cell is a square with a side a. (b) Basis has two atoms. (c) Crystal =  
Lattice + Basis. The unit cell is a simple square with two atoms. (d) Placement of basis atoms in the crystal unit cell.
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(ZnS) unit cell. The zinc blende unit cell consists of an FCC lattice and a basis that 
has the Zn and S atoms placed at (0, 0, 0) and (1

4, 
1
4, 

1
4) , respectively.

 We generally represent the geometry of the unit cell of a lattice as a parallel-
epiped with sides a, b, c and angles α, β, γ as depicted in Figure 1.41a. In the case 
of copper and iron, the geometry of the unit cell has a = b = c, α = β = γ = 90°, 
and cubic symmetry. For Zn, the unit cell has hexagonal geometry with a = b ≠ c, 
α = β = 90°, and γ = 120° as shown in Figure 1.34d. Based on different lattice 
parameters, there are seven possible distinct unit-cell geometries, which we call 
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Figure 1.74 The seven crystal systems (unit-cell geometries) and fourteen Bravais lattices.
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crystal systems each with a particular distinct symmetry. The seven crystal systems 
are depicted in Figure 1.74 with typical examples. We are already familiar with the 
cubic and hexagonal systems. The seven crystal systems only categorize the unit 
cells based on the geometry of the unit cell and not in terms of the symmetry and 
periodicity of the lattice points. (One should not confuse the unit-cell geometry with 
the lattice, which is a periodic array of points.) In the cubic system, for example, 
there are three possible distinct lattices corresponding to SC, BCC, and FCC which 
are shown in Figure 1.74. All three have the same cubic geometry: a = b = c and 
α = β = γ = 90°.
 Many distinctly different lattices, or distinct patterns of points, exist in three 
dimensions. There are 14 distinct lattices whose unit cells have one of the seven 
geometries as indicated in Figure 1.74. Each of these is called a Bravais lattice. 
The copper crystal, for example, has the FCC Bravais lattice, but arsenic, anti-
mony, and bismuth crystals have the rhombohedral Bravais lattice. Tin’s unit cell 
belongs to the tetragonal crystal system, and its crystal lattice is a body-centered 

tetragonal (BCT).

1.15  GRÜNEISEN’S RULE23

We considered thermal expansion in Section 1.4.2 where the principle is illustrated 
in Figure 1.18, which shows the potential energy curve U(r) for two atoms sepa-
rated by a distance r in a crystal. At temperature T1, we know that the atoms will 
be vibrating about their equilibrium positions between positions B and C, com-
pressing (B) and stretching (C) the bond between them. The line BC corresponds 
to the total energy E of the pair of atoms. The average separation at T1 is at A, 
halfway between B and C. We also know that the PE curve U(r) is asymmetric, 
and it is this asymmetry that leads to the phenomenon of thermal expansion. When 
the temperature increases from T1 to T2, the atoms vibrate between B′ and C′ and 
the average separation between the atoms also increases, from A to A′, which we 
identified as thermal expansion. If the PE curve were symmetric, then there would 
be no thermal expansion.
 Since the linear expansion coefficient λ is related to shape of the PE curve, 
U(r), it is also related to the elastic modulus, E. Further, λ also depends on the 
amount of increase from BC to B′C′ per degree of increase in the temperature. λ 
must therefore also depend on the heat capacity. When the temperature increases 
by a small amount δT, the energy per atom increases by (CvδT )∕N, where Cv is 
the heat capacity per unit volume and N is the number of atoms per unit volume. 
If CvδT is large, then the line B′C′ in Figure 1.18 will be higher up on the energy 
curve and the average separation A′ will therefore be larger. Thus, the larger is the 
heat capacity, the greater is the interatomic separation, which means λ ∝ Cv. Fur-
ther, the average separation, point A, depends on how much the bonds are stretched 
and compressed. For large amounts of displacement from equilibrium, the average A 

 23 Grüneisen’s rule is also referred as Grüneisen’s law or theorem. Eduard Grüneisen reported in his paper 
“Theorie des festen Zustandes einatomiger Elemente” in Annalen der Physik in 1912 in Germany.
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will be greater as more asymmetry of the PE curve is used. Thus, the smaller 
is  the  elastic modulus E, the greater is λ, that is, λ ∝ 1∕E. The dependence of λ 
on Cv and E can be written as λ ∝ Cv∕E. Atomic vibrations occur in three dimen-
sions for which a more appropriate elastic constant that would describe the com-
pression and stretching of bonds would be K, the bulk modulus, rather than E. 
Thus, λ ∝ Cv∕K.
 If we were to expand U(r) about its minimum value Umin at r = ro, we would 
obtain the Taylor expansion

 U(r) = Umin + a2(r − ro)
2 + a3(r − ro)

3 + … [1.45]

where a2 and a3 are coefficients related to second and third order derivatives of U 
at ro. The term (r − ro) is missing because we are expanding a series about Umin 
where dU∕dr = 0. The terms Umin and a2(r − ro)

2 give a parabola about Umin, which 
is a symmetric curve around ro and therefore does not lead to thermal expansion. 
Average location at any energy on a symmetric curve at ro is always at ro. It is the 
a3 term that gives the expansion because it leads to asymmetry. Thus, the amount 
of expansion λ also depends on the amount of asymmetry with respect to symmetry, 
that is a3∕a2. Thus

 λ ∝
a3

a2
 
Cv

K
 [1.46]

 The ratio of a3 and a2 depends on the nature of the bond. A simplified analyti-
cal treatment gives

 λ =
1
3

 γG 
Cv

K
  [1.47]

where γG is an apparent “constant,” called the Grüneisen parameter. The Grüneisen 
parameter γG is approximately −(roa3)∕(2a2), where ro is the equilibrium atomic 
separation, and thus γG represents the asymmetry of the energy curve. The  
Grüneisen parameter γG is typically of the order of unity for many materials. 
Since αV = 3λ is the volume expansion coefficient, Equation [1.47] simplifies to 
αV = γGCv∕K.
 The asymmetric PE curve in Figure 1.18 has a finite cubic a3 term as in Equa-
tion 1.45, which means that the atomic vibrations do not execute a perfect simple 
harmonic (sinusoidal) vibration about ro; because the restoring force is not propor-
tional to the displacement alone. Such oscillations are unharmonic and the PE curve 
is said to possess an unharmonicity (terms such as a3). Thermal expansion is an 
unharmonic effect.

 There is another way to look at Equation 1.47. This equation can also be used 
to define γG in terms of the ratio 3λK∕Cv. This ratio is then an indicator of 
the  extent  of asymmetry in the bonding, the a3∕a2 ratio. The question whether 
this ratio is a practically useful parameter depends on how much γG varies among 
different types of solids, or within a given class of solids. Table 1.8 summarizes 
the γG for a selection of materials that have different types of bonding; notice that 
the magnitude of γG is on the order of unity.

Atomic PE in 

the crystal

Linear 

expansion 

coefficient

Grüneisen’s 

law
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Table 1.8  The Grüneisen parameter for some selected materials with different types of 
interatomic bonding

Material ρ (g cm−3) λ (×10−6 K−1) K (GPa) cs (J kg−1 K−1) γG

Iron (metallic, BCC) 7.9 12 170 450 1.7
Copper (metallic, FCC) 8.96 17 140 385 2.1
NaCl (ionic) 2.17 44 25 850 1.8
CsI (ionic) 4.51 48 13 201 2.1
Germanium (covalent) 5.32 6 77 322 0.81
Silicon (covalent) 2.32 2.6 99 703 0.47
Glass (covalent-ionic) 2.45 8 50 800 0.61
ZnSe (ionic/covalent) 5.27 7.4 62 350 0.75
Tellurium (covalent/van der Waals) 6.24 17 30 200 1.23
Polystyrene (van der Waals) 1.1 80 ~3 1300 0.50
Polyethylene terephthalate PET 1.38 70 ~3 1200 0.38 
 (van der Waals)

DEFINING TERMS

mass, in atomic mass units (amu), of all the naturally 
occurring isotopes of the element. Atomic masses are 
listed in the Periodic Table. The amount of an ele-
ment that has 6.022 × 1023 atoms (the Avogadro num-
ber of atoms) has a mass in grams equal to the atomic 
mass.

Atomic mass unit (amu) is a convenient mass mea-
surement equal to one-twelfth of the mass of a neutral 
carbon atom that has a mass number of A = 12 (6 pro-
tons and 6 neutrons). It has been found that amu = 
1.66054 × 1027 kg, which is equivalent to 10−3∕NA, 
where NA is Avogadro’s number.

Atomic packing factor (APF) is the fraction of vol-
ume actually occupied by atoms in a crystal.

Avogadro’s number (NA) is the number of atoms in 
exactly 12 g of carbon-12. It is 6.022 × 1023. Since 
atomic mass is defined as one-twelfth of the mass of 
the carbon-12 atom, the NA number of atoms of any 
substance has a mass equal to the atomic mass Mat, 
in grams.

Basis represents an atom, a molecule, or a collection 
of atoms, that is placed at each lattice point to generate 
the true crystal structure of a substance. All crystals are 
thought of as a lattice with each point occupied by 
a basis.

Activated state is the state that occurs temporarily 
during a transformation or reaction when the reactant 
atoms or molecules come together to form a particular 
arrangement (intermediate between reactants and 
products) that has a higher potential energy than the 
reactants. The potential energy barrier between the ac-
tivated state and the reactants is the activation energy.

Activation energy is the potential energy barrier 
against the formation of a product. In other words, it is 
the minimum energy that the reactant atom or mole-
cule must have to be able to reach the activated state 
and hence form a product.

Amorphous solid is a solid that exhibits no crystal-
line structure or long-range order. It only possesses a 
short-range order in the sense that the nearest neigh-
bors of an atom are well defined by virtue of chemical 
bonding requirements.

Anion is an atom that has gained negative charge by 
virtue of accepting one or more electrons. Usually, at-
oms of nonmetallic elements can gain electrons easily 
to become anions. Anions become attracted to the an-
ode (positive terminal) in ionic conduction. Typical 
anions are the halogen ions F−, Cl−, Br−, and I−.

Atomic mass (or relative atomic mass or atomic 

weight) Mat of an element is the average atomic 
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Diffusion coefficient is a measure of the rate at which 
atoms diffuse. The rate depends on the nature of the 
diffusion process and is typically temperature dependent. 
The diffusion coefficient is defined as the magnitude 
of diffusion flux density per unit concentration gradient.
Dislocation is a line imperfection within a crystal that 
extends over many atomic distances.
Edge dislocation is a line imperfection within a crys-
tal that occurs when an additional, short plane of atoms 
does not extend as far as its neighbors. The edge of this 
short plane constitutes a line of atoms where the bond-
ing is irregular, that is, a line of imperfection called an 
edge dislocation.
Elastic modulus or Young’s modulus (Y ) is a mea-
sure of the ease with which a solid can be elastically 
deformed. The greater Y is, the more difficult it is to 
deform the solid elastically. When a solid of length ℓ is 
subjected to a tensile stress σ (force per unit area), the 
solid will extend elastically by an amount δℓ where 
δℓ∕ℓ is the strain ε. Stress and strain are related by 
σ = Yε, so Y is the stress needed per unit elastic strain.
Electric dipole moment is formed when a positive 
charge +Q is separated from a negative charge −Q of 
equal magnitude. Even though the net charge is zero, 
there is nonetheless an electric dipole moment formed 
by the two charges −Q and +Q being separated by a 
finite distance. Just as two charges exert a Coulombic 
force on each other, two dipoles also exert an electro-
static force on each other that depends on the separa-
tion of dipoles and their relative orientation.
Electron affinity represents the energy that is needed 
to add an electron to a neutral atom to create a negative 
ion (anion). When an electron is added to Cl to form 
Cl−, energy is actually released.
Electronegativity is a relative measure of the ability 
of an atom to attract the electrons in a bond it forms 
with another atom. The Pauling scale of electronega-

tivity assigns an electronegativity value (a pure num-
ber) X to various elements, the highest being 4 for F, 
and the lowest values being for the alkali metal atoms, 
for which X are less than 1. The difference XA − XB in 
the electronegativities of two atoms A and B is a mea-
sure of the polar or ionic character of the bond A–B 
between A and B. A molecule A–B would be polar, that 
is, possess a dipole moment, if XA and XB are different.

Bond energy or binding energy is the work (or en-
ergy) needed to separate two atoms infinitely from 
their equilibrium separation in the molecule or solid.

Bulk modulus K is volume stress (pressure) needed per 
unit elastic volume strain and is defined by p = −KΔ, 
where p is the applied volume stress (pressure) and Δ 
is the volume strain. K indicates the extent to which a 
body can be reversibly (and hence elastically) deformed 
in volume by an applied pressure.

Cation is an atom that has gained positive charge by 
virtue of losing one or more electrons. Usually, metal 
atoms can lose electrons easily to become cations. 
Cations become attracted to the cathode (negative 
terminal) in ionic conduction, as in gaseous dis-
charge. The alkali metals, Li, Na, K, . . . , easily 
lose  their valence electron to become cations, Li+, 
Na+, K+, . . .

Coordination number is the number of nearest 
neighbors around a given atom in the crystal.

Covalent bond is the sharing of a pair of valence elec-
trons between two atoms. For example, in H2, the two 
hydrogen atoms share their electrons, so that each has 
a closed shell.

Crystal is a three-dimensional periodic arrangement 
of atoms, molecules, or ions. A characteristic property 
of the crystal structure is its periodicity and a degree of 
symmetry. For each atom, the number of neighbors and 
their exact orientations are well defined; otherwise the 
periodicity will be lost. Therefore, a long-range order 
results from strict adherence to a well-defined bond 
length and relative bond angle (that is, exact orienta-
tion of neighbors).

Crystallization is a process by which crystals of a 
substance are formed from another phase of that sub-
stance. Examples are solidification just below the fu-
sion temperature from the melt, or condensation of the 
molecules from the vapor phase onto a substrate. The 
crystallization process initially requires the formation 
of small crystal nuclei, which contain a limited number 
(perhaps 103–104) of atoms or molecules of the sub-
stance. Following nucleation, the nuclei grow by 
atomic diffusion from the melt or vapor.

Diffusion is the migration of atoms by virtue of their 
random thermal motions.
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Equilibrium between two systems requires mechani-
cal, thermal, and chemical equilibrium. Mechanical 
equilibrium means that the pressure should be the same 
in the two systems, so that one does not expand at the 
expense of the other. Thermal equilibrium implies that 
both have the same temperature. Equilibrium within a 
single-phase substance (e.g., steam only or hydrogen 
gas only) implies uniform pressure and temperature 
within the system.

Equilibrium state of a system is the state in which the 
pressure and temperature in the system are uniform 
throughout. We say that the system possesses mechani-
cal and thermal equilibrium.

Eutectic composition is an alloy composition of two 
elements that results in the lowest melting temperature 
compared to any other composition. A eutectic solid 
has a structure that is a mixture of two phases. The 
eutectic structure is usually special, such as alternating 
lamellae.

Face-centered cubic (FCC) lattice is a cubic lattice 
that has one lattice point at each corner of a cube and 
one at the center of each face. If there is a chemical 
species (atom or a molecule) at each lattice point, then 
the structure is an FCC crystal structure.

Frenkel defect is an ionic crystal imperfection that 
occurs when an ion moves into an interstitial site, 
thereby creating a vacancy in its original site. The im-
perfection is therefore a pair of point defects.

Flux density is the rate of flow of particles in a par-
ticular direction per unit area.

Grain is an individual crystal within a polycrystalline 
material. Within a grain, the crystal structure and ori-
entation are the same everywhere and the crystal is 
oriented in one direction only.

Grain boundary is a surface region between differ-
ently oriented, adjacent grain crystals. The grain 
boundary contains a lattice mismatch between adjacent 
grains.

Heat is the amount of energy transferred from one 
system to another (or between the system and its sur-
roundings) as a result of a temperature difference. Heat 
is not a new form of energy, but rather the transfer of 
energy from one body to another by virtue of the ran-
dom motions of their molecules. When a hot body is in 

contact with a cold body, energy is transferred from the 
hot body to the cold one. The energy that is transferred 
is the excess mean kinetic energy of the molecules in 
the hot body. Molecules in the hot body have a higher 
mean kinetic energy and vibrate more violently. As a 
result of the collisions between the molecules, there is 
a net transfer of energy (heat) from the hot body to the 
cold one, until the molecules in both bodies have the 
same mean kinetic energy, that is, until their tempera-
tures become equal.

Heat capacity at constant volume is the increase in 
the total energy E of the system per degree increase in 
the temperature of the system with the volume remain-
ing constant: C = (∂E∕∂T )V. Thus, the heat added to 
the system does no mechanical work due to a volume 
change but increases the internal energy. Molar heat 

capacity is the heat capacity for 1 mole of a substance. 
Specific heat capacity is the heat capacity per unit 
mass.

Interstitial site (interstice) is an unoccupied space 
between the atoms (or ions, or molecules) in a crystal.

Ionization energy is the energy required to remove an 
electron from a neutral atom; normally the most outer 
electron that has the least binding energy to the nucleus 
is removed to ionize an atom.

Isomorphous describes a structure that is the same 
everywhere (from iso, uniform, and morphology 
structure).

Isotropic substance is a material that has the same 
property in all directions.

Kinetic molecular theory assumes that the atoms and 
molecules of all substances (gases, liquids, and solids) 
above absolute zero of temperature are in constant mo-
tion. Monatomic molecules (e.g., He, Ne) in a gas ex-
hibit constant and random translational motion, 
whereas the atoms in a solid exhibit constant vibra-
tional motion.

Lattice is a regular array of points in space with a 
discernible periodicity. There are 14 distinct lattices 
possible in three-dimensional space. When an atom or 
molecule is placed at each lattice point, the resulting 
regular structure is a crystal structure.

Lattice parameters are (a) the lengths of the sides of 
the unit cell, and (b) the angles between the sides.
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Mean free path is the mean distance a molecule in a 
gas travels freely before it collides with another mole-
cule. The mean free path depends on the concentration 
of molecules, which depends on the pressure and tem-
perature.

Mechanical work is qualitatively defined as the en-
ergy expended in displacing a constant force through a 
distance. When a force F is moved a distance dx, work 
done dW = F · dx. When we lift a body such as an ap-
ple of mass m (100 g) by a distance h (1 m), we do 
work by an amount F Δx = mgh (1 J), which is then 
stored as the gravitational potential energy of the body. 
We have transferred energy from ourselves to the po-
tential energy of the body by exchanging energy with it 
in the form of work. Further, in lifting the apple, the 
molecules have been displaced in orderly fashion, all 
upwards. Work therefore involves an orderly displace-
ment of atoms and molecules of a substance in com-
plete contrast to heat. When the volume V of a substance 
changes by dV when the pressure is P, the mechanical 
work involved is P dV and is called the PV work.

Metallic bonding is the binding of metal atoms in a 
crystal through the attraction between the positive 
metal ions and the mobile valence electrons in the crys-
tal. The valence electrons permeate the space between 
the ions.

Miller indices (hkℓ) are indices that conveniently 
identify parallel planes in a crystal. Consider a plane 
with the intercepts, x1, y1, and z1, in terms of lattice 
parameters a, b, and c. (For a plane passing through the 
origin, we shift the origin or use a parallel plane.) 
Then, (hkℓ) are obtained by taking the reciprocals of 
x1, y1, and z1, and clearing all fractions.

Miscibility of two substances is a measure of the mu-
tual solubility of those two substances when they are in 
the same phase, such as liquid.

Mole of a substance is that amount of the substance 
that contains NA number of atoms (or molecules), 
where NA is Avogadro’s number (6.023 × 1023). One 
mole of a substance has a mass equal to its atomic (mo-
lecular) mass, in grams. For example, 1 mole of copper 
contains 6.023 × 1023 atoms and has a mass of 63.55 g.

Phase of a system is a homogeneous portion of 
the  chemical system that has the same composition, 

structure, and properties everywhere. In a given chem-
ical system, one phase may be in contact with another 
phase of the system. For example, iced water at 0 °C will 
have solid and liquid phases in contact. Each phase, 
solid ice and liquid water, has a distinct structure.

Phase diagram is a temperature versus composition 
diagram in which the existence and coexistence of var-
ious phases are identified by regions and lines. Be-
tween the liquidus and solidus lines, for example, the 
material is a heterogeneous mixture of the liquid and 
solid phases.

Physical vapor deposition (PVD) involves the heat-
ing and evaporation of a source material in a vacuum 
chamber so that the vapor can be condensed onto a 
substrate of choice, placed facing the source. The result 
is a thin film of the source material on the substrate.

Planar concentration of atoms is the number of at-
oms per unit area on a given (hkℓ) plane in a crystal.

Polarization is the separation of positive and nega-
tive charges in a system, which results in a net electric 
dipole moment.

Polymorphism or allotropy is a material attribute 
that allows the material to possess more than one crys-
tal structure. Each possible crystal structure is called a 
polymorph. Generally, the structure of the polymorph 
depends on the temperature and pressure, as well as on 
the method of preparation of the solid. (For example, 
diamond can be prepared from graphite by the applica-
tion of very high pressures.)

Primary bond is a strong interatomic bond, typically 
greater then l eV/atom, that involves ionic, covalent, or 
metallic bonding.

Property is a system characteristic or an attribute that 
we can measure. Pressure, volume, temperature, mass, 
energy, electrical resistivity, magnetization, polariza-
tion, and color are all properties of matter. Properties 
such as pressure, volume, and temperature can only be 
attributed to a system of many particles (which we treat 
as a continuum). Note that heat and work are not prop-
erties of a substance; instead, they represent energy trans-
fers involved in producing changes in the properties.

Saturated solution is a solution that has the maximum 
possible amount of solute dissolved in a given amount 
of solvent at a specified temperature and pressure.
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Schottky defect is an ionic crystal imperfection that 
occurs when a pair of ions is missing, that is, when 
there is a cation and anion pair vacancy.

Screw dislocation is a crystal defect that occurs when 
one portion of a perfect crystal is twisted or skewed 
with respect to another portion on only one side of 
a line.

Secondary bond is a weak bond, typically less than 
0.1 eV/atom, which is due to dipole–dipole interac-
tions between the atoms or molecules.

Solid solution is a homogeneous crystalline phase 
that contains two or more chemical components.

Solute is the minor chemical component of a solution; 
the component that is usually added in small amounts 
to a solvent to form a solution.

Solvent is the major chemical component of a solution.

Stoichiometric compounds are compounds with an 
integer ratio of atoms, as in CaF2, in which two fluo-
rine atoms bond with one calcium atom.

Strain is a relative measure of the deformation a ma-
terial exhibits under an applied stress. Under an ap-
plied tensile (or compressive) stress, strain ε is the 
change in the length per unit original length. When a 
shear stress is applied, the deformation involves a shear 
angle. Shear strain is the tangent of the shear angle 

that is developed by the application of the shearing 
stress. Volume strain Δ is the change in the volume 
per unit original volume.

Stress is force per unit area. When the applied force F 
is perpendicular to the area A, stress σ = F∕A is either 
tensile or compressive. If the applied force is tangential 
to the area, then stress is shear stress, τ = F∕A.

Thermal expansion is the change in the length or vol-
ume of a substance due to a change in the temperature. 
Linear coefficient of thermal expansion λ is the 
fractional change in the length per unit temperature 
change or ΔL∕Lo = λ ΔT. Volume coefficient of ex-
pansion αV is the fractional change in the volume per 
unit temperature change; αV ≈ 3λ.

Unit cell is the most convenient small cell in a crystal 
structure that carries the characteristics of the crystal. 
The repetition of the unit cell in three dimensions gen-
erates the whole crystal structure.

Vacancy is a point defect in a crystal, where a normally 
occupied lattice site is missing an atom.

Valence electrons are the electrons in the outer shell 
of an atom. Since they are the farthest away from the 
nucleus, they are the first electrons involved in atom-
to-atom interactions.

Young’s modulus see elastic modulus.

QUESTIONS AND PROBLEMS

1.1 Virial theorem The Li atom has a nucleus with a +3e positive charge, which is surrounded by a 
full 1s shell with two electrons, and a single valence electron in the outer 2s subshell. The atomic 
radius of the Li atom is about 0.17 nm. Using the Virial theorem, and assuming that the valence 
electron sees the nuclear +3e shielded by the two 1s electrons, that is, a net charge of +e, estimate 
the ionization energy of Li (the energy required to free the 2s electron). Compare this value with the 
experimental value of 5.39 eV. Suppose that the actual nuclear charge seen by the valence electron 
is not +e but a little higher, say +1.25e, due to the imperfect shielding provided by the closed 1s shell. 
What would be the new ionization energy? What is your conclusion?

1.2 Virial theorem and the He atom In Example 1.1, we calculated the radius of the H-atom using the 
Virial theorem. First consider the He+ atom, which as shown in Figure 1.75a has one electron in the 
K-sell orbiting the nucleus. Take the PE and the KE as zero when the electrons and the nucleus are 
infinitely separated. The nucleus has a charge of +2e and there is one electron orbiting the nucleus 
at a radius r2. Using the Virial theorem show that the energy of the He+ ion is

 E(He+ ) = −(1∕2)
2e2

4πεor2
 [1.48]

Energy of  

He+ ion
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r2
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Ionization
energy = EI2
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Figure 1.75 (a) A classical view of a 
He+ ion. There is one electron in the  
K-shell orbiting the nucleus that has a 
charge +2e. (b) The He atom. There  
are two electrons in the K-shell. Due to 
their mutual repulsion, they orbit to void 
each other.

  Now consider the He-atom shown in Figure 1.75b. There are two electrons. Each electron inter-
acts with the nucleus (at a distance r1) and the other electron (at a distance 2r1). Using the Virial 
theorem show that the energy of the He atom is

 E(He) = −(1∕2)[ 7e2

8πεor1] [1.49]

 The first ionization energy EI1 is defined as the energy required to remove one electron from the He 
atom. The second ionization energy EI2 is the energy required to remove the second (last) electron 
from He+. Both are shown in Figure 1.75. These have been measured and given as EI1 = 2372 kJ mol−1 
and EI2 = 5250 kJ mol−1. Find the radii r1 and r2 for He and He+. Note that the first ionization energy 
provides sufficient energy to take He to He+, that is, He → He+ + e− absorbs 2372 kJ mol−1. How 
does your r1 value compare with the often quoted He radius of 31 pm?

1.3 Atomic mass and molar fractions

a. Consider a multicomponent alloy containing N elements. If w1, w2, . . . , wN are the weight frac-
tions of components 1, 2, . . . , N in the alloy and M1, M2, . . . , MN are the respective atomic 
masses of the elements, show that the atomic fraction of the ith component is given by

 ni =
wi∕Mi

w1

M1
+

w2

M2
+ … +

wN

MN

b. Suppose that a substance (compound or an alloy) is composed of N elements, A, B, C, . . . and 
that we know their atomic (or molar) fractions nA, nB, nC, . . . . Show that the weight fractions 
wA, wB, wC, . . . are given by

 wA =
nAMA

nAMA + nBMB + nCMC + …

 wB =
nBMB

nAMA + nBMB + nCMC + …

c. Consider the semiconducting II–VI compound cadmium selenide, CdSe. Given the atomic masses 
of Cd and Se, find the weight fractions of Cd and Se in the compound and grams of Cd and Se 
needed to make 100 grams of CdSe.

d. A Se–Te–P glass alloy has the composition 77 wt.% Se, 20 wt.% Te, and 3 wt.% P. Given their 
atomic masses, what are the atomic fractions of these constituents?

1.4 Mean atomic separation, surface concentration, and density There are many instances where we 
only wish to use reasonable estimates for the mean separation between the host atoms in a crystal 
and the mean separation between impurities in the crystal. These can be related in a simple way to 
the atomic concentration of the host atoms and atomic concentration of the impurity atoms, respec-
tively. The final result does not depend on the sample geometry or volume. Sometimes, we need to 
know the number of atoms per unit area ns on the surface of a solid given the number of atoms per 
unit volume in the bulk, nb. Consider a crystal of the material of interest which is a cube of side L 
as shown in Figure 1.76. To each atom, we can attribute a portion of the whole volume, which is a 

Energy of  

He atom

Weight to atomic 

percentage

Atomic to weight 

percentage
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cube of side a. Thus, each atom is considered to occupy a volume of a3. Suppose that there are N 
atoms in the volume L3. Thus, L3 = Na3.
a.  If nb is the bulk concentration of atoms, show that the mean separation a between the atoms is 

given by a = 1∕n3
b.

b. Show that the surface concentration ns of atoms is given by ns = nb
2∕3.

c. Show that the density of the solid is given by ρ = nbMat∕NA where Mat is the atomic mass. 
Calculate the atomic concentration in Si from its density (2.33 g cm−3).

d. A silicon crystal has been doped with phosphorus. The P concentration in the crystal is 1016 cm−3. 
P atoms substitute for Si atoms and are randomly distributed in the crystal. What is the mean 
separation between the P atoms?

1.5 The covalent bond Consider the H2 molecule in a simple way as two touching H atoms, as depicted 
in Figure 1.77. Does this arrangement have a lower energy than two separated H atoms? Suppose that 
electrons totally correlate their motions so that they move to avoid each other as in the snapshot in 
Figure 1.77. The radius ro of the hydrogen atom is 0.0529 nm. The electrostatic potential energy of 
two charges Q1 and Q2 separated by a distance r is given by Q1Q2∕(4πεor). Using the virial theorem 
as in Example 1.1 consider the following:
a. Calculate the total electrostatic potential energy PE of all the charges when they are arranged as 

shown in Figure 1.77. In evaluating the PE of the whole collection of charges you must consider 
all pairs of charges and, at the same time, avoid double counting of interactions between the 
same pair of charges. The total PE is the sum of the following: electron 1 interacting with the 
proton at a distance ro on the left, proton at ro on the right, and electron 2 at a distance 2ro + 
electron 2 interacting with a proton at ro and another proton at 3ro + two protons, separated by 
2ro, interacting with each other. Is this configuration energetically favorable?

◆

◆

a

a Each atom has this portion of
the whole volume. This is a
cube of side aInteratomic

separation

Volume of crystal = ◆3

◆

Figure 1.76 Consider a crystal that has 
volume L3. This volume is proportioned to 
each atom, which is a cube of side a3.

Nucleus
e– ro

HydrogenHydrogen

Nucleus
ro

12

Figure 1.77 A simplified view of the covalent bond in H2.

A snapshot at one instant.
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b. Given that in the isolated H atom the PE is 2 × (−13.6 eV), calculate the change in PE in going 
from two isolated H atoms to the H2 molecule. Using the virial theorem, find the change in the 
total energy and hence the covalent bond energy. How does this compare with the experimental 
value of 4.51 eV?

1.6 Ionic bonding and CsCl The potential energy E per Cs+–Cl− pair within the CsCl crystal depends 
on the interionic separation r in the same fashion as in the NaCl crystal,

 E(r) = −
e2M

4πεor
+

B

rm  [1.50]

 where for CsCl, M = 1.763, B = 1.192 × 10−104 J m9 or 7.442 × 10−5 eV (nm)9, and m = 9. Find the 
equilibrium separation (ro) of the ions in the crystal and the ionic bonding energy, that is, the ionic 
cohesive energy, and compare the latter value to the experimental value of 657 kJ mol−1. Given that 
the ionization energy of Cs is 3.89 eV and the electron affinity of Cl (energy released when an elec-
tron is added) is 3.61 eV, calculate the atomic cohesive energy of the CsCl crystal as joules per mole.

1.7 Ionic bonding and LiCl Equation 1.50 can be used to represent the PE of the ion pair inside the 
LiCl crystal. LiCl has the NaCl structure with M = 1.748, m = 7.30, B = 2.34 × 10−89 J m7.30. Fur-
ther, the ionization energy of Li (Li → Li+ + e−) is 520.2 kJ mol−1. The electron affinity of Cl (energy 
released in Cl + e− → Cl−) is 348.7 kJ mol−1 (a) Calculate the equilibrium separation of ions in the 
LiCl crystal. (b) Calculate the bonding energy per ion pair in the LiCl crystal. (c) Calculate the atomic 
cohesive energy of the LiCl crystal. (c) Calculate the density of LiCl.

1.8 Madelung constant If we were to examine the NaCl crystal in three dimensions, we would find 
that each Na+ ion has

  6 Cl− ions as nearest neighbors at a distance r,
  12 Na+ ions as second nearest neighbors at a distance r√2,
  8 Cl− ions as third nearest neighbors at a distance r√3,
 and so on. Show that the electrostatic potential energy of the Na+ atom can be written as

 E(r) = −
e2

4πεor[6 −
12
√2

+
8

√3
 − … ] = −

e2M

4πεor

 where M, called the Madelung constant, is given by the summation in the square brackets for this 
particular ionic crystal structure (NaCl). Calculate M for the first three terms and compare it with 
M = 1.7476, its value had we included the higher terms. What is your conclusion?

*1.9 Bonding and bulk modulus In general, the potential energy E per atom, or per ion pair, in a 
crystal as a function of interatomic (interionic) separation r can be written as the sum of an attractive 
PE and a repulsive PE,

 E(r) = −
A

rn +
B

rm  [1.51]

 where A and n are constants characterizing the attractive PE and B and m are constants characterizing 
the repulsive PE. This energy is minimum when the crystal is in equilibrium. The magnitude of 
the minimum energy and its location ro define the bonding energy and the equilibrium interatomic 
(or interionic) separation, respectively.

  When a pressure P is applied to a solid, its original volume Vo shrinks to V by an amount 
ΔV = V − Vo. The bulk modulus K relates the volume strain ΔV∕V to the applied pressure P by

 P = −K
ΔV

Vo

 [1.52]

  The bulk modulus K is related to the energy curve. In its simplest form (assuming a simple cubic 
unit cell), K can be estimated from Equation 1.51 by

 K =
1

9cro
[d2E

dr2 ]
r=ro

 [1.53]
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 where c is a numerical factor, of the order of unity, given by b∕p where p is the number of atoms or ion 
pairs in the unit cell and b is a numerical factor that relates the cubic unit cell lattice parameter ao 
to the equilibrium interatomic (interionic) separation ro by b = a3

o∕r 
3
o.

a. Show that the bond energy and equilibrium separation are given by

 Ebond =
A

ro
n  (1 −

n

m)      and      ro = (Bm

An )
1∕(m−n)

b. Show that the bulk modulus is given by

 K =
An

9cro
n+3(m − n)      or      K =

mn Ebond

9cro
3

c. For a NaCl-type crystal, Na+ and Cl− ions touch along the cube edge so that ro = (ao∕2). Thus, 
a3 = 23r3

o and b = 23 = 8. There are four ion pairs in the unit cell, p = 4. Thus, c = b∕p =  
8∕4 = 2. Using the values from Example 1.3, calculate the bulk modulus of NaCl.

*1.10 Van der Waals bonding Below 24.5 K, Ne is a crystalline solid with an FCC structure. The inter-
atomic interaction energy per atom can be written as

 E(r) = −2ε[14.45(σ

r)
6

− 12.13(σ

r)
12

]     (eV/atom)

 where ε and σ are constants that depend on the polarizability, the mean dipole moment, and the extent 
of overlap of core electrons. For crystalline Ne, ε = 3.121 × 10−3 eV and σ = 0.274 nm.
a. Show that the equilibrium separation between the atoms in an inert gas crystal is given by  

ro = (1.090)σ. What is the equilibrium interatomic separation in the Ne crystal?
b. Find the bonding energy per atom in solid Ne.
c. Calculate the density of solid Ne (atomic mass = 20.18).

1.11 Kinetic molecular theory

a. In a particular Ar-ion laser tube the gas pressure due to Ar atoms is about 0.1 torr at 25 °C 
when the laser is off. What is the concentration of Ar atoms per cm3 at 25 °C in this laser? 
(760 torr = 1 atm = 1.013 × 105 Pa.)

b. In the He–Ne laser tube He and Ne gases are mixed and sealed. The total pressure P in the gas 
is given by contributions arising from He and Ne atoms:

P = PHe + PNe

 where PHe and PNe are the partial pressures of He and Ne in the gas mixture, that is, pressures due 
to He and Ne gases alone,

 PHe =
NHe

NA

 (RT

V )      and      PNe =
NNe

NA

 (RT

V )
 In a particular He–Ne laser tube the ratio of He and Ne atoms is 7:1, and the total pressure is about 

1 torr at 22 °C. Calculate the concentrations of He and Ne atoms in the gas at 22 °C. What is the 
pressure at an operating temperature of 130 °C?

1.12 Kinetic molecular theory Calculate the effective (rms) speeds of the He and Ne atoms in the 
He–Ne gas laser tube at room temperature (300 K).

*1.13 Kinetic molecular theory and the Ar-ion laser An argon-ion laser has a laser tube that contains 
Ar atoms that produce the laser emission when properly excited by an electrical discharge. Suppose 
that the gas temperature inside the tube is 1300 °C (very hot).
a. Calculate the mean speed (vav), rms velocity (vrms = √v 

2) , and the rms speed (vrms, x = √v 
2
x)  in 

one particular direction of the Ar atoms in the laser tube, assuming 1300 °C. (See Example 1.11.)
b. Consider a light source that is emitting waves and is moving toward an observer, somewhat 

like a whistling train moving toward a passenger. If fo is the frequency of the light waves 
emitted at the source, then, due to the Doppler effect, the observer measures a higher frequency f 



116 C H A P T E R  1  ∙ ELEMENTARY MATERIALS SCIENCE CONCEPTS

that depends on the velocity vAr of the source moving toward the observer and the speed c 
of  light,

 f = fo(1 +
vAr

c )
 It is the Ar ions that emit the laser output light in the Ar-ion laser. The emission wavelength λo = c∕fo 

is 514.5 nm. Calculate the wavelength λ registered by an observer for those atoms that are moving 

with a mean speed vav toward the observer. Those atoms that are moving away from the observer will 

result in a lower observed frequency because vAr will be negative. Estimate the range of all possible 

wavelengths (the difference between the longest and the shortest wavelengths) that can be emitted by 

the Ar-ion laser around 514.5 nm.

1.14 Heat capacity of gases Table 1.9 shows the experimental values of the molar heat capacity for a 

few gases at 25 °C. Assume that we can neglect the vibrations of the atoms in the molecules. For 

each gas calculate the expected heat capacity from translational and rotational degrees of freedom 

only. Use the difference between the calculated values above and experimental values in Table 1.9 to 

find the contribution from molecular vibrations. What is your conclusion?

Table 1.9  Heat capacities for some gases at room temperature at constant volume, CV in  
J mol−1 K−1

Gas Ar Ne Cl2 O2 N2 CO2 CH4 SF6

CV 12.5 12.7 25.6 21.0 20.8 28.9 27.4 89.0

*1.15 Degrees of freedom in a gas molecule A monatomic molecule such as Ar has only three degrees of 

freedom (DOF) for motion along the three independent directions x, y, and z. In a system in which 

there are two independent atoms such Cl and Cl, the total number of DOF f is 6 because each atom 

has 3 degrees of freedom. Once we form a Cl2 molecule, the original 6 DOF in KE are partitioned 

as shown in Figure 1.78. The Cl2 molecule has 3 translational degrees of freedom, 2 rotational and 1 

vibrational, summing to the original 6. The vibrational degree of freedom itself has KE and PE terms 

with each having an average of 1
2 kT  so that a vibrational degree of freedom actually has kT of energy 

rather than 1
2 kT. The PE term arises from the stretching and compression of the bond (which acts 

like a spring) during the vibrations. Put differently, each vibrational DOF has two “subdegrees” of 

freedom associated with KE and PE terms, each of which has an average of (1∕2)kT of energy. Let 
na be the number of atoms in a molecule. Then 3na is the total number of kinetic energy based DOF. 
There will always be 3 translational DOF for the molecule and at most 3 rotational degrees of freedom. 
There may be one or more vibrational DOF because there may be many ways in which the atoms in 
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Figure 1.78 The partitioning of degrees of freedom in a diatomic molecule.
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the molecule can vibrate, but there is a maximum. If  frot and fvib are the rotational and vibrational 

DOF, then

 3na = 3 + frot + fvib.

a. What is the vibrational DOF for Cl2? What is the maximum molar heat capacity at constant 

volume CV for Cl2? Given Table 1.9, what is the vibrational contribution?

b. What is the vibrational DOF for SF6? The molar heat capacity at constant volume for the SF6 

gas at 300 K is 89 J mol−1 K−1 but at 700 K, it is 141 J mol−1 K−1. How many vibrational DOF 
do you need to explain the observations at these two temperatures?

1.16 Dulong–Petit rule for metals Consider the room temperature experimental specific heats of those 
22 metals listed in Table 1.10. They are listed in increasing atomic mass from Li to Bi. Plot cs versus 
1∕Mat and find the best line that goes through the origin. What is the slope of this best line? Now 
consider Be, which is a very light metal. It has cs = 1.825 J g−1 K−1, Mat = 9.012 g mol−1. What is 
its molar heat capacity? What is your conclusion? (To avoid points cluttering in one region of the 
plot, you can also try a log–log plot.)

Table 1.10 Specific heat capacity in J g−1 K−1 and atomic mass for selected metals at 25 °C

Metal Li Na Mg Al K Ca Ti V Cr Fe Co

Mat 6.94 22.99 24.3 26.98 39.1 40.08 47.87 50.94 51.99 55.85 58.93
cs 3.58 1.228 1.023 0.897 0.757 0.647 0.523 0.489 0.449 0.444 0.421

Metal Cu Zn Zr Mo Ag Sb Ta W Au Pb Bi

Mat 58.93 65.39 91.22 95.94 107.86 121.76 180.95 183.84 196.97 207.2 208.99
cs 0.385 0.388 0.278 0.251 0.235 0.207 0.14 0.132 0.129 0.13 0.122

1.17 Heat capacity

a. Calculate the heat capacity per mole and per gram of N2 gas, neglecting the vibrations of the 
molecule. How does this compare with the experimental value of 0.743 J g−1 K−1?

b. Calculate the heat capacity per mole and per gram of CO2 gas, neglecting the vibrations of the 
molecule. How does this compare with the experimental value of 0.648 J K−1 g−1? Assume that 
the CO2 molecule is linear (OCO) so that it has two rotational degrees of freedom.

c. Based on the Dulong–Petit rule, calculate the heat capacity per mole and per gram of solid 
silver. How does this compare with the experimental value of 0.235 J K−1 g−1?

d. Based on the Dulong–Petit rule, calculate the heat capacity per mole and per gram of the silicon 
crystal. How does this compare with the experimental value of 0.71 J K−1 g−1?

1.18 Dulong–Petit atomic heat capacity Express the Dulong–Petit rule for the molar heat capacity as 
heat capacity per atom and in the units of eV K−1 per atom, called the atomic heat capacity. CsI 
is an ionic crystal used in optical applications that require excellent infrared transmission at very 
long wavelengths (up to 55 μm). It has the CsCl crystal structure with one Cs+ and one I− ion in 

the unit cell. Calculate the specific heat capacity of CsI and compare it with the experimental value 

of 0.20 J K−1 g−1. What is your conclusion?

1.19 Dulong–Petit specific heat capacity of alloys and compounds

a. Calculate the specific heat capacity of Pb–Sn solder assuming that its composition is 38 wt.% 

Pb and 62 wt.% Sn.

b. Calculate the specific heat capacities of Pb and Sn individually as csA and csB, respectively, and 

then calculate the cs for the alloy using

cs = csAwA + csBwB

 where wA and wB are the weight fractions of A (Pb) and B (Sn) in the alloy (solder). Compare 

your result with part (a). What is your conclusion?

Alloy specific 

heat capacity
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c. ZnSe is an important optical material (used in infrared windows and lenses and high-power CO2 
laser optics) and also an important II–VI semiconductor that can be used to fabricate blue-green 
laser diodes. Calculate the specific heat capacity of ZnSe, and compare the calculation to the 
experimental value of 0.345 J K−1 g−1.

1.20 Molecular collisions Consider the atmosphere as made up from 80% N2 and 20% O2 gases. At a 
pressure P, the N2 and O2 gases will have partial pressure of PN and PO respectively so that P = PN + PO. 
If nN and nO are the concentration of N2 and O2 molecules respectively then PN = nNkT, and 
PO = nOkT, Consider a vacuum chamber in which the total pressure is 10−5 torr. Assume 27 °C.
a. Calculate the concentrations of N2 and O2 gases in the chamber.
b. Suppose that we simply consider the collisions of N2 with N2 and O2 with O2 and neglect N2 

and O2 collisions. Calculate the mean free path for N2 and O2 molecules. See Table 1.11.
c. What are the mean free paths for each gas if the gas were in the container alone at 10−5 torr?
d. Obviously the calculation in b is not correct because we neglected collisions between N2 and O2. 

 Suppose that we try to improve our calculations by using some average value for the collisional radius r 
by averaging that involves the relative concentrations of molecular species in the tank, that is,

 r =
r1n1 + r2n2

n1 + n2

 where the subscript 1 refers to molecular species 1 (N2) and 2 to species 2 (O2) and we take n  = 

n1  + n2 in the mean free path equation since all molecules are involved in the collisions. Calculate 

the mean free path using these parameters. What is your conclusion? (See also Question 1.11)

Mean free path 

of electrons 

colliding with 

atoms or 

molecules

1.21 SF6 insulating gas in HV switchgear SF6 (sulfur hexafluoride) is a gas that has excellent insulat-

ing properties and is widely used in high voltage electric power applications, such as gas insulated 

switchgear and circuit breakers up to megavolts. Six F atoms surround the S atom so that there are 

6 bonds in total along ±x and ±y and ±z directions. The SF6 gas in a particular sealed switchgear 

container has a pressure of 500 kPa (roughly 5 atm). Assume the temperature is 27 °C (300 K). 

(a) What is the SF6 concentration in the tank? (b) What is the heat capacity CV at constant volume 

per mole, assuming that we can neglect all vibrations of the molecule (but not rotations)? How does 

this compare with the reported experimental value in Table 1.9? (c) The diameter of the SF6 molecule 

is roughly 0.48 nm. What is the mean free path of SF6 molecules in the container?

*1.22 Mean free path and gas discharge in Ar-ion laser Consider the collisions of a free electron with 

the molecules of a gas inside a laser tube. The much lighter electron is much faster than the heavier gas 

molecules. From an electron’s perspective, the molecules look stationary. Suppose that the electron has 

just collided with a gas molecule. It moves off in a particular direction and travels a distance ℓ, the mean 

free path of the electron, and collides again with another or a second molecule, as shown in Figure 1.79. 

As long as the electron is within the cross-sectional area S of the second molecule, it will collide with 

it. Clearly, within the volume Sℓ, there must be at least one molecule inasmuch as the electron collides 

once after traveling the distance ℓ. If n is the concentration of molecules, then nSℓ = 1, so that

 ℓ =
1

nπr2

  Consider the argon gas inside an Ar-ion laser tube. The pressure of the gas in the tube is roughly 

0.1 torr. The gas temperature during operation is approximately 1300 °C. A large applied electric field 

E accelerates a free electron somewhere in the gas. As the electron accelerates, it gains energy from the 

Table 1.11  Radii for molecular or atomic collisions in gases

Molecule or Atom He Ne Ar N2 O2 CO2

r(nm) 0.100 0.117 0.143 0.158 0.148 0.230

 SOURCE: Moore, Walter J., Physical Chemistry, 5th Ed. London: Longman, 1971.
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field and when it impacts an Ar atom, it ionizes it to Ar+ and releases a free electron that can also be 
accelerated, and so on. The ionization energy of the Ar atom is 15.8 eV. The radius of an Ar atom is 
approximately 0.143 nm. (See Table 1.11) (a) What is the concentration of Ar atoms in the tube? 
(b) What is the mean free path of collisions between Ar atoms? (c) What is the mean free path of an 
electron colliding with Ar atoms? (d) Suppose that the electron is traveling along the force of the field, 
F = eE, so that it gains an energy Fdℓ in moving a distance dℓ. What should be the electric field that 
would impart sufficient energy to the electron over a distance ℓ so that upon collision it may be able 
to ionize the Ar atom.24

1.23 Thermal expansion

a. If λ is the thermal expansion coefficient, show that the thermal expansion coefficient for an area 
is 2λ. Consider an aluminum square sheet of area 1 cm2. If the thermal expansion coefficient of 
Al at room temperature (25 °C) is about 24 × 10−6 K−1, at what temperature is the percentage 
change in the area +1%?

b. A particular incandescent light bulb (100 W, 120 V) has a tungsten (W) filament of length 57.9 cm 
and a diameter of 63.5 μm. Calculate the length of the filament at 2300 °C, the approximate 
operating temperature of the filament inside the bulb. The linear expansion coefficient λ of W 
is approximately 4.50 × 10−6 K−1 at 300 K. How would you improve your calculation?

1.24 Thermal expansion of Si The expansion coefficient of silicon over the temperature range 120–1500 K 
is given by Okada and Tokumaru (1984) as

λ = 3.725 × 10−6[1 − e−5.88×10− 3(T−124)] + 5.548 × 10−10T

 where λ is in K−1 (or °C−1) and T is in kelvins.
a. By expanding the above function around 20 °C (293 K) show that,

 λ = 2.5086 × 10−6 + (8.663 × 10−9)(T − 293) − (2.3839 × 10−11)(T − 293)2

b. The change δρ in the density due to a change δT in the temperature, from Example 1.9, is given by

 δρ = −ρoαV δT = −3ρoλ δT

 Given the density of Si as 2.329 g cm−3 at 20 °C, calculate the density at 1000 °C by using the 
full expression and by using the polynomials expansion of λ. What is your conclusion?

1.25 Thermal expansion of GaP and GaAs

a. GaP has the zinc blende structure. The linear expansion coefficient in GaP has been measured 
as follows: λ = 4.65 × 10−6 K−1 at 300 K; 5.27 × 10−6 K−1 at 500 K; 5.97 × 10−6 K−1 at 800 K. 
Calculate the coefficients, A, B, and C in

 
dL

Lo dT
= λ(T) = A + B(T − To) + C(T − To)2 + …

 where To = 300 K. The lattice constant of GaP, a, at 27 °C is 0.5451 nm. Calculate the lattice 
constant at 300 °C.

 24 The actual description is quite involved. The electrons in the gas would be moving around randomly and at the 
same time accelerating due to the presence of an applied field. We will examine this in Chapter 2. Further, the 
approach in this question is highly simplified to highlight the concept and find very rough estimates rather than 
carry out accurate calculations. In fact, the cross section that is involved in the ionization of an Ar atom is smaller 
than the actual cross section of the Ar atom, because the projectile electron may not necessarily ionize the  
Ar atom during its interactions with it. (The cross section also depends on the energy of the electron.)

Silicon linear 

expansion 

coefficient

Silicon linear 

expansion 

coefficient

Atom

e−

S = πr2

Atom

Collision

r

v

ℓ

Figure 1.79 The mean free path of an electron in a gas. The 
electron has a negligible size compared with the scattering 
gas atom and the electron is much faster than the gas atom. 
Assume the gas atoms are stationary in determining the mean 
free path ℓ.



120 C H A P T E R  1  ∙ ELEMENTARY MATERIALS SCIENCE CONCEPTS

b. The linear expansion coefficient of GaAs over 200–1000 K is given by

 λ = 4.25 × 10−6 + (5.82 × 10−9)T − (2.82 × 10−12)T 2

 where T is in kelvins. The lattice constant a at 300 K is 0.56533 nm. Calculate the lattice con-
stant and the density at −40 °C.

1.26 Bimetal cantilever devices Consider two thin plate strips of equal length that are welded to each 
other as shown in Figure 1.80a. Suppose that metal B has a large thermal expansion coefficient λB 
than λA. A and B are of equal length Lo at To. When the temperature increases by ΔT, B extends more 
than A so that the extension in lengths can only be accommodated if the two-metal system bends to 
form an arc of a circle centered at O as in Figure 1.80b. Center-to-center separation of the strips is 
d∕2 so that the strip thickness is d and the two metals are assumed to have the same thickness. 
Suppose that LA and LB are the new lengths (along the center of the strip), then

 LA = Lo(1 + λAΔT)  and  LB = Lo(1 + λBΔT)
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d/ 2
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R ❖ h

Lo A

B

A

B

To To P ◗T
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Figure 1.80 (a) Two different thin metals of 
identical length at To. (b) The lengths are  
different at a higher temperature. B expands 
more than A. The two metals bend to form 
an arc of a circle centered at O with a radius 
R. The arc subtends an angle θ at O.

   Both lengths have the same angle θ at O as shown in Figure 1.80b. Show that

θ =
2Lo(λB − λA)ΔT

d

  Show that the deflection h (very small) can be calculated from the geometry once we know θ, 
that is, for small θ

h ≈
1
2

 Lo θ

 (Hint: Lo∕R ≈ sin θ and (R − h)∕R ≈ cos θ and then expand in terms of small θ)
  Consider a steel-brass bimetallic strip cantilever as in Figure 1.80a, that is 1 mm thick and 100 mm 

long. The thermal expansion coefficient for steel is 10 × 10−6 °C−1, and for brass, it is 20 × 10−6 °C−1. 
If the bimetallic strip is flat at 20 °C, what is the deflection at 100 °C?

1.27 Electrical noise Consider an amplifier with a bandwidth B of 5 kHz, corresponding to a typical 
speech bandwidth. Assume the input resistance of the amplifier is 1 MΩ. What is the rms noise volt-
age at the input? What will happen if the bandwidth is doubled to 10 kHz? What is your conclusion?

1.28 Thermal activation A certain chemical oxidation process (e.g., SiO2) has an activation energy of 
2 eV atom−1.
a. Consider the material exposed to pure oxygen gas at a pressure of 1 atm at 27 °C. Estimate how 

many oxygen molecules per unit volume will have energies in excess of 2 eV? (Consider the 
numerical integration of Equation 1.26.)

b. If the temperature is 900 °C, estimate the number of oxygen molecules with energies more than 
2 eV. What happens to this concentration if the pressure is doubled?



 QUESTIONS AND PROBLEMS 121

1.29 Diffusion in Si The diffusion coefficient of boron (B) atoms in a single crystal of Si has been 
measured to be 1.5 × 10−18 m2 s−1 at 1000 °C and 1.1 × 10−16 m2 s−1 at 1200 °C.
a. What is the activation energy for the diffusion of B, in eV/atom?
b. What is the preexponential constant Do?
c. What is the rms distance (in micrometers) diffused in 1 hour by the B atom in the Si crystal at 

1200 °C and 1000 °C?
d. The diffusion coefficient of B in polycrystalline Si has an activation energy of 2.4–2.5 eV/atom 

and Do = (1.5 − 6) × 10−7 m2 s−1. What constitutes the diffusion difference between the single 
crystal sample and the polycrystalline sample?

1.30 Diffusion in SiO2 The diffusion coefficient of P atoms in SiO2 has an activation energy of  
2.30 eV/atom and Do = 5.73 × 10−9 m2 s−1. What is the rms distance diffused in 1 hour by P atoms 
in SiO2 at 1200 °C?

1.31 BCC and FCC crystals

a. Molybdenum has the BCC crystal structure, a density of 10.22 g cm−3, and an atomic mass of 
95.94 g mol−1. What is the atomic concentration, lattice parameter a, and atomic radius of 
molybdenum?

b. Gold has the FCC crystal structure, a density of 19.3 g cm−3, and an atomic mass of 196.97 g mol−1. 
What is the atomic concentration, lattice parameter a, and atomic radius of gold?

1.32 BCC and FCC crystals

a.  Tungsten (W) has the BCC crystal structure. The radius of the W atom is 0.1371 nm. The atomic 
mass of W is 183.8 amu (g mol−1). Calculate the number of W atoms per unit volume and 
density of W.

b. Platinum (Pt) has the FCC crystal structure. The radius of the Pt atom is 0.1386 nm. The atomic 
mass of Pt is 195.09 amu (g mol−1). Calculate the number of Pt atoms per unit volume and 
density of Pt.

1.33 Planar and surface concentrations Niobium (Nb) has the BCC crystal with a lattice parameter 
a = 0.3294 nm. Find the planar concentrations as the number of atoms per nm2 of the (100), (110), 
and (111) planes. Which plane has the most concentration of atoms per unit area? Sometimes the 
number of atoms per unit area nsurface on the surface of a crystal is estimated by using the relation 
nsurface = n2∕3

bulk , where nbulk is the concentration of atoms in the bulk. Compare nsurface values with 
the planar concentrations that you calculated and comment on the difference. [Note: The BCC (111) 
plane does not cut through the center atom and the (111) has one-sixth of an atom at each corner.]

1.34 Diamond and zinc blende Si has the diamond and GaAs has the zinc blende crystal structure. 
Given the lattice parameters of Si and GaAs, a = 0.543 nm and a = 0.565 nm, respectively, and the 
atomic masses of Si, Ga, and As as 28.08, 69.73, and 74.92, respectively, calculate the density of Si 
and GaAs. What is the atomic concentration (atoms per unit volume) in each crystal?

1.35 Zinc blende, NaCl, and CsCl

a. InAs is a III–V semiconductor that has the zinc blende structure with a lattice parameter of 
0.606 nm. Given the atomic masses of In (114.82 g mol−1) and As (74.92 g mol−1), find the density.

b. CdO has the NaCl crystal structure with a lattice parameter of 0.4695 nm. Given the atomic 
masses of Cd (112.41 g mol−1) and O (16.00 g mol−1), find the density.

c. KCl has the same crystal structure as NaCl. The lattice parameter a of KCl is 0.629 nm. The 
atomic masses of K and Cl are 39.10 g mol−1 and 35.45 g mol−1, respectively. Calculate the 
density of KCl.

1.36 Crystallographic directions and planes Consider the cubic crystal system.
a. Show that the line [hkℓ] is perpendicular to the (hkℓ) plane.
b. Show that the spacing between adjacent (hkℓ) planes is given by

d =
a

√h2 + k2 + ℓ
2
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1.37 Si and SiO2

a. Given the Si lattice parameter a = 0.543 nm, calculate the number of Si atoms per unit volume, 
in nm−3.

b. Calculate the number of atoms per m2 and per nm2 on the (100), (110), and (111) planes in the 
Si crystal as shown in Figure 1.81. Which plane has the most number of atoms per unit area?

c. The density of SiO2 is 2.27 g cm−3. Given that its structure is amorphous, calculate the number 
of molecules per unit volume, in nm−3. Compare your result with (a) and comment on what 
happens when the surface of an Si crystal oxidizes. The atomic masses of Si and O are 28.09 
and 16, respectively.

Table 1.12 Energy of formation of vacancies for selected metals

 Metal

 Al Ag Au Cu Mg Pt Pb Ni Pd

Crystal FCC FCC FCC FCC HCP FCC FCC FCC FCC
Ev (eV) 0.70–0.76 1.0–1.1 0.90–0.98 1–1.28 0.79–0.89 1.3–1.5 0.55 1.63–1.79 1.54–1.85
Tm (°C) 660 962 1064 1085 650 1768 328 1455 1555

a

a

(100) plane (110) plane (111) plane

a

Figure 1.81 Diamond cubic crystal structure and planes.

Determine what portion of a black-colored atom belongs to the plane that is hatched.

1.38 Vacancies in metals

a. The energy of formation of a vacancy in the copper crystal is about 1 eV. Calculate the concen-
tration of vacancies at room temperature (300 K) and just below the melting temperature, 1084 °C. 
Neglect the change in the density which is small.

b. Table 1.12 shows the energies of vacancy formation in various metals with close-packed crystal 
structures and the melting temperature Tm. Plot Ev in eV versus Tm in kelvins, and explore if 
there is a correlation between Ev and Tm. Some materials engineers take Ev to be very roughly 
10kTm. Do you think that they are correct? (Justify.)

1.39 Vacancies in silicon In device fabrication, Si is frequently doped by the diffusion of impurities 
(dopants) at high temperatures, typically 950–1200 °C. The energy of vacancy formation in the Si 
crystal is about 3.6 eV. What is the equilibrium concentration of vacancies in a Si crystal at 1000 °C? 
Neglect the change in the density with temperature which is less than 1 percent in this case.

1.40 Pb–Sn solder Consider the soldering of two copper components. When the solder melts, it wets both 
metal surfaces. If the surfaces are not clean or have an oxide layer, the molten solder cannot wet the 
surfaces and the soldering fails. Assume that soldering takes place at 250 °C, and consider the diffusion 
of Sn atoms into the copper (the Sn atom is smaller than the Pb atom and hence diffuses more easily).
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Right: Gordon Teal (Left) and Morgan Sparks 
fabricated the first grown-junction Ge transistor 
in 1950–1951 at Bell Labs. Gordon Teal  
started at Bell Labs but later moved to Texas 
Instruments where he led the development of 
the first commercial Si transistor; the first Si 
transistor was made at Bell Labs by Morris 
Tanenbaum. The Czohralski crystal growth of 
Ge and Si crystals was instrumental in the 
development of these transistors.

 © Nokia Corporation.

a. The diffusion coefficient of Sn in Cu at two temperatures is D = 1.69 × 10−9 cm2 hr−1 at 400 °C 
and D = 2.48 × 10−7 cm2 hr−1 at 650 °C. Calculate the rms distance diffused by an Sn atom 
into the copper, assuming the cooling process takes 10 seconds.

b. What should be the composition of the solder if it is to begin freezing at 250 °C?
c. What are the components (phases) in this alloy at 200 °C? What are the compositions of the 

phases and their relative weights in the alloy?
d. What is the microstructure of this alloy at 25 °C? What are weight fractions of the α and β 

phases assuming near equilibrium cooling?

1.41 Pb–Sn solder Consider 50% Pb–50% Sn solder.
a. Sketch the temperature-time profile and the microstructure of the alloy at various stages as it is 

cooled from the melt.
b. At what temperature does the solid melt?
c. What is the temperature range over which the alloy is a mixture of melt and solid? What is the 

structure of the solid?
d. Consider the solder at room temperature following cooling from 182 °C. Assume that the rate 

of cooling from 182 °C to room temperature is faster than the atomic diffusion rates needed to 
change the compositions of the α and β phases in the solid. Assuming the alloy is 1 kg, calculate 
the masses of the following components in the solid:
1. The primary α.
2. α in the whole alloy.
3. α in the eutectic solid.
4. β in the alloy. (Where is the β-phase?)

e. Calculate the specific heat of the solder given the atomic masses of Pb (207.2) and Sn (118.71).

1.42 Gruneisen’s rule and metals Al and Cu both have metallic bonding and the same crystal structure. 
Assuming that the Gruneisen’s parameter γ for Al is the same as that for Cu, γ = 2.1 (see Table 1.8), 
estimate the linear expansion coefficient λ of Al, given that its bulk modulus K = 75 GPa,  
cs = 900 J K−1 kg−1, and ρ = 2.7 g cm−3. Compare your estimate with the experimental value of 
23.5 × 10−6 K−1.

1.43 Heat capacity and the thermal expansion coefficient of diamond Given that diamond has a bulk 
modulus of 443 GPa, specific heat capacity of 0.51 J g−1 K−1 and a density of 3.51 g cm−3, estimate 

its linear expansion coefficient at room temperature taking the Grüneisen parameter as ∼1.
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C H A P T E R

2

Electrical and Thermal  
Conduction in Solids:  

Mainly Classical Concepts

Electrical conduction involves the motion of charges in a material under the influ-
ence of an applied electric field. A material can generally be classified as a conduc-
tor if it contains a large number of “free” or mobile charge carriers. In metals, due 
to the nature of metallic bonding, the valence electrons from the atoms form a sea 
of electrons that are free to move within the metal and are therefore called conduc-
tion electrons. In this chapter, we will treat the conduction electrons in metal as “free 
charges” that can be accelerated by an applied electric field. In the presence of an 
electric field, the conduction electrons attain an average velocity, called the drift 
velocity, that depends on the field. By applying Newton’s second law to electron 
motion and using such concepts as mean free time between electron collisions with 
lattice vibrations, crystal defects, impurities, etc., we will derive the fundamental 
equations that govern electrical conduction in solids. A key concept will be the drift 
mobility, which is a measure of the ease with which charge carriers in the solid drift 
under the influence of an external electric field.
 Good electrical conductors, such as metals, are also known to be good thermal 
conductors. The conduction of thermal energy from higher to lower temperature 
regions in a metal involves the conduction electrons carrying the energy. Conse-
quently, there is an innate relationship between the electrical and thermal conduc-
tivities, which is supported by theory and experiments.
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2.1  CLASSICAL THEORY: THE DRUDE MODEL

The electric current density J is defined as the net amount of charge flowing across 
a unit area per unit time, that is,

 J =
Δq

A Δt

where Δq is the net quantity of charge flowing through an area A in time Δt. 
Figure 2.1 shows the net flow of electrons in a conductor section of cross-sectional 
area A in the presence of an applied field Ex. Notice that the direction of electron 
motion is opposite to that of the electric field Ex and of conventional current, 
because the electrons experience a Coulombic force eEx in the x direction, due to 
their negative charge.
 We know that the conduction electrons are actually moving around randomly1 
in the metal, but we will assume that as a result of the application of the electric 
field Ex, they all acquire a net velocity in the x direction. Otherwise, there would be 
no net flow of charge through area A.
 The average velocity of the electrons in the x direction at time t is denoted vdx(t). 
This is called the drift velocity, which is the instantaneous velocity vx in the x direc-
tion averaged over many electrons (perhaps, ∼1028 m−3); that is

 vdx =
1

N
[vx1 + vx2 + vx3 + … + vxN ]  [2.1]

where vxi is the x direction velocity of the ith electron, and N is the number of conduc-
tion electrons in the metal. Suppose that n is the number of electrons per unit volume 
in the conductor (n = N∕V). In time Δt, electrons move a distance Δx = vdx Δt, so 
the total charge Δq crossing the area A is enA Δx. This is valid because all the 
electrons within distance Δx pass through A; thus, n(A Δx) is the total number of 
electrons crossing A in time Δt.
 The current density in the x direction is

 Jx =
Δq

A Δt
=

enAvdx Δt

A Δt
= envdx

This general equation relates Jx to the average velocity vdx of the electrons. It must 
be appreciated that the average velocity at one time may not be the same as at another 
time, because the applied field, for example, may be changing: Ex = Ex(t). We there-
fore allow for a time-dependent current by writing

 Jx(t) = envdx(t) [2.2]

 To relate the current density Jx to the electric field Ex, we must examine the 
effect of the electric field on the motion of the electrons in the conductor. To do so, 
we will consider the copper crystal.

 1 All the conduction electrons are “free” within the metal and move around randomly, being scattered from 
vibrating metal ions, as we discuss in this chapter.
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 The copper atom has a single valence electron in its 4s subshell, and this electron 
is loosely bound. The solid metal consists of positive ion cores, Cu+, at regular sites, 
in the face-centered cubic (FCC) crystal structure. The valence electrons detach 
themselves from their parents and wander around freely in the solid, forming a kind 
of electron cloud or gas. These mobile electrons are free to respond to an applied 
field, creating a current density Jx. The valence electrons in the electron gas are 
therefore conduction electrons.

 The attractive forces between the negative electron cloud and the Cu+ ions are 
responsible for metallic bonding and the existence of the solid metal. (This simplis-
tic view of metal was depicted in Figure 1.7 for copper.) The electrostatic attraction 
between the conduction electrons and the positive metal ions, like the electrostatic 
attraction between the electron and the proton in the hydrogen atom, results in the 
conduction electron having both potential energy PE and kinetic energy KE. The 
conduction electrons move about the crystal lattice in the same way that gas atoms 
move randomly in a cylinder. Although the average KE for gas atoms is 3

2 kT , this is 
not the case for electrons in a metal, because these electrons strongly interact with 
the metal ions and with each other as a result of electrostatic interactions.
 The mean KE of the conduction electrons in a metal is primarily determined 
by the electrostatic interaction of these electrons with the positive metal ions and 
also with each other. For most practical purposes, we will therefore neglect the 
temperature dependence of the mean KE compared with other factors that control 
the behavior of the conduction electrons in the metal crystal. We can speculate 
from Example 1.1, that the magnitude of mean KE must be comparable to the 
magnitude of the mean PE of electrostatic interaction2 or, stated differently, to the 
metal bond energy which is several electron volts per atom. If u is the mean speed 
of the conduction electrons, then, from electrostatic interactions alone, we expect 
1
2 meu

2 to be several electron volts which means that u is typically ∼106 m s−1. This 
purely classical and intuitive reasoning is not sufficient, however, to show that the 
mean speed u is relatively temperature insensitive and much greater than that 
expected from kinetic molecular theory. The true reasons are quantum mechanical 
and are discussed in Chapter 4. (They arise from what is called the Pauli exclusion 
principle.)

 2 There is a theorem in classical mechanics called the virial theorem, which states that for a collection of 
particles, the mean KE has half the magnitude of the mean PE if the only forces acting on the particles are  
such that they follow an inverse square law dependence on the particle–particle separation (as in Coulombic 
and gravitational forces).

A

vdx

Jx

Ex
Δx

Figure 2.1 Drift of electrons in a  
conductor in the presence of an applied 
electric field.

Electrons drift with an average velocity vdx 
in the x direction.
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 In general, the copper crystal will not be perfect and the atoms will not be sta-
tionary. There will be crystal defects, vacancies, dislocations, impurities, etc., which 
will scatter the conduction electrons. More importantly, due to their thermal energy, 
the atoms will vibrate about their lattice sites (equilibrium positions), as depicted 
in Figure 2.2a. An electron will not be able to avoid collisions with vibrating atoms; 
consequently, it will be “scattered” from one atom to another. In the absence of an 
applied field, the path of an electron may be visualized as illustrated in Figure 2.2a, 
where scattering from lattice vibrations causes the electron to move randomly in 
the lattice. On those occasions when the electron reaches a crystal surface, it 
becomes “deflected” (or “bounced”) back into the crystal. Therefore, in the absence 
of a field, after some duration of time, the electron crosses its initial x plane posi-
tion again. Over a long time, the electrons therefore show no net displacement in 
any one direction.
 When the conductor is connected to a battery and an electric field is applied 
to the crystal, as shown in Figure 2.2b, the electron experiences an acceleration in 
the x direction in addition to its random motion, so after some time, it will drift a 
finite distance in the x direction. The electron accelerates along the x direction under 
the action of the force eEx, and then it suddenly collides with a vibrating atom and 
loses the gained velocity. Therefore, there is an average velocity in the x direction, 
which, if calculated, determines the current via Equation 2.2. Note that since the 
electron experiences an acceleration in the x direction, its trajectory between colli-
sions is a parabola, like the trajectory of a golf ball experiencing acceleration due 
to gravity.
 To calculate the drift velocity vdx of the electrons due to applied field Ex, we 
first consider the velocity vxi of the ith electron in the x direction at time t. Suppose 

Vibrating Cu+ ions

u

Δx

V

(a) A conduction electron in the electron gas

moves about randomly in a metal (with a

mean speed u)  being frequently and

randomly scattered by thermal vibrations

of the atoms. In the absence of an applied

field there is no net drift in any direction.

(b) In the presence of an applied field, Ex , there

is a net drift along the x direction. This net drift

along the force of the field is superimposed on

the random motion of the electron. After many

scattering events the electron has been displaced

by a net distance, Δx, from its initial position

toward the positive terminal.

Ex

Figure 2.2 Motion of a conduction electron in a metal.
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its last collision was at time ti; therefore, for time (t − ti), it accelerated free of col-

lisions, as indicated in Figure 2.3. Let uxi be the velocity of electron i in the x direction 
just after the collision. We will call this the initial velocity. Since eEx∕me is the 
acceleration of the electron, the velocity vxi in the x direction at time t will be

 vxi = uxi +
eEx

me

(t − ti)

 However, this is only for the ith electron. We need the average velocity vdx for 
all such electrons along x. We average the expression for i = 1 to N electrons, as in 
Equation 2.1. We assume that immediately after a collision with a vibrating ion, the 
electron may move in any random direction; that is, it can just as likely move along 
the negative or positive x, so that uxi averaged over many electrons is zero. Thus,

 vdx =
1

N
[vx1 + vx2 + … + vxN] =

eEx

me

(t − ti)

where (t − ti)  is the average free time for N electrons between collisions.
 Suppose that τ is the mean free time, or the mean time between collisions (also 
known as the mean scattering time). For some electrons, (t − ti) will be greater 
than τ, and for others, it will be shorter, as shown in Figure 2.3. Averaging (t − ti) 
for N electrons will be the same as τ. Thus, we can substitute τ for (t − ti)  in the 
previous expression to obtain

 vdx =
eτ

me

Ex [2.3]

 Equation 2.3 shows that the drift velocity increases linearly with the applied 
field. The constant of proportionality eτ∕me has been given a special name and 
symbol. It is called the drift mobility μd, which is defined as

 vdx = μdEx [2.4]

where

 μd =
eτ

me

 [2.5]

 Equation 2.5 relates the drift mobility of the electrons to their mean scattering 
time τ. To reiterate, τ, which is also called the relaxation time, is directly related 
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Present time
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t1 tFree time t2 t t3 t

Electron 3
timetime

vx2 – ux2 vx3 – ux3

Figure 2.3 Velocity gained in the x direction at time t from the electric field (Ex) for three electrons.

There will be N electrons to consider in the metal.



130 C H A P T E R  2  ∙ ELECTRICAL AND THERMAL CONDUCTION IN SOLIDS

to the microscopic processes that cause the scattering of the electrons in the metal; 
that is, lattice vibrations, crystal imperfections, and impurities, to name a few.
 From the expression for the drift velocity vdx, the current density Jx follows 
immediately by substituting Equation 2.4 into 2.2, that is,

 Jx = enμdEx [2.6]

 Therefore, the current density is proportional to the electric field and the con-
ductivity σ is the term multiplying Ex, that is,

 σ = enμd [2.7]

 It is gratifying that by treating the electron as a particle and applying classical 
mechanics (F = ma), we are able to derive Ohm’s law. We should note, however, 
that we assumed τ to be independent of the field.
 Drift mobility is important because it is a widely used electronic parameter in 
semiconductor device physics. The drift mobility gauges how fast electrons will drift 
when driven by an applied field. If the electron is not highly scattered, then the mean 
free time between collisions will be long, τ will be large, and by Equation 2.5, the 
drift mobility will also be large; the electrons will therefore be highly mobile and 
be able to “respond” to the field. However, a large drift mobility does not necessarily 
imply high conductivity, because σ also depends on the concentration of conduction 
electrons n.
 The mean time between collisions τ has further significance. Its reciprocal 1∕τ 
represents the mean frequency of collisions or scattering events; that is, 1∕τ is the 
mean probability per unit time that the electron will be scattered (see Example 2.1). 
Therefore, during a small time interval δt, the probability of scattering will be δt∕τ. 
The probability of scattering per unit time 1∕τ is time independent and depends only 
on the nature of the electron scattering mechanism.
 There is one important assumption in the derivation of the drift velocity vdx 
in Equation 2.3. We obtained vdx by averaging the velocities vxi of N electrons 
along x at one instant, as defined in Equation 2.1. The drift velocity therefore 
represents the average velocity of all the electrons along x at one instant; that is, 
vdx is a number average at one instant. Figure 2.2b shows that after many collisions, 
after a time interval Δt ≫ τ, an electron would have been displaced by a net distance 
Δx along x. The term Δx∕Δt represents the effective velocity with which the 
electron drifts along x. It is an average velocity for one electron over many colli-
sions, that is, over a long time (hence, Δt ≫ τ), so Δx∕Δt is a time average. 
Provided that Δt contains many collisions, it is reasonable to expect that the drift 
velocity Δx∕Δt from the time average for one electron is the same as the drift 
velocity vdx per electron from averaging for all electrons at one instant, as in  
Equation 2.1, or

 
Δx

Δt
= vdx

 The two velocities are the same only under steady-state conditions (Δt ≫ τ). 
Example 2.4 derives vdx for one electron and shows that it is the same as Equation 2.3.

Ohm’s law

Unipolar 

conductivity

Drift velocity
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PROBABILITY OF SCATTERING PER UNIT TIME AND THE MEAN FREE TIME If 1∕τ is 
defined as the mean probability per unit time that an electron is scattered, show that the mean 
time between collisions is τ.

SOLUTION

Consider an infinitesimally small time interval dt at time t. Let N be the number of unscattered 
electrons at time t. The probability of scattering during dt is (1∕τ) dt, and the number of 
scattered electrons during dt is N(1∕τ) dt. The change dN in N is thus

 dN = −N(1

τ)dt

 The negative sign indicates a reduction in N because, as electrons become scattered, 

N decreases. Integrating this equation, we can find N at any time t, given that at time t = 0, 

N0 is the total number of unscattered electrons. Therefore,

 N = N0 exp(−
t

τ)
 This equation represents the number of unscattered electrons at time t. It reflects an 

exponential decay law for the number of unscattered electrons. The above equation is called 

the probability distribution function for unscattered electrons in time. It is a probability dis-

tribution for free times.

 The mean free time t can be calculated from the mathematical definition of t,

 t =
∫ ∞
0  

tN dt

∫ ∞
0

 N dt
= τ

where we have used N = N0exp(−t∕τ). Clearly, 1∕τ is the mean probability of scattering 

per unit time.

 It is left as an exercise to show that the exponential probability distribution of free times 
above can also be used to calculate the mean square time t2, which is 2τ2.

 EXAMPLE 2.1

ELECTRON DRIFT MOBILITY IN METALS Calculate the drift mobility and the mean scattering 
time of conduction electrons in copper at room temperature, given that the conductivity of 
copper is 5.9 × 105 Ω−1 cm−1. The density of copper is 8.96 g cm−3 and its atomic mass is 

63.5 g mol−1. If the mean speed of the conduction electrons in Cu is roughly 1.6 × 106 m s−1, 

what is the mean free path between collisions?

SOLUTION

We can calculate μd from σ = enμd because we already know the conductivity σ. The number 

of free electrons n per unit volume can be taken as equal to the number of Cu atoms per unit 

volume, if we assume that each Cu atom donates one electron to the conduction electron gas 

in the metal. One mole of copper has NA (6.02 × 1023) atoms and a mass of 63.5 g. Therefore, 

the number of copper atoms per unit volume is

 n =
dNA

Mat

where d = density = 8.96 g cm−3, and Mat = atomic mass = 63.5 (g mol−1). Substituting for 

d, NA, and Mat, we find n = 8.5 × 1022 electrons cm−3.

 EXAMPLE 2.2
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 The electron drift mobility is therefore

  μd =
σ

en
=

5.9 × 105 Ω−1 cm−1

[ (1.6 × 10−19 C)(8.5 × 1022 cm−3) ]

  = 43.4 cm2 V−1 s−1

 From the drift mobility we can calculate the mean free time τ between collisions by 

using Equation 2.5,

 τ =
μdme

e
=

(43.4 × 10−4 m2 V−1 s−1) (9.1 × 10−31 kg)

1.6 × 10−19 C
= 2.5 × 10−14 s

 The mean speed u of the conduction electrons is about 1.6 × 106 m s−1, so that their 

mean free path ℓ = uτ = 39 nm.

DRIFT VELOCITY AND MEAN SPEED What is the applied electric field that will impose a drift 

velocity equal to 0.1 percent of the mean speed u (∼106 m s−1) of conduction electrons in copper? 

What is the corresponding current density and current through a Cu wire of diameter 1 mm?

SOLUTION

The drift velocity of the conduction electrons is vdx = μdEx, where μd is the drift mobility, which 

for copper is 43.4 cm2 V−1 s−1 (see Example 2.2). With vdx = 0.001u = 103 m s−1, we have

 Ex =
vdx

μd

=
103 m s−1

43.4 × 10−4 m2 V−1 s−1
= 2.3 × 105 V m−1  or  2.3 kV cm−1

This is an unattainably large electric field in a metal. Given the conductivity σ of copper, the 

equivalent current density is

  Jx = σEx = (5.9 × 107 Ω−1 m−1) (2.3 × 105 V m−1)

  = 1.4 × 1013 A m−2  or  1.4 × 107 A mm−2

This means a current of 1.1 × 107 A through a 1 mm diameter wire! It is clear from this 

example that for all practical purposes, even under the highest working currents and voltages, 

the drift velocity is much smaller than the mean speed of the electrons. Consequently, when an 

electric field is applied to a conductor, for all practical purposes, the mean speed is unaffected.

 EXAMPLE 2.3

DRIFT VELOCITY IN A FIELD: A CLOSER LOOK There is another way to explain the 

observed dependence of the drift velocity on the field, and Equation 2.3. Consider the path 

of a conduction electron in an applied field Ex as shown in Figure 2.4. Suppose that at time 

t = 0 the electron has just been scattered from a lattice vibration. Let ux1 be the initial veloc-

ity in the x direction just after this initial collision (to which we assign a collision number of 

zero). We will assume that immediately after a collision, the velocity of the electron is in a 

random direction. Suppose that the first collision occurs at time t1. Since eEx∕me is the accel-
eration, the distance s1 covered in the x direction during the free time t1 will be

 s1 = ux1t1 +
1
2(eEx

me
)t2

1

 At time t1, the electron collides with a lattice vibration (its first collision), and the veloc-
ity is randomized again to become ux2. The whole process is then repeated during the next 
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interval which lasts for a free time t2, and the electron traverses a distance s2 along x, and so 
on. To find the overall distance traversed by the electron after p such scattering events, we 
sum all the above distances s1, s2, . . . for p free time intervals,

 s = s1 + s2 + … + sp = [ux1t1 + ux2t2 + … + uxptp] +
1
2(eEx

me
)[t2

1 + t2
1 + … + t2

p]  [2.8]

 Since after a collision the “initial” velocity ux is always random, the first term has ux 
values that are randomly negative and positive, so for many collisions (large p) the first term 
on the right-hand side of Equation 2.8 is nearly zero and can certainly be neglected compared 
with the second term. Thus, after many collisions, the net distance s = Δx traversed in the 
x  direction is given by the second term in Equation 2.8, which is the electric field induced 
displacement term. If t2 is the mean square free time, then

 s =
1

2(eEx

me
)pt2

where t2 =
1

p
[t2

1 + t2
1 + … + t2

p]

 Suppose that τ is the mean free time between collisions, where τ = (t1 + t2 + ⋯ + tp)∕p. 
We know from Example 2.1 that the probability that the electron will not be scattered, that 
is it is still free, decreases exponentially with time in which the mean free time t is τ. Using 
the same probability distribution function, we easily can show that t2 = 2(t)2 = 2τ2. So in 
terms of the mean free time τ between collisions, the overall distance s = Δx drifted in the 
x direction after p collisions is

 s =
eEx

me

(pτ2)

 Further, since the total time Δt taken for these p scattering events is simply pτ, the drift 
velocity vdx is given by Δx∕Δt or s∕(pτ), that is,

 vdx =
eτ

me

Ex [2.9]

Distance 

drifted after p 

scattering 

events

Mean square 

free time 

definition

Drift velocity 

and mean free 

time

 3 See Question 2.4 for the derivation.
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Figure 2.4 The motion of a single  
electron in the presence of an electric 
field E. During a time interval ti, the  
electron traverses a distance si along x. 
After p collisions, it has drifted a distance 
s = Δx.
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 This is the same expression as Equation 2.3, except that τ is defined here as the average 
free time for a single electron over a long time, that is, over many collisions, whereas previ-
ously it was the mean free time averaged over many electrons. Further, in Equation 2.9 vdx 
is an average drift for an electron over a long time, over many collisions. In Equation 2.1 vdx 
is the average velocity averaged over all electrons at one instant. For all practical purposes, 
the two are equivalent. (The equivalence breaks down when we are interested in events over 
a time scale that is comparable to one scattering, ∼10−14 second.)

 The drift mobility μd from Equation 2.9 is identical to that of Equation 2.5, μd = eτ∕me. 
Suppose that the mean speed of the electrons (not the drift velocity) is u. Then an electron 
moves a distance ℓ = uτ in mean free time τ, which is called the mean free path. The drift 
mobility and conductivity become,

 μd =
eℓ

meu
  and  σ = en μd =

e2nℓ

meu
 [2.10]

 Equations 2.3 and 2.10 both assume that after each collision the velocity is randomized. 
The scattering process, lattice scattering, is able to randomize the velocity in one single scat-
tering. In general not all electron scattering processes can randomize the velocity in one scat-
tering process. If it takes more than one collision to randomize the velocity, then the electron 
is able to carry with it some velocity gained from a previous collision and hence possesses 
a higher drift mobility. In such cases one needs to consider the effective mean free path a 
carrier has to move to eventually randomize the velocity gained; this is a point considered in 
Chapter 4 when we calculate the resistivity at low temperatures.

2.2   TEMPERATURE DEPENDENCE OF RESISTIVITY: 

IDEAL PURE METALS

When the conduction electrons are only scattered by thermal vibrations of the metal 
ions, then τ in the mobility expression μd = eτ∕me refers to the mean time between 
scattering events by this process. The resulting conductivity and resistivity are 
denoted by σT and ρT, where the subscript T represents “thermal vibration scattering.”
 To find the temperature dependence of σ, we first consider the temperature 
dependence of the mean free time τ, since this determines the drift mobility. An 
electron moving with a mean speed u is scattered when its path crosses the cross-
sectional area S of a scattering center, as depicted in Figure 2.5. The scattering 

Drift  

mobility and 

conductivity 

and mean  

free path

a

u

A vibrating
metal atom

Electron

S = πa2

ℓ = u
τ

Figure 2.5 Scattering of an electron from 
the thermal vibrations of the atoms.

The electron travels a mean distance ℓ = uτ 
between collisions. Since the scattering 
cross-sectional area is S, in the volume  
Sℓ there must be at least one scatterer,  
Ns (Suτ) = 1.
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center may be a vibrating atom, impurity, vacancy, or some other crystal defect. Since 
τ is the mean time taken for one scattering process, the mean free path ℓ of the 
electron between scattering processes is uτ. If Ns is the concentration of scattering 
centers, then in the volume Sℓ, there is one scattering center, that is, (Suτ)Ns = 1. 
Thus, the mean free time is given by

 τ =
1

SuNs

 [2.11]

 The mean speed u of conduction electrons in a metal can be shown to be only 
slightly temperature dependent.4 In fact, electrons wander randomly around in the 
metal crystal with an almost constant mean speed that depends largely on their con-
centration and hence on the crystal material. Taking the number of scattering centers 
per unit volume to be the atomic concentration, the temperature dependence of τ 
then arises essentially from that of the cross-sectional area S. Consider what a free 
electron “sees” as it approaches a vibrating crystal atom as in Figure 2.5. Because 
the atomic vibrations are random, the atom covers a cross-sectional area πa2, where 
a is the amplitude of the vibrations. If the electron’s path crosses πa2, it gets scat-
tered. Therefore, the mean time between scattering events τ is inversely proportional 
to the area πa2 that scatters the electron, that is, τ ∝ 1∕πa2.
 The thermal vibrations of the atom can be considered to be simple harmonic 
motion, much the same way as that of a mass M attached to a spring. The average 
kinetic energy of the oscillations is 1

4 Ma2ω2, where ω is the oscillation frequency. 
From the kinetic theory of matter, this average kinetic energy must be on the order 
of 1

2 kT . Therefore,

 
1
4

 Ma2ω2 ≈
1
2

 kT

so a2 ∝ T. Intuitively, this is correct because raising the temperature increases the 
amplitude of the atomic vibrations. Thus,

 τ ∝
1

πa2 ∝
1
T
  or  τ =

C

T

where C is a temperature-independent constant. Substituting for τ in μd = eτ∕me, we 
obtain

 μd =
eC

meT

So, the resistivity ρT of a pure metal is

 ρT =
1
σT

=
1

enμd

=
meT

e2nC

 4 The fact that the mean speed of electrons in a metal is only weakly temperature dependent can be proved 
from what it called the Fermi–Dirac statistics for the collection of electrons in a metal (as in Chapter 4). This 
result contrasts sharply with the kinetic molecular theory of gases (Chapter 1), which predicts that the mean 
speed of molecules is proportional to √T . For the time being, we simply use a constant mean speed u for the 
conduction electrons in a metal.

Mean free 

time between 

collisions
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that is,
 ρT = AT [2.12]

where A is a temperature-independent constant. This shows that the resistivity of a 
pure metal wire increases linearly with the temperature, and that the resistivity is 
due simply to the scattering of conduction electrons by the thermal vibrations of the 
atoms. We term this conductivity lattice-scattering-limited conductivity.5

Pure metal 

resistivity due 

to thermal 

vibrations of 

the crystal

 5 As will be apparent in Chapter 4, the actual explanation in the modern theory of solids is based on the concept 
of “phonons,” quanta of lattice waves in the crystal, and how their concentration depends on the temperature.

TEMPERATURE DEPENDENCE OF RESISTIVITY What is the percentage change in the 
resistance of a pure metal wire from Saskatchewan’s summer to winter, neglecting the changes 
in the dimensions of the wire?

SOLUTION

Assuming 20 °C for the summer and perhaps −30 °C for the winter, from R ∝ ρ = AT, we have

  
Rsummer − Rwinter

Rsummer

=
Tsummer − Twinter

Tsummer

=
(20 + 273) − (−30 + 273)

(20 + 273)

  = 0.171  or  17%

Notice that we have used the absolute temperature for T. How will the outdoor cable power 

losses be affected?

 EXAMPLE 2.5

DRIFT MOBILITY AND RESISTIVITY DUE TO LATTICE VIBRATIONS Given that the mean 

speed of conduction electrons in copper is 1.6 × 106 m s−1 and the frequency of vibration of 

the copper atoms at room temperature is about 4 × 1012 s−1, estimate the drift mobility of 

electrons and the conductivity of copper. The density d of copper is 8.96 g cm−3 and the 

atomic mass Mat is 63.56 g mol−1.

SOLUTION

The method for calculating the drift mobility and hence the conductivity is based on evaluat-

ing the mean free time τ via Equation 2.11, that is, τ = 1∕SuNs. Since τ is due to scattering 
from atomic vibrations, Ns is the atomic concentration,

  Ns =
dNA

Mat
=

(8.96 × 103 kg m−3) (6.02 × 1023 mol−1)

63.56 × 10−3 kg mol−1

  = 8.5 × 1028 m−3

 The cross-sectional area S = πa2 depends on the amplitude a of the thermal vibrations 

as shown in Figure 2.5. The average kinetic energy KEav associated with a vibrating mass M 

attached to a spring is given by KEav = 1
4 Ma2ω2, where ω is the angular frequency of the 

vibration (ω = 2π4 × 1012 rad s−1). Applying this equation to the vibrating atom and equat-

ing the average kinetic energy KEav to 1
2 kT , by virtue of equipartition of energy theorem, we 

have a2 = 2kT∕Mω2 and thus

  S = πa2 =
2πkT

Mω2 =
2π(1.38 × 10−23 J K−1) (300 K)

(63.56 × 10−3 kg mol−1

6.022 × 1023 mol−1 )(2π × 4 × 1012 rad s−1)2

  = 3.9 × 10−22 m2

 EXAMPLE 2.6
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 Therefore,

  τ =
1

SuNs

=
1

(3.9 × 10−22 m2) (1.6 × 106 m s−1) (8.5 × 1028 m−3)

  = 1.9 × 10−14 s

 The drift mobility is

  μd =
eτ

me

=
(1.6 × 10−19 C)(1.9 × 10−14 s)

(9.1 × 10−31 kg)

  = 3.3 × 10−3 m2 V−1 s−1 = 33 cm2 V−1 s−1

 The conductivity is then

 σ = enμd = (1.6 × 10−19 C)(8.5 × 1022 cm−3)(33 cm2 V−1 s−1)

 = 4.5 × 105 Ω−1 cm−1

 The experimentally measured value for the conductivity is 5.9 × 105 Ω−1 cm−1, so our 

crude calculation based on Equation 2.11 is actually only 24 percent lower, which is not bad 

for a crude estimate. (As one might have surmised, the agreement is brought about by using 

reasonable values for the mean speed u and the atomic vibrational frequency ω. These values 

were taken from quantum mechanical calculations, so our evaluation for τ was not truly based 

on classical concepts.)

2.3  MATTHIESSEN’S AND NORDHEIM’S RULES

2.3.1  MATTHIESSEN’S RULE AND THE TEMPERATURE  

COEFFICIENT OF RESISTIVITY (α)

The theory of conduction that considers scattering from lattice vibrations only works 
well with pure metals; unfortunately, it fails for metallic alloys. Their resistivities are 
only weakly temperature dependent. We must therefore search for a different type of 
scattering mechanism.
 Consider a metal alloy that has randomly distributed impurity atoms. An electron 
can now be scattered by the impurity atoms because they are not identical to the 
host atoms, as illustrated in Figure 2.6. The impurity atom need not be larger than 
the host atom; it can be smaller. As long as the impurity atom results in a local 
distortion of the crystal lattice, it will be effective in scattering. One way of looking 
at the scattering process from an impurity is to consider the scattering cross section. 
What actually scatters the electron is a local, unexpected change in the potential 
energy PE of the electron as it approaches the impurity, because the force experi-
enced by the electron is given by

 F = −
d(PE)

dx

For example, when an impurity atom of a different size compared to the host atom 
is placed into the crystal lattice, the impurity atom distorts the region around it, 
either by pushing the host atoms farther away, or by pulling them in, as depicted in 
Figure 2.6. The cross section that scatters the electron is the lattice region that has 
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been elastically distorted by the impurity (the impurity atom itself and its neigh-
boring host atoms), so that in this zone, the electron suddenly experiences a force 
F = −d(PE)∕dx due to a sudden change in the PE. This region has a large scattering 
cross section, since the distortion induced by the impurity may extend a number of 
atomic distances. These impurity atoms will therefore hinder the motion of the elec-
trons, thereby increasing the resistance.
 We now effectively have two types of mean free times between collisions: one, 
τT, for scattering from thermal vibrations only, and the other, τI, for scattering from 
impurities only. We define τT as the mean time between scattering events arising 
from thermal vibrations alone and τI as the mean time between scattering events 
arising from collisions with impurities alone. Both are illustrated in Figure 2.6.
 In general, an electron may be scattered by both processes, so the effective mean 
free time τ between any two scattering events will be less than the individual scat-
tering times τT and τI. The electron will therefore be scattered when it collides with 
either an atomic vibration or an impurity atom. Since in unit time, 1∕τ is the net 
probability of scattering, 1∕τT is the probability of scattering from lattice vibrations 
alone, and 1∕τI is the probability of scattering from impurities alone, then within the 
realm of elementary probability theory for independent events, we have

 
1
τ

=
1
τT

+
1
τI

 [2.13]

 In writing Equation 2.13 for the various probabilities, we make the reasonable 
assumption that, to a greater extent, the two scattering mechanisms are essentially 
independent. Here, the effective mean scattering time τ is clearly smaller than both 
τT and τI. We can also interpret Equation 2.13 as follows: In unit time, the overall 
number of collisions (1∕τ) is the sum of the number of collisions with thermal vibra-
tions alone (1∕τT) and the number of collisions with impurities alone (1∕τI).
 The drift mobility μd depends on the effective scattering time τ via μd = eτ∕me, 
so Equation 2.13 can also be written in terms of the drift mobilities determined by 

Strained region by impurity exerts a

scattering force F = – d(PE) /dx

τ
I

τ
T

Figure 2.6 Two different types  
of scattering processes involving 
scattering from impurities alone and 
from thermal vibrations alone.

Overall 

frequency of 

scattering
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the various scattering mechanisms. In other words,

 
1
μd

=
1
μL

+
1
μI

 [2.14]

where μL is the lattice-scattering-limited drift mobility, and μI is the impurity-

scattering-limited drift mobility. By definition, μL = eτT∕me and μI = eτI∕me. The 
effective (or overall) resistivity ρ of the material is simply 1∕enμd, or

 ρ =
1

enμd

=
1

enμL

+
1

enμI

which can be written

 ρ = ρT + ρI [2.15]

where 1∕enμL is defined as the resistivity due to scattering from thermal vibrations, 
and 1∕enμI is the resistivity due to scattering from impurities, or

 ρT =
1

enμL

  and  ρI =
1

enμI

 The final result in Equation 2.15 simply states that the effective resistivity ρ is 
the sum of two contributions. First, ρT = 1∕enμL is the resistivity due to scattering 
by thermal vibrations of the host atoms. For those near-perfect pure metal crystals, 
this is the dominating contribution. As soon as we add impurities, however, there is 
an additional resistivity, ρI = 1∕enμI, which arises from the scattering of the elec-
trons from the impurities. The first term is temperature dependent because τT ∝ T−1 
(see Section 2.2), but the second term is not.
 The mean time τI between scattering events involving electron collisions with 
impurity atoms depends on the separation between the impurity atoms and therefore 
on the concentration of those atoms (see Figure 2.6). If ℓI is the mean separation 
between the impurities, then the mean free time between collisions with impurities 
alone will be ℓI∕u, which is temperature independent because ℓI is determined by 
the impurity concentration NI (i.e., ℓI = NI

−1∕3), and the mean speed u of the electrons 
is nearly constant in a metal. In the absence of impurities, τI is infinitely long, and 
thus ρI = 0. The summation rule of resistivities from different scattering mechanisms, 
as shown by Equation 2.15, is called Matthiessen’s rule.6

 There may also be electrons scattering from dislocations and other crystal 
defects, as well as from grain boundaries. All of these scattering processes add to 
the resistivity of a metal, just as the scattering process from impurities. We can 
therefore write the effective resistivity of a metal as

 ρ = ρT + ρR [2.16]

Effective drift 

mobility

Matthiessen’s 

rule

Matthiessen’s 

rule

Resistivities 

due to lattice 

and impurity 

scattering

 6 The summation rule of resistivities in Equations 2.15 or 2.16 was discovered by Augustus Matthiessens  
(1831–1870), and reported in his experimental papers on the conductivity of metals and their alloys, published 
mainly in the Philosophical Transactions of the Royal Society of London, around 1857–1864. At the time it was 
not, of course, known as Matthiessen’s rule and the rule itself is actually a modern conceptualization of his 
observations long after his papers. Matthiessen received the Royal Medal from the Royal Society in 1869  
for his research on metals and alloys. There is an excellent discussion of Matthiessen’s works by Simon  
Reif-Acherman in the Proc. IEEE, 103, 713, 2015.
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where ρR is called the residual resistivity and is due to the scattering of electrons 
by impurities, dislocations, interstitial atoms, vacancies, grain boundaries, etc. (which 
means that ρR also includes ρI). The residual resistivity shows very little temperature 
dependence, whereas ρT = AT, so the effective resistivity ρ is given by

 ρ ≈ AT + B [2.17]

where A and B are temperature-independent constants.
 Equation 2.17 indicates that the resistivity of a metal varies almost linearly with 
the temperature, with A and B depending on the material. Instead of listing A and B 
in resistivity tables, we prefer to use a temperature coefficient that refers to small, 
normalized changes around a reference temperature. The temperature coefficient 

of resistivity (TCR) α0 is defined as the fractional change in the resistivity per unit 
temperature increase at the reference temperature T0, that is,

 α0 =
1
ρ0[δρ

δT]
T=T0

 [2.18]

where ρ0 is the resistivity at the reference temperature T0, usually 273 K (0 °C) or 
293 K (20 °C), and δρ = ρ − ρ0 is the change in the resistivity due to a small increase 
in temperature, δT = T − T0.
 When the resistivity follows the behavior ρ ≈ AT + B in Equation 2.17, then 
according to Equation 2.18, α0 is constant over a temperature range T0 to T, and 
Equation 2.18 leads to the well-known equation,

 ρ = ρ0[1 + α0(T − T0)] [2.19]

 Equation 2.19 is actually only valid when α0 is constant over the temperature 
range of interest, which requires Equation 2.17 to hold. Over a limited temperature 
range, this will usually be the case. Although it is not obvious from Equation 2.19, 
we should note that α0 depends on the reference temperature T0, by virtue of ρ0 
depending on T0.
 The equation ρ = AT, which we used for pure-metal crystals to find the change 
in the resistance with temperature, is only approximate; nonetheless, for pure metals, 
it is useful to recall in the absence of tabulated data. To determine how good the 
formula ρ = AT is, put it in Equation 2.19, which leads to α0 = T0

−1. If we take the 
reference temperature T0 as 273 K (0 °C), then α0 is simply 1∕273 K; stated differ-
ently, Equation 2.19 is then equivalent to ρ = AT.
 Table 2.1 shows that ρ ∝ T is not a bad approximation for some of the familiar 
pure metals used as conductors (Cu, Al, Au, etc.), but it fails badly for others, in 
particular, the magnetic metals such as iron and nickel.
 The temperature dependence of the resistivity of various metals is shown in 
Figure 2.7, where it is apparent that except for the magnetic materials, the linear 
relationship ρ ∝ T seems to be approximately obeyed almost all the way to the 
melting temperature for many pure metals. It should also be noted that for 
the alloys, such as nichrome (Ni–Cr), the resistivity is essentially dominated by the 
residual resistivity, so the resistivity is relatively temperature insensitive, with a very 
small TCR.

Definition of 

temperature 

coefficient of 

resistivity

Temperature 

dependence 

of resistivity
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Table 2.1  Resistivity and thermal coefficient of resistivity α0 at 273 K (0 °C) for various pure 
metals above 200 K but below their melting temperatures. The resistivity index n in  
ρ ∝ Tn is also shown.

Metal ρ0(nΩ m) α0(1∕K) n Range and Comment

Aluminum, Al 24.2 
1

227
 1.20 200–800 K

Antimony 390 
1

215
 1.27 80–400 K

Copper, Cu 15.4 
1

233
 1.16 200–1100 K

Gold, Au 20.5 
1

242
 1.13 225–1000 K

Indium, In 80 
1

208
 1.31 200–400 K

Molybdenum, Mo 48.5 
1

226
 1.21 200–2400 K

Platinum, Pt 98.1 
1

256
 1.01 200–1273 K

Silver, Ag 14.7 
1

242
 1.13 200–1100 K

Strontium, Sr 123 
1

276
 0.99 273–800 K

Tin, Sn 115 
1

248
 1.10 200–490 K

Tungsten, W 48.2 
1

210
 1.24 200–3000 K

Iron, Fe 85.7 
1

159
 1.73 200–900 K; magnetic

Nickel, Ni 61.6 
1

155
 1.76 200–700 K; magnetic

 NOTE: ρ ∝ Tn fitted to data mainly from the Ed. Haynes, W.M., CRC Handbook of Chemistry and Physics, 96th 
Edition, 2015-2016, Boca Raton, FL: CRC Press and Kaye and Laby Tables of Physical and Chemical Tables at 
the National Physical Laboratory Website. The temperature range for the ρ ∝ Tn fit is also given. Ideally, at T0, 
TCR, α0 = n/T0.

 Frequently, the resistivity versus temperature behavior of pure metals can be 
empirically represented by a power law of the form

 ρ = ρ0[ T

T0
]

n

 [2.20]

where ρ0 is the resistivity at the reference temperature T0, and n is a characteristic 
index that best fits the data. Table 2.1 lists some typical n values for various pure 
metals above 0 °C. It is apparent that for the nonmagnetic metals, n is close to unity, 
whereas it is closer to 2 than 1 for the magnetic metals Fe and Ni. In iron, for 
example, the conduction electron is not scattered simply by atomic vibrations, as in 

Resistivity of 

pure metals
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copper, but is affected by its magnetic interaction with the Fe ions in the lattice. This 
leads to a complicated temperature dependence.
 Although our oversimplified theoretical analysis predicts a linear ρ = AT + B 
behavior for the resistivity down to the lowest temperatures, this is not true in real-
ity, as depicted for copper in Figure 2.8. As the temperature decreases, typically 
below ∼100 K for many metals, our simple and gross assumption that all the atoms 
are vibrating with a constant frequency fails. Indeed, the number of atoms that are 
vibrating with sufficient energy to scatter the conduction electrons starts to decrease 
rapidly with decreasing temperature, so the resistivity due to scattering from ther-
mal  vibrations becomes more strongly temperature dependent. The mean free time 
τ = 1∕SuNs becomes longer and strongly temperature dependent, leading to a smaller 
resistivity than the ρ ∝ T behavior. A full theoretical analysis, which is beyond 
the scope of this chapter, shows that ρ ∝ T 5. Thus, at the lowest temperature, from 

ρ ∝ T
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Figure 2.7 Nickel and iron go through a magnetic-to-nonmagnetic 
(Curie) transformation at about 627 K and 1043 K, respectively. The 
theoretical behavior (ρ ∝ T ) is shown for reference.
 SOURCE: Metals Handbook, 10th ed., vol. 2 and 3, Metals Park, OH: ASM 

International, 1991, along with other sources.
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Matthiessen’s rule, the resistivity becomes ρ = DT5 + ρR, where D is a constant. Since 
the slope of ρ versus T is dρ∕dT = 5DT 4, which tends to zero as T becomes small, 
we have ρ curving toward ρR as T decreases toward 0 K. This is borne out by 
experiments, as shown in Figure 2.8 for copper. Therefore, at the lowest temperatures 
of interest, the resistivity is limited by scattering from impurities and crystal defects.7

Figure 2.8 The resistivity of copper from lowest to highest temperatures (near 
melting temperature, 1358 K) on a log-log plot.

Above about 100 K, ρ ∝ T, whereas at low temperatures, ρ ∝ T5, and at the lowest 
temperatures ρ approaches the residual resistivity ρR. The inset shows the ρ versus 
T behavior below 100 K on a linear plot. (ρR is too small on this scale.)
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 7 At sufficiently low temperatures (typically, below 10–20 K for many metals and below ∼135 K for certain ceramics) 
certain materials exhibit superconductivity in which the resistivity vanishes (ρ = 0), even in the presence of 
impurities and crystal defects. Superconductivity and its quantum mechanical origin will be explained in Chapter 8.

MATTHIESSEN’S RULE Explain the typical resistivity versus temperature behavior of annealed 
and cold-worked (deformed) copper containing various amounts of Ni as shown in Figure 2.9.

SOLUTION

When small amounts of nickel are added to copper, the resistivity increases by virtue of 
Matthiessen’s rule, ρ = ρT + ρR + ρI, where ρT is the resistivity due to scattering from thermal 
vibrations; ρR is the residual resistivity of the copper crystal due to scattering from crystal 
defects, dislocations, trace impurities, etc.; and ρI is the resistivity arising from Ni addition 

 EXAMPLE 2.7
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alone (scattering from Ni impurity regions). Since ρI is temperature independent, for small 
amounts of Ni addition, ρI will simply shift up the ρ versus T curve for copper, by an amount 
proportional to the Ni content, ρI ∝ NNi, where NNi is the Ni impurity concentration. This is 
apparent in Figure 2.9, where the resistivity of Cu–2.16% Ni is almost twice that of Cu–1.12% 
Ni. Cold working (CW) or deforming a metal results in a higher concentration of dislocations 
and therefore increases the residual resistivity ρR by ρCW. Thus, cold-worked samples have a 
resistivity curve that is shifted up by an additional amount ρCW that depends on the extent of 
cold working.
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Figure 2.9 Typical temperature  
dependence of the resistivity of annealed 
and cold-worked (deformed) copper  
containing various amounts of Ni in 
atomic percentage.
 SOURCE: Linde, J.O., Annalen der Physik,  

5, 219, 1932. 

TEMPERATURE COEFFICIENT OF RESISTIVITY α AND RESISTIVITY INDEX n If α0 is the 
temperature coefficient of resistivity (TCR) at temperature T0 and the resistivity obeys the 
equation

 ρ = ρ0[ T

T0]
n

show that

 α0 =
n

T0[ T

T0]
n−1

 What is your conclusion?
 Experiments indicate that n ≈ 1.24 for W. What is its α0 at 20 °C? Given that, experi-
mentally, α0 = 0.00393 K−1 for Cu at 20 °C, what is n?

SOLUTION

Since the resistivity obeys ρ = ρ0 (T∕T0)
n, we substitute this equation into the definition of TCR,

 α0 =
1

ρ0
[dρ

dT] =
n

T0
[ T

T0
]

n−1

 It is clear that, in general, α0 depends on the temperature T, as well as on the reference 
temperature T0. The TCR is only independent of T when n = 1, which leads to Equation 2.19.

 EXAMPLE 2.8
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 At T = T0, we have

 
α0T0

n
= 1  or  n = α0T0

 For W, n = 1.24, so at T = T0 = 293 K, we have α293 K = 0.0041 K−1, which agrees 
reasonably well with α293 K = 0.0044 K−1, frequently found in data books.
 For Cu, α293 K = 0.00393 K−1, so that n = 1.15, which is very close to the value of 1.16 
in Table 2.1.

TCR AT DIFFERENT REFERENCE TEMPERATURES If α1 is the temperature coefficient of 
resistivity (TCR) at temperature T1 and α0 is the TCR at T0, show that

 α1 =
α0

1 + α0(T1 − T0)

SOLUTION

Consider the resistivity at temperature T in terms of α0 and α1:

 ρ = ρ0[1 + α0(T − T0)]  and  ρ = ρ1[1 + α1(T − T1)]

 These equations are expected to hold at any temperature T, so the first and second equa-
tions at T1 and T0, respectively, give

 ρ1 = ρ0[1 + α0(T1 − T0)]  and  ρ0 = ρ1[1 + α1(T0 − T1)]

 These two equations can be readily solved to eliminate ρ0 and ρ1 to obtain

 α1 =
α0

1 + α0(T1 − T0)

2.3.2 SOLID SOLUTIONS AND NORDHEIM’S RULE

In an isomorphous alloy of two metals, that is, a binary alloy that forms a solid 
solution, we would expect Equation 2.15 to apply, with the temperature-independent 
impurity contribution ρI increasing with the concentration of solute atoms. This 
means that as the alloy concentration increases, the resistivity ρ increases and 
becomes less temperature dependent as ρI overwhelms ρT, leading to α ≪ 1∕273. 
This is the advantage of alloys in resistive components. Table 2.2 shows that when 
80% nickel is alloyed with 20% chromium, the resistivity of Ni increases almost 
16 times, and there is a corresponding drop in α. In fact, the alloy is called nichrome 
and is widely used as a heater wire in household appliances and industrial furnaces.

 EXAMPLE 2.9

Table 2.2 The effect of alloying on the resistivity

 Resistivity at 20 °C α at 20 °C

Material (nΩ m) (1∕K)

Nickel   69 0.0064

Chrome  129 0.0030

Nichrome (80%N-20% Cr) 1100 0.0004
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 As a further example of the resistivity of a solid solution, consider the copper– 
nickel alloy. The phase diagram for this alloy system is shown in Figure 2.10a. It is 
clear that the alloy forms a one-phase solid solution for all compositions. Both Cu 
and Ni have the same FCC crystal structure, and since the Cu atom is only slightly 
larger than the Ni atom by about ∼3 percent (easily checked on the Periodic Table), 
the Cu–Ni alloy will therefore still be FCC, but with Cu and Ni atoms randomly 
mixed, resulting in a solid solution. When Ni is added to copper, the impurity resis-
tivity ρI in Equation 2.15 will increase with the Ni concentration. Experimental 
results for this alloy system are shown in Figure 2.10b. It should be apparent that 
when we reach 100% Ni, we again have a pure metal whose resistivity must be small. 
Therefore, ρ versus Ni concentration must pass through a maximum, which for the 
Cu–Ni alloy seems to be at around ∼50% Ni.
 There are other binary solid solutions that reflect similar behavior to that depicted 
in Figure 2.10, such as Cu–Au, Ag–Au, Pt–Pd, Cu–Pd, to name a few. Quite often, 
the use of an alloy for a particular application is necessitated by the mechanical 
properties, rather than the desired electrical resistivity alone. For example, brass, 
which is 70% Cu–30% Zn in solid solution, has a higher strength compared to pure 
copper; as such, it is a suitable metal for the prongs of an electrical plug.
 An important semiempirical equation that can be used to predict the resistivity 
of an alloy is Nordheim’s rule which relates the impurity resistivity ρI to the atomic 
fraction X of solute atoms in a solid solution, as follows:

 ρI = CX(1 − X) [2.21]

where C is the constant termed the Nordheim coefficient, which represents the 
effectiveness of the solute atom in increasing the resistivity. Nordheim’s rule assumes 
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Figure 2.10 The Cu–Ni alloy system.
 SOURCES: Metals Handbook, 10th ed., vol. 2 and 3, Metals Park, OH: ASM International, 1991 and Hansen, M. and Anderko, K., 

Constitution of Binary Alloys, New York, NY: McGraw-Hill, 1958.
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 NOTE: For many isomorphous alloys C may be different at higher concentrations; that is, it 
may depend on the composition of the alloy.

 SOURCES: Fink, D.G., and Christiansen, D., eds., Electronics Engineers’ Handbook, 2nd ed., 
New York, NY: McGraw-Hill, 1982. Stanley, J.K., Electrical and Magnetic Properties of Metals, 
American Society for Metals, Metals Park, OH, 1963. Hansen, M. and Anderko, K., Constitution 
of Binary Alloys, 2nd ed., McGraw-Hill, New York, NY, 1985.

Table 2.3  Nordheim coefficient C (at 20 °C) for dilute alloys obtained from  
ρI = CX and X < 1 at.%

Solute in Solvent C Maximum Solubility at 25 °C

(element in matrix) (nΩ m) (at.%)

Au in Cu matrix 5500 100
Mn in Cu matrix 2900  24
Ni in Cu matrix 1200 100
Sn in Cu matrix 2900 0.6
Zn in Cu matrix  300  30
Cu in Au matrix  450 100
Mn in Au matrix 2410  25
Ni in Au matrix  790 100
Sn in Au matrix 3360  5
Zn in Au matrix  950  15

that the solid solution has the solute atoms randomly distributed in the lattice, and 
these random distributions of impurities cause the electrons to become scattered 
as they whiz around the crystal. For sufficiently small amounts of impurity, experi-
ments show that the increase in the resistivity ρI is nearly always simply proportional 
to the impurity concentration X, that is, ρI ∝ X, which explains the initial approxi-
mately equal increments of rise in the resistivity of copper with 1.12% Ni and 2.16% 
Ni additions as shown in Figure 2.9. For dilute solutions, Nordheim’s rule predicts 
the same linear behavior, that is, ρI = CX for X ≪ 1.
 Table 2.3 lists some typical Nordheim coefficients for various additions to cop-
per and gold. The value of the Nordheim coefficient depends on the type of solute 
and the solvent. A solute atom that is drastically different in size to the solvent atom 
will result in a bigger increase in ρI and will therefore lead to a larger C. An impor-
tant assumption in Nordheim’s rule in Equation 2.21 is that the alloying does not 
significantly vary the number of conduction electrons per atom in the alloy. Although 
this will be true for alloys with the same valency, that is, from the same column in 
the Periodic Table (e.g., Cu–Au, Ag–Au), it will not be true for alloys of different 
valency, such as Cu and Zn. In pure copper, there is just one conduction electron 
per atom, whereas each Zn atom can donate two conduction electrons. As the Zn 
content in brass is increased, more conduction electrons become available per atom. 
Consequently, the resistivity predicted by Equation 2.21 at high Zn contents is greater 
than the actual value because C refers to dilute alloys. To get the correct resistivity 
from Equation 2.21 we have to lower C, which is equivalent to using an effective 
Nordheim coefficient Ceff that decreases as the Zn content increases. In other cases, 
for example, in Cu–Ni alloys, we have to increase C at high Ni concentrations to 
account for additional electron scattering mechanisms that develop with Ni addition. 
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Nonetheless, the Nordheim rule is still a very useful tool for predicting the resis-
tivities of dilute alloys, particularly in the low-concentration region.
 With Nordheim’s rule in Equation 2.21, the resistivity of an alloy of composition 
X is
 ρ = ρmatrix + CX (1 − X) [2.22]

where ρmatrix = ρT + ρR is the resistivity of the matrix due to scattering from thermal 
vibrations and from other defects, in the absence of alloying elements. To reiterate, 
the value of C depends on the alloying element and the matrix. For example, C for 
gold in copper would be different than C for copper in gold, as shown in Table 2.3.
 In solid solutions, at some concentrations of certain binary alloys, such as 75% 
Cu–25% Au and 50% Cu–50% Au, the annealed solid has an orderly structure; that is, 
the Cu and Au atoms are not randomly mixed, but occupy regular sites. In fact, these 
compositions can be viewed as pure compounds—like the solids Cu3Au and CuAu. 
The resistivities of Cu3Au and CuAu will therefore be less than the same composition 
random alloy that has been quenched from the melt. As a consequence, the resistivity 
ρ versus composition X curve does not follow the dashed parabolic curve throughout; 
rather, it exhibits sharp falls at these special compositions, as illustrated in Figure 2.11.
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Figure 2.11 Electrical resistivity versus  
composition at room temperature in Cu–Au alloys.

The quenched sample (dashed curve) is obtained 
by quenching the liquid, and the Cu and Au  
atoms are randomly mixed. The resistivity obeys 
the Nordheim rule. When the quenched sample 
is annealed or the liquid is slowly cooled (solid 
curve), certain compositions (Cu3Au and CuAu) 
result in an ordered crystalline structure in  
which the Cu and Au atoms are positioned in an 
ordered fashion in the crystal and the scattering 
effect is reduced.

Lothar Nordheim (1923–1985) was a German physicist who obtained his 
PhD from University of Göttingen. He immigrated to the USA in 1934, and 
later became a physics professor at Duke University. The Nordheim rule  
in this chapter for the increase in the resistivity of a solid solution with 
added solute atoms is based on his theoretical work published in Annalen 
der Physik in 1931. His name will come up again in Chapter 4 under the 
Fowler–Nordheim tunneling current at high electric fields.

 Courtesy of Duke University.
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NORDHEIM’S RULE The alloy 90 wt.% Au–10 wt.% Cu is sometimes used in low-voltage 
dc electrical contacts, because pure gold is mechanically soft and the addition of copper 
increases the hardness of the metal without sacrificing the corrosion resistance. Predict the 
resistivity of the alloy and compare it with the experimental value of 108 nΩ m.

SOLUTION

We apply Equation 2.22, ρ(X) = ρAu + CX(1 − X) but with 10 wt.% Cu converted to the 
atomic fraction for X. If w is the weight fraction of Cu, w = 0.1, and if MAu and MCu are the 
atomic masses of Au and Cu, then the atomic fraction X of Cu is given by (see Example 1.2),

 X =
w∕MCu

w∕MCu + (1 − w)∕MAu

=
0.1∕63.55

(0.1∕63.55) + (0.90∕197)
= 0.256

 Given that ρAu = 22.8 nΩ m and C = 450 nΩ m,

 ρ = ρAu + CX(1 − X) = (22.8 nΩ m) + (450 nΩ m)(0.256)(1 − 0.256)

 = 108.5 nΩ m

This value is only 0.5% different from the experimental value.

 EXAMPLE 2.10

RESISTIVITY DUE TO IMPURITIES The mean speed of conduction electrons in copper is 
about 1.6 × 106 m s−1. Its room temperature resistivity is 17 nΩ m, and the atomic concen-
tration Nat in the crystal is 8.5 × 1022 cm−3. Suppose that we add 1 at.% Au to form a solid 
solution. What is the resistivity of the alloy, the effective mean free path, and the mean free 
path due to collisions with Au atoms only?

SOLUTION

According to Table 2.3, the Nordheim coefficient C of Au in Cu is 5500 nΩ m. With X = 0.01 
(1 at.%), the overall resistivity from Equation 2.22 is

 ρ = ρmatrix + CX(1 − X) = 17 nΩ m + (5500 nΩ m)(0.01)(1 − 0.01)

 = 17 nΩ m + 54.45 nΩ m = 71.45 nΩ m

Suppose that ℓ is the overall or effective mean free path and τ is the effective mean free time 
between scattering events (includes both scattering from lattice vibrations and impurities). Since 
ℓ = uτ, and the effective drift mobility μd = eτ∕me, the expression for the conductivity becomes

 σ = enμd =
e2nτ

me

=
e2nℓ

meu

We can now calculate the effective mean free path ℓ in the alloy given that copper has a 
valency of 1 and the electron concentration n = Nat,

 
1

71.5 × 10−9 Ω m
=

(1.6 × 10−19 C)2(8.5 × 1028 m−3)ℓ

(9.1 × 10−31 kg)(1.6 × 106 m s−1)

which gives ℓ = 9.4 nm. We can repeat the calculation for pure copper using σ = 1∕ρmatrix = 
1∕(17 × 10−9 Ω m) to find ℓCu = 39 nm. The mean free path is reduced approximately by 
4 times by adding only 1 at.% Au. The mean free path ℓI due to scattering from impurities 
only can be found from Equation 2.13 multiplied through by 1∕u, or by using Matthiessen’s 
rule in Equation 2.14:

 
1

ℓ
=

1

ℓCu

+
1

ℓI

 EXAMPLE 2.11

Conductivity 

and mean free 

path
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Substituting ℓCu = 39 nm and ℓ = 9.4 nm, we find ℓI = 12.4 nm.
 We can take these calculations one step further. If NI is the impurity concentration in 
the alloy, then NI = 0.01Nat = 0.01(8.5 × 1028 m−3) = 8.5 × 1026 m−3. The mean separation 
dI between the impurities can be estimated roughly from dI ≈ 1∕NI

1∕3, which gives dI ≈ 1.0 nm. 
It is clear that not all Au atoms can be involved in scattering the electrons since ℓI is much 
longer than dI. (Another way to look at it is to say that it takes more than just one collision 
with an impurity to randomize the velocity of the electron.)

DESIGN OF STRAIN GAUGES A strain gauge is a transducer attached to a body to measure 
its fractional elongation ΔL∕L, or the strain, under an applied load (force) F. The gauge is a 
grid of many folded runs of a thin, resistive wire glued to (or embedded in) a flexible back-
ing, as depicted in Figure 2.12. (See also photo on page 211.) The gauge is bonded to the 
body under test such that the resistive wire length is parallel to the strain. Suppose that the 
strain does not change the resistivity ρ,8 then the resistance R of the gauge wire is

 R =
ρL

π(D∕2)2
 [2.24]

 EXAMPLE 2.13

ALLOYS AND TCR Using the resistivities of Ni and nichrome, the TCR of Ni in Table 2.2, 
and the combined Mathiessens and Nordheim rules, find the TCR of nichrome.

SOLUTION

For an alloy AB in which A is the solvent (matrix) and B is the solute (added atoms), Equa-
tion 2.22 is

 ρAB = ρA + CX(1 − X)

TCR describes the change in ρ due to a change in T, so we differentiate the above equation 
with respect to T and assume that C is temperature independent

 
dρAB

dT
=

dρA

dT

so that the TCR of AB is

 αAB =
1

ρAB
(dρAB

dT ) =
1

ρAB
(dρA

dT ) =
ρA

ρAB
( dρA

ρAdT)
which gives

 αAB =
ρA

ρAB

αA [2.23]

Using the values from Table 2.2

 αAB =
(69 nΩ m)

(1100 nΩ m)
(0.0064 K−1) = 0.00040 K−1 or 4.0 × 10−4 K−1

which is what is shown in Table 2.2 for nichrome. Equation 2.23 brings home the distinct 
advantage of alloys. Their TCR is much lower than the solvent metal.

 EXAMPLE 2.12

 8 For most metals, this is a good assumption but not for semiconductors in which there is a change in the 
resistivity with strain as explained in Chapter 5. By the way, both gage and gauge are used though many 
electrical engineers use gage with strain gages.

TCR for an 

alloy AB



 2 . 3  MATTHIESSEN’S AND NORDHEIM’S RULES 151

where L and D are the length and diameter of the wire, respectively. The applied load changes 
L and D by δL and δD, which change R by δR. The total derivative of a function R of two 
variables L and D can be found by taking partial differentials (like those used for error cal-
culations in physics labs)

 δR = (∂R

∂L)δL + ( ∂R

∂D)δD

so that we can substitute Equation 2.24 into the above equation, differentiate, and then divide 
by R to find

 
δR

R
=

δL

L
− 2

δD

D
 [2.25]

The longitudinal and transverse strains, εl and εt, are defined as follows:

 
δL

L
= εl  and  

δD

D
= εt = −νεl

where ν is the Possion ratio (defined ν = εt∕εl). The strain we wish to measure is εl, or 
simply ε (= εl). We can substitute the above definitions into Equation 2.25 to derive the metal 

strain gauge equation

 
δR

R
= (1 + 2ν)ε [2.26]

 The gauge factor is an important gauge metric, defined as

 GF =
Fractional change in gauge property

Input signal
=

δR∕R

ε
= 1 + 2ν [2.27]

For many metals, ν ≈ 1∕3, so that typically GF is roughly 1.67.
 A major problem with strain gauges is that the change in R can be due to a change δT 

in temperature rather than strain ε. A change δT would increase L, D, and ρ. We can dif-
ferentiate R with respect to T by considering that ρ, L, and D depend on T. If α is the tem-
perature coefficient of resistivity and λ is the linear expansion coefficient, then differentiating 
Equation 2.23

 (1

R)dR

dT
= α − λ [2.28]

Typically, λ ≈ 2 × 10−5 K−1, and for pure metals, from Table 2.1 that α ≈ 1∕273 K−1 or 
3.6 × 10−3 K−1. A 1 °C fluctuation in the temperature will result in δR∕R = 3.6 × 10−3, which 
is about the same as δR∕R from a strain of ε = 2 × 10−3 at a constant temperature. Clearly, 
temperature fluctuations would not allow sensible strain measurements if we were to use a 

Metal strain 

gauge 

equation

Metal strain 

gauge factor

Effect of 

temperature

Gauge length

Solder tab

Grid of metal wires

Adhesive tape

Figure 2.12 The strain gauge consists 
of a long thin wire folded several times 
along its length to form a grid as shown 
above and embedded in a self-adhesive 
tape. The ends of the wire are attached 
to terminals (solder pads) for external 
connections. The tape is stuck on  
the component whose strain is to be 
measured.
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pure metal wire. Metal strain gauges therefore use alloys such as nichrome or constantan in 
which α is very small. Further, engineers use strain gauges in special resistance bridge con-
figurations to further reduce the effects of temperature variations. (See Question 2.23.)
 Even if we make α − λ = 0 in Equation 2.28, the temperature change still produces a 
change in the resistance because the metal wire and specimen expand by different amounts 
and this creates a strain and hence a change in the resistance. Suppose that λgauge and λspecimen 
are the linear expansion coefficients of the gauge wire and the specimen, then the differential 
expansion will be λspecimen − λgauge and this can only be zero if λgauge = λspecimen.

2.4   RESISTIVITY OF MIXTURES  

AND POROUS MATERIALS

2.4.1 HETEROGENEOUS MIXTURES

Nordheim’s rule only applies to solid solutions that are single-phase solids. In other 
words, it is valid for homogeneous mixtures in which the atoms are mixed at the atomic 
level throughout the solid, as in the Cu–Ni alloy. The classic problem of determining 
the effective resistivity of a multiphase solid is closely related to the evaluation of the 
effective dielectric constant, effective thermal conductivity, effective elastic modulus, 
effective Poisson’s ratio, etc., for a variety of mixtures, including such composite 
materials as fiberglass. Indeed, many of the mixture rules are identical.
 Consider a material with two distinct phases α and β, which are stacked in lay-
ers as illustrated in Figure 2.13a. Let us evaluate the effective resistivity for current 
flow in the x direction. Since the layers are in series, the effective resistance Reff for 
the whole material is

 Reff =
Lαρα

A
+

Lβρβ

A
 [2.29]
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Figure 2.13 The effective resistivity of a material with a layered structure. (a) Along a direction perpendicular  
to the layers. (b) Along a direction parallel to the plane of the layers. (c) Materials with a dispersed phase in a  
continuous matrix.
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where Lα is the total length (thickness) of the α-phase layers, and Lβ is the total 
length of the β-phase layers, Lα + Lβ = L is the length of the sample, and A is the 
cross-sectional area. Let χα and χβ be the volume fractions of the α and β phases. 
The effective resistance is defined by

 Reff =
Lρeff

A

where ρeff is the effective resistivity. Using χα = Lα∕L and χβ = Lβ∕L in Equation 2.29, 
we find

 ρeff = χαρα + χβρβ [2.30]

which is called the resistivity–mixture rule (or the series rule of mixtures).
 If we are interested in the effective resistivity in the y direction, as shown in 
Figure 2.13b, obviously the α and β layers are in parallel, so an effective conductiv-
ity could be calculated in the same way as we did for the series case to find the 
parallel rule of mixtures, that is,

 σeff = χασα + χβσβ [2.31]

where σ is the electrical conductivity of those phases identified by the subscript. 
Notice that the parallel rule uses the conductivity, and the series rule uses the resis-
tivity. Equation 2.31 is often referred to as the conductivity–mixture rule.

 Although these two rules refer to special cases, in general, for a random mixture 
of phase α and phase β, we would not expect either equation to apply rigorously. 
When the resistivities of two randomly mixed phases are not markedly different, 
the series mixture rule can be applied at least approximately, as we will show in 
Example 2.14.
 However, if the resistivity of one phase is appreciably different than the other, 
there are two semiempirical rules that are quite useful in materials engineering.9 
Consider a heterogeneous material that has a dispersed phase (labeled d), in the form 
of particles, in a continuous phase (labeled c) that acts as a matrix, as depicted in 
Figure 2.13c. Assume that ρc and ρd are the resistivities of the continuous and dis-
persed phases, and χc and χd are their volume fractions. If the dispersed phase is 
much more resistive with respect to the matrix, that is, ρd > 10ρc, then

 ρeff = ρc

(1 + 1
2 χd)

(1 − χd)
  (ρd > 10ρc)  [2.32]

 On the other hand, if ρd < (ρc∕10), then

 ρeff = ρc

(1 − χd)
(1 + 2χd)

  (ρd < 0.1ρc)  [2.33]

 9 Over the years, the task of predicting the resistivity of a mixture has challenged many theorists and 
experimentalists, including Lord Rayleigh who, in 1892, published an excellent exposition on the subject in  
the Philosophical Magazine. An extensive treatment of mixtures can be found in a paper by J. A. Reynolds and 
J. M. Hough published in 1957 (Proceedings of the Physical Society (London), 70, 769), which contains most of 
the mixture rules that are widely used today.

Resistivity–

mixture rule

Conductivity–

mixture rule

Mixture rule

Mixture rule
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 We therefore have at least four mixture rules at our disposal, the uses of which 
depend on the mixture geometry and the resistivities of the various phases. The 
problem is identifying which one to use for a given material, which in turn requires 
a knowledge of the microstructure and properties of the constituents. It should be 
emphasized that, at best, Equations 2.30 to 2.33 provide only a reasonable estimate 
of the effective resistivity of the mixture.10

 Equations 2.32 and 2.33 are simplified special cases of a more general mixture 
rule due to Reynolds and Hough (1957). Consider a mixture that consists of a 
continuous conducting phase with a conductivity σc that has dispersed spheres of 
another phase of conductivity σd and of volume fraction χ, similar to Figure 2.13c. 
The effective conductivity σeff of the mixture is given by

 
σeff − σc

σeff + 2σc

= χ 
σd − σc

σd + 2σc

 [2.34]

 It is assumed that the spheres are randomly dispersed in the material. It is left 
as an exercise to show that if σd ≪ σc, then Equation 2.34 reduces to Equation 2.32. 
A good application would be the calculation of the effective resistivity of porous 
carbon electrodes, which can be 50–100 percent more resistive than bulk polycrystal-
line carbon (graphite). If, on the other hand, σd ≫ σc, the dispersed phase is very 
conducting, for example, silver particles mixed into a graphite paste to increase the 
conductivity of the paste, then Equation 2.34 reduces to Equation 2.33. The useful-
ness of Equation 2.34 cannot be underestimated inasmuch as there are many types 
of materials in engineering that are mixtures of one type or another.

 10 More accurate mixture rules have been established for various types of mixtures with components possessing 
widely different properties, which the keen reader can find in P. L. Rossiter, The Electrical Resistivity of Metals 
and Alloys, Cambridge University Press, Cambridge, 1987.

Reynolds and 

Hough rule 

for mixture of 

dispersed 

phases

THE RESISTIVITY-MIXTURE RULE Consider a two-phase alloy consisting of phase α and 
phase β randomly mixed as shown in Figure 2.14a. The solid consists of a random mixture 
of two types of resistivities, ρα of α and ρβ of β. We can divide the solid into a bundle of N 
parallel fibers of length L and cross-sectional area A∕N, as shown in Figure 2.14b. In this 
fiber (infinitesimally thin), the α and β phases are in series, so if χα = Vα∕V is the volume 
fraction of phase α and χβ is that of β, then the total length of all α regions present in 
the fiber is χαL, and the total length of β regions is χβL. The two resistances are in series, so 
the fiber resistance is

 Rfiber =
ρα(  χαL)

(A∕N)
+

ρβ(  χβL)

(A∕N)

 But the resistance of the solid is made up of N such fibers in parallel, that is,

 Rsolid =
Rfiber

N
=

ρα χαL

A
+

ρβχβL

A

 By definition, Rsolid = ρeff L∕A, where ρeff is the effective resistivity of the material, so

 
ρeffL

A
=

ρα χαL

A
+

ρβχβL

A

 EXAMPLE 2.14
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 Thus, for a two-phase solid, the effective resistivity will be

 ρeff = χαρα + χβρβ

 If the densities of the two phases are not too different, we can use weight fractions instead 
of volume fractions. The series rule fails when the resistivities of the phases are vastly dif-
ferent. A major (and critical) tacit assumption here is that the current flow lines are all 
parallel, so that no current crosses from one fiber to another. Only then can we say that the 
effective resistance is Rfiber∕N. Further, notice that the rule fails when one phase has infinite 
resistivity even if its volume fraction is very small.

A

(a)

A/N

L

(b)

α

α

β

β
L

Figure 2.14 (a) A two-phase 
solid. (b) A thin fiber cut out 
from the solid.

Resistivity 

mixture rule

A COMPONENT WITH DISPERSED AIR PORES What is the effective resistivity of 95∕5 
(95% Cu–5% Sn) bronze, which is made from powdered metal containing dispersed pores at 
15v⁄o (volume percent, vol.%). The resistivity of 95∕5 bronze is 1 × 10−7 Ω m.

SOLUTION

Pores are infinitely more resistive (ρd = ∞) than the bronze matrix, so we use Equation 2.32,

 ρeff = ρc

1 + 1
2 χd

1 − χd

= (1 × 10−7 Ω m)
1 + 1

2(0.15)

1 − 0.15
= 1.27 × 10−7 Ω m

 EXAMPLE 2.15

COMBINED NORDHEIM AND MIXTURE RULES Brass is an alloy composed of Cu and Zn. 
The alloy is a solid solution for Zn content less than 30 wt.%. Consider a brass component 
made from sintering 90 at.% Cu and 10 at.% Zn brass powder. The component contains 
dispersed air pores at 15v⁄o (vol.%). The Nordheim coefficient C of Zn in Cu is 300 nΩ m, 
under very dilute conditions. Each Zn atom donates two, whereas each Cu atom of the matrix 
donates one conduction electron, so that the Cu–Zn alloy has a higher electron concentration 
than in the Cu crystal itself. Predict the effective resistivity of this brass component.

SOLUTION

We first calculate the resistivity of the alloy without the pores, which forms the continuous 
phase in the powdered material. The simple Nordheim’s rule predicts that

 ρbrass = ρcopper + CX(1 − X) = 17 nΩ m + 300(0.1)(1 − 0.1) = 44 nΩ m

The experimental value, about 40 nΩ m, is actually less because Zn has a valency of 2, and 
when a Zn atom replaces a host Cu atom, it donates two electrons instead of one. We can 
very roughly adjust the calculated resistivity by noting that a 10 at.% Zn addition increases 
the conduction electron concentration by 10% and hence reduces the resistivity ρbrass by 10% 
to 40 nΩ m.

 EXAMPLE 2.16
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 The powdered metal has χd = 0.15, which is the volume fraction of the dispersed phase, 
that is, the air pores, and ρc = ρbrass = 40 nΩ m is the resistivity of the continuous matrix. 
The effective resistivity of the powdered metal is given by

 ρeff = ρc

1 + 1
2 χd

1 − χd

= (40 nΩ m)
1 + 1

2(0.15)

1 − (0.15)
= 50.6 nΩ m

If we use the simple conductivity mixture rule, ρeff is 47.1 nΩ m, and it is underestimated.
 The effective Nordheim coefficient Ceff at the composition of interest is about 255 nΩ m, 
which would give ρbrass = ρo + CeffX(1 − X) = 40 nΩ m. It is left as an exercise to show 
that the effective number of conduction electrons per atom in the alloy is 1 + X so that we 
must divide the ρbrass calculated above by (1 + X) to obtain the correct resistivity of brass if 
we use the listed value of C under dilute conditions. (See Question 2.10.)

2.4.2  TWO-PHASE ALLOY (Ag–Ni) RESISTIVITY  

AND ELECTRICAL CONTACTS

Certain binary alloys, such as Pb–Sn and Cu–Ag, only exhibit a single-phase alloy 
structure over very small composition ranges. For most compositions, these alloys 
form a two-phase heterogeneous mixture of phases α and β. A typical phase diagram 
for such a eutectic binary alloy system is shown in Figure 2.15a, which could be a 
schematic scheme for the Cu–Ag system or the Pb–Sn system. The phase diagram 
identifies the phases existing in the alloy at a given temperature and composition. 
If the overall composition X is less than X1, then at T1, the alloy will consist of phase 
α only. This phase is Cu rich. When the composition X is between X1 and X2, then 
the alloy will consist of the two phases α and β randomly mixed. The phase α is Cu 

Composition, X (% B)O X1 X2

Nordheim's rule

Mixture rule

(b)
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Figure 2.15 Eutectic-forming  
alloys, e.g., Cu–Ag. (a) The phase 
diagram for a binary, eutectic- 
forming alloy. (b) The resistivity  
versus composition for the  
binary alloy.
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rich (that is, it has composition X1) and the phase β is Ag rich (composition X2). 
The relative amounts of each phase are determined by the well-known lever rule, 
which means that we can determine the volume fractions of α and β, χα and χβ, as 
the alloy composition is changed from X1 to X2.
 For this alloy system, the dependence of the resistivity on the alloy composition 
is shown in Figure 2.15b. Between O and X1 (% Ag), the solid is one phase (iso-
morphous); therefore, in this region, ρ increases with the concentration of Ag by 
virtue of Nordheim’s rule. At X1, the solubility limit of Ag in Cu is reached, and 
after X1, a second phase, which is β rich, is formed. Thus, in the composition range 
X1 to X2, we have a mixture of α and β phases, so ρ is given by Equation 2.30 for 
mixtures and is therefore less than that for a single-phase alloy of the same compo-
sition. Similarly, at the Ag end (X2 < X < 100%), as Cu is added to Ag, between 
100% Ag and the solubility limit at X2, the resistivity is determined by Nordheim’s 
rule. The expected behavior of the resistivity of an eutectic  binary alloy over the 
whole composition range is therefore as depicted in Figure 2.15b.
 Electrical, thermal, and other physical properties make copper the most widely 
used metallic conductor. For many electrical applications, high-conductivity copper, 
having extremely low oxygen and other impurity contents, is produced. Although alu-
minum has a conductivity of only 60% of that of copper, it is also frequently used as 
an electrical conductor. On the other hand, silver has a higher conductivity than copper, 
but its cost prevents its use, except in specialized applications. Switches often have 
silver contact specifications, though it is likely that the contact metal is actually a 
silver alloy. In fact, silver has the highest electrical and thermal conductivity and is 
consequently the natural choice for use in electrical contacts. In the form of alloys with 
various other metals, it is used extensively in make-and-break switching applications 
for currents of up to about 600 A. The precious metals, gold, platinum, and palladium, 
are extremely resistant to corrosion; consequently, in the form of various alloys, par-
ticularly with Ag, they are widely used in electrical contacts. For example, Ag–Ni alloys 
are common electrical contact materials for the switches in many household appliances.
 It is frequently necessary to improve the mechanical properties of a metal alloy 
without significantly impairing its electrical conductivity. Solid-solution alloying 
improves mechanical strength, but at the expense of conductivity. A compromise must 
often be found between electrical and mechanical properties. Most often, strength is 
enhanced by introducing a second phase that does not have such an adverse effect on 
the conductivity. For example, Ag–Pd alloys form a solid solution such that the resis-
tivity increases appreciably due to Nordheim’s rule. The resistivity of Ag–Pd is mainly 
controlled by the scattering of electrons from Pd atoms randomly mixed in the Ag 
matrix. In contrast, Ag and Ni form a two-phase alloy, a mixture of Ag-rich and Ni-
rich phases. The Ag–Ni alloy is almost as strong as the Ag–Pd alloy, but it has a 
lower resistivity because the mixture rule volume averages the two resistivities.

2.5  THE HALL EFFECT AND HALL DEVICES

An important phenomenon that we can comfortably explain using the “electron as a 
particle” concept is the Hall effect, which is illustrated in Figure 2.16. When we apply 
a magnetic field in a perpendicular direction to the applied field (which is driving 
the current), we find there is a transverse field in the sample that is perpendicular 
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to the direction of both the applied field Ex and the magnetic field Bz, that is, in the 
y direction. Putting a voltmeter across the sample, as in Figure 2.16, gives a voltage 
reading VH. The applied field Ex drives a current Jx in the sample. The electrons 
move in the −x direction, with a drift velocity vdx. Because of the magnetic field, 
there is a force (called the Lorentz force) acting on each electron and given by 
Fy = −evdx Bz. The direction of this Lorentz force is the −y direction, which we can 
show by applying the corkscrew rule, because, in vector notation, the force F acting 
on a charge q moving with a velocity v in a magnetic field B is given through the 
vector product

 F = qv × B [2.35]

 All moving charges experience the Lorentz force in Equation 2.35 as shown 
schematically in Figure 2.17. In our example of a metal in Figure 2.16, this Lorentz 
force is the −y direction, so it pushes the electrons downward, as a result of which 
there is a negative charge accumulation near the bottom of the sample and a positive 
charge near the top of the sample, due to exposed metal ions (e.g., Cu+).
 The accumulation of electrons near the bottom results in an internal electric field 
EH in the −y direction. This is called the Hall field and gives rise to a Hall voltage 
VH between the top and bottom of the sample. Electron accumulation continues until 
the increase in EH is sufficient to stop the further accumulation of electrons. When 
this happens, the magnetic-field force evdxBz that pushes the electrons down just bal-
ances the force eEH that prevents further accumulation. Therefore, in the steady state,

 eEH = evdxBz

Lorentz force

V

Jy = 0

x
z

y

V

Bz

Bz

VH

JxJx

A

Ex

EH

vdx

evdx Bz

eEH

Figure 2.16 Illustration of the Hall effect.

The z direction is out of the plane  
of the paper. The externally applied  
magnetic field is along the z direction.

v

B

F = qv × B

q = +e

B
B

F = qv × B

v

q = –e

(a) (b)

Figure 2.17 A moving charge experiences a Lorentz 
force in a magnetic field. (a) A positive charge moving 
in the x direction experiences a force downward.  
(b) A negative charge moving in the −x direction also 
experiences a force downward.
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 However, Jx = envdx. Therefore, we can substitute for vdx to obtain eEH = JxBz∕n or

 EH = ( 1

en)JxBz [2.36]

 A useful parameter called the Hall coefficient RH is defined as

 RH =
Ey

JxBz

 [2.37]

 The quantity RH measures the resulting Hall field, along y, per unit transverse 
applied current and magnetic field. The larger RH, the greater Ey for a given Jx and 
Bz. Therefore, RH is a gauge of the magnitude of the Hall effect. A comparison of 
Equations 2.36 and 2.37 shows that for metals,

 RH = −
1
en

 [2.38]

The reason for the negative sign is that EH = −Ey, which means that EH is in the −y 
direction.
 Inasmuch as RH depends inversely on the free electron concentration, its value in 
metals is much less than that in semiconductors. In fact, Hall-effect devices (such as 
magnetometers) always employ a semiconductor material, simply because the RH is 
larger. Table 2.4 lists the Hall coefficients of a few metals. RH is typically negative for 
most metals, although there also many metals that exhibit a positive Hall coefficient 
(see Be in Table 2.4). The reasons for the latter involve the band theory of solids, which 
we will discuss in Chapter 4. Table 2.4 also shows the theoretical values for RH cal-
culated from Equation 2.38 by using the atomic concentration and number of expected 
conduction electrons. The agreement is surprisingly good for some of the metals (Al, 
K, Na) even though we used simple classical ideas in the derivation of RH.11

Definition  

of Hall 

coefficient

Hall 

coefficient  

for electron 

conduction

 11 See Question 2.14 in which the number of conduction electrons are calculated from experimental RH values 
and compared with the valency of the metal.

Table 2.4  Hall coefficient and Hall mobility (μH = ∣σRH∣) of selected metals

  RH (m3 A−1 s−1) RH (m3 A−1 s−1) μH = ∣σRH∣

Metal Valency (Experiment) × 10−11 (Theory) × 10−11 (cm2 V−1 s−1)

Na 1 −24.8 −24.6 50.8
K 1 −42.8 −47.0 57.9
Ag 1 −9.0 −10.7 53.9
Cu 1 −5.4 −7.4 31.6
Au 1 −7.2 −10.6 31.9
Mg 2 −8.3 −7.2 18.5
Al 3 −3.4 −3.5 12.6
Co 2 +36
Be 2 +24
Zn 2 +3.3

 SOURCE: Hurd, C., The Hall Coefficient of Metals and Alloys, Plenum, New York, NY, 1972, along with other 
various sources.
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 Since the Hall voltage depends on the product of two quantities, the current 
density Jx and the transverse applied magnetic field Bz, we see that the effect natu-
rally multiplies two independently variable quantities. Therefore, it provides a means 
of carrying out a multiplication process. One obvious application is measuring the 
power dissipated in a load, where the load current and voltage are multiplied. There 
are many instances when it is necessary to measure magnetic fields, and the Hall 
effect is ideally suited to such applications. Commercial Hall-effect magnetometers 
can measure magnetic fields as low as 10 nT, which should be compared to the 
earth’s magnetic field of ∼50 μT. Depending on the application, manufacturers use 
different semiconductors to obtain the desired sensitivity. Hall-effect semiconductor 
devices are generally inexpensive, small, and reliable. Typical commercial, linear 
Hall-effect sensor devices are capable of providing a Hall voltage of ∼10 mV per mT 
of applied magnetic field.
 The Hall effect is also widely used in magnetically actuated electronic switches. 
The application of a magnetic field, say from a magnet, results in a Hall voltage that 
is amplified to trigger an electronic switch. The switches invariably use Si and are 
readily available from various companies. Hall-effect electronic switches are used as 
noncontacting keyboard and panel switches that last almost forever, as they have no 
mechanical contact assembly. Another advantage is that the electrical contact is 
“bounce” free. There are a variety of interesting applications for Hall-effect switches, 
ranging from ignition systems, to speed controls, position detectors, alignment controls, 
brushless dc motor commutators, etc.

HALL-EFFECT WATTMETER The Hall effect can be used to implement a wattmeter to mea-
sure electrical power dissipated in a load. The schematic sketch of the Hall-effect wattmeter 
is shown in Figure 2.18, where the Hall-effect sample is typically a semiconductor material 
(usually Si). The load current IL passes through two coils, which are called current coils and 
are shown as C in Figure 2.18. These coils set up a magnetic field Bz such that Bz ∝ IL. The 
Hall-effect sample is positioned in this field between the coils. The voltage VL across the load 
drives a current Ix = VL∕R through the sample, where R is a series resistance that is much 
larger than the resistance of the sample and that of the load. Normally, the current Ix is very 

  EXAMPLE 2.17

V

IL

VL

VL

Bz

Ix = VL /R R

VH

w

IL

C C

W attmeter

Load

RLSource

IL IL

VL

Figure 2.18 Wattmeter based on the Hall effect.

Load voltage and load current have L as subscript; C denotes the current coils for setting up a magnetic field through 
the Hall-effect sample (semiconductor).
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HALL MOBILITY Show that if RH is the Hall coefficient and σ is the conductivity of a metal, 
then the drift mobility of the conduction electrons is given by

 μd = ∣σ RH∣ [2.39]

 The Hall coefficient and conductivity of copper at 300 K have been measured to be 
−0.54 × 10−10 m3 A−1 s−1 and 5.9 × 107 Ω−1 m−1, respectively. Calculate the drift mobility 
of electrons in copper.

SOLUTION

Consider the expression for

 RH =
−1

en

Since the conductivity is given by σ = enμd, we can substitute for en to obtain

 RH =
−μd

σ
  or  μd = −RHσ

which is Equation 2.39. The drift mobility can thus be determined from RH and σ.
 The product of σ and RH is called the Hall mobility μH. Some values for the Hall 
mobility of electrons in various metals are listed in Table 2.4. From the expression in Equa-
tion 2.39, we get

 μd = ∣(−0.54 × 10−10 m3 A−1 s−1)(5.9 × 107 Ω−1 m−1)∣ = 3.2 × 10−3 m2 V−1 s−1

 It should be mentioned that Equation 2.39 is an oversimplification. The actual relationship 
involves a numerical factor that multiplies the right term in Equation 2.39. The factor depends 
on the charge carrier scattering mechanism that controls the drift mobility.

 EXAMPLE 2.18

CONDUCTION ELECTRON CONCENTRATION FROM THE HALL EFFECT Using the elec-
tron drift mobility from Hall-effect measurements (Table 2.4), calculate the concentration of 
conduction electrons in copper, and then determine the average number of electrons contrib-
uted to the free electron gas per copper atom in the solid.

SOLUTION

The number of conduction electrons is given by n = σ∕eμd. The conductivity of copper is 5.9 × 
107 Ω−1 m−1, whereas from Table 2.4, the electron drift mobility is 3.2 × 10−3 m2 V−1 s−1. So,

 n =
(5.9 × 107 Ω−1 m−1)

[ (1.6 × 10−19 C)(3.2 × 10−3 m2 V−1 s−1) ]
= 1.15 × 1029 m−3

 Since the concentration of copper atoms is 8.5 × 1028 m−3, the average number of electrons 
contributed per atom is (1.15 × 1029 m−3)∕(8.5 × 1028 m−3) ≈ 1.36.

 EXAMPLE 2.19 

small and negligible compared to the load current. If w is the width of the sample, then the 
measured Hall voltage is

 VH = wEH = wRHJxBz ∝ IxBz ∝ VLIL

which is the electrical power dissipated in the load. The voltmeter that measures VH can now 
be calibrated to read directly the power dissipated in the load.
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2.6  THERMAL CONDUCTION

2.6.1 THERMAL CONDUCTIVITY

Experience tells us that metals are both good electrical and good thermal conductors. 
We may therefore surmise that the free conduction electrons in a metal must also 
play a role in heat conduction. Our conjecture is correct for metals, but not for other 
materials. The transport of heat in a metal is accomplished by the electron gas (con-
duction electrons), whereas in nonmetals, the conduction is due to lattice vibrations.
 When a metal piece is heated at one end, the amplitude of the atomic vibrations, 
and thus the average kinetic energy of the electrons, in this region increases, as 
depicted in Figure 2.19. Electrons gain energy from energetic atomic vibrations when 
the two collide. By virtue of their increased random motion, these energetic electrons 
then transfer the extra energy to the colder regions by colliding with the atomic 
vibrations there. Thus, electrons act as “energy carriers.”
 The thermal conductivity of a material, as its name implies, measures the ease 
with which heat, that is, thermal energy, can be transported through the medium. 
Consider the metal rod shown in Figure 2.20, which is heated at one end. Heat will 
flow from the hot end to the cold end. Experiments show that the rate of heat flow, 
Q′ = dQ∕dt, through a thin section of thickness δx is proportional to the temperature 
gradient δT∕δx and the cross-sectional area A, so

 Q′ = −Aκ 

δT

δx
 [2.40]

Vibrating Cu+ ionsElectron gas

Hot Cold
Heat

Figure 2.19 Thermal conduction in a metal involves 
transferring energy from the hot region to the cold region 
by conduction electrons.

More energetic electrons (shown with longer velocity 
vectors) from the hotter regions arrive at cooler regions, 
collide with lattice vibrations, and transfer their energy. 
Lengths of arrowed lines on atoms represent the  
magnitudes of atomic vibrations.

δx

δTHot Cold

dQ

dtHeat A

Figure 2.20 Heat flow in a metal rod heated at 
one end.

Consider the rate of heat flow, dQ∕dt, across a 
thin section δx of the rod. The rate of heat flow is 
proportional to the temperature gradient δT∕δx 
and the cross-sectional area A.

Fourier’s law 

of thermal 

conduction
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where κ is a material-dependent constant of proportionality that we call the thermal 

conductivity. The negative sign indicates that the heat flow direction is that of 
decreasing temperature. Equation 2.40 is often referred to as Fourier’s law of heat 
conduction and is a defining equation for κ. The driving force for the heat flow is 
the temperature gradient δT∕δx. If we compare Equation 2.40 with Ohm’s law for 
the electric current I, we see that

 I = −Aσ 

δV

δx
 [2.41]

which shows that in this case, the driving force is the potential gradient, that is, the 
electric field.12 In metals, electrons participate in the processes of charge and heat 
transport, which are characterized by σ and κ, respectively. Therefore, it is not sur-
prising to find that the two coefficients are related by the Wiedemann–Franz–

Lorenz law,13 which is

 
κ

σT
= CWFL [2.42]

where CWFL = π2k2∕3e2 = 2.44 × 10−8 W Ω K−2 is a constant called the Lorenz 

number (or the Wiedemann–Franz–Lorenz coefficient).
 Experiments on a wide variety of metals, ranging from pure metals to various 
alloys, show that Equation 2.42 is reasonably well obeyed at close to room tem-
perature and above, as illustrated in Figure 2.21. Since the electrical conductivity of 

Figure 2.21 Thermal conductivity κ versus  
electrical conductivity σ for various metals  
(elements and alloys) at 20 °C.

The solid line represents the WFL law with  
CWFL ≈ 2.44 × 108 W Ω K−2.
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 12 Recall that J = σE which is equivalent to Equation 2.41.

 13 Historically, Wiedemann and Franz noted in 1853 that κ∕σ is the same for all metals at the same temperature. 
Lorenz in 1881 showed that κ∕σ is proportional to the temperature with a proportionality constant that is nearly 
the same for many metals. The law stated in equation 2.42 reflects both observations. By the way, Lorenz, who 
was a Dane, should not be confused with Lorentz, who was Dutch.
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pure metals is inversely proportional to the temperature, we can immediately con-
clude that the thermal conductivity of these metals must be relatively temperature 
independent at room temperature and above.
 Figure 2.22 shows the temperature dependence of κ for copper and aluminum 
down to the lowest temperatures. It can be seen that for these two metals, above 
∼100 K, the thermal conductivity becomes temperature independent, in agreement 
with Equation 2.42. Qualitatively, above ∼100 K, κ is constant, because heat conduc-
tion depends essentially on the rate at which the electron transfers energy from one 
atomic vibration to another as it collides with them (Figure 2.19). This rate of energy 
transfer depends on the mean speed of the electron u, which increases only fraction-
ally with the temperature. In fact, the fractionally small increase in u is more than 
sufficient to carry the energy from one collision to another and thereby excite more 
energetic lattice vibrations in the colder regions.
 Nonmetals do not have any free conduction electrons inside the crystal to trans-
fer thermal energy from hot to cold regions of the material. In nonmetals, the energy 
transfer involves lattice vibrations, that is, atomic vibrations of the crystal. We know 
that we can view the atoms and bonds in a crystal as balls connected together through 
springs as shown for one chain of atoms in Figure 2.23. As we know from the kinetic 
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Figure 2.22 Thermal conductivity versus temperature 
for two pure metals (Cu and Al) and two alloys (brass and 
Al–14% Mg).
 SOURCE: Data extracted from Touloukian, Y.S., et al.,  

“Thermal Conductivity, Metallic Elements and Alloys,” 
Thermophysical Properties of Matter, vol.1, 1970. New York,  
NY: Plenum, 1970.

Energetic atomic vibrations

Hot Cold

Equilibrium

Figure 2.23 Conduction of heat in insulators involves the generation and propagation of atomic  
vibrations through the bonds that couple the atoms (an intuitive figure).
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molecular theory, all the atoms would be vibrating and the average vibrational kinetic 
energy would be proportional to the temperature. Intuitively, as depicted in Figure 2.23, 
when we heat one end of a crystal, we set up large-amplitude atomic vibrations at 
this hot end. The springs couple the vibrations to neighboring atoms and thus allow 
the large-amplitude vibrations to propagate, as a vibrational wave, to the cooler 
regions of the crystal. If we were to grab the left-end atom in Figure 2.23 and vibrate 
it violently, we would be sending vibrational waves down the ball-spring-ball chain. 
The efficiency of heat transfer depends not only on the efficiency of coupling 
between the atoms, and hence on the nature of interatomic bonding, but also on how 
the vibrational waves propagate in the crystal and how they are scattered by crystal 
imperfections and by their interactions with other vibrational waves; this topic is 
discussed in Chapter 4. The stronger the coupling, the greater will be the thermal 
conductivity, a trend that is intuitive but also borne out by experiments. Diamond 
has an exceptionally strong covalent bond and also has a very high thermal conduc-
tivity; κ ≈ 1000 W m−1 K−1. On the other hand, polymers have weak secondary 
bonding between the polymer chains and their thermal conductivities are very poor; 
κ < 1 W m−1 K−1.
 The thermal conductivity, in general, depends on the temperature. Different 
classes of materials exhibit different κ values and also different κ versus T behavior. 
Table 2.5 summarizes κ at room temperature for various classes of materials. Notice 
how ceramics have a very large range of κ values.

Table 2.5 Typical thermal conductivities of various classes of materials at 25 °C

Material κ (W m−1 K−1) Material κ (W m−1 K−1)

Pure metal  Ceramics and glasses

 Nb 52  Glass-borosilicate 0.75

 Fe 80  Silica-fused (SiO2) 1.5

 Zn 113  S3N4 20

 W 178  Alumina (Al2O3) 30

 Al 250  Sapphire (Al2O3) 37

 Cu 390  Beryllium (BeO) 260

 Ag 420  Diamond ~1000

Metal alloys  Polymers

 Stainless steel 12–16  Polypropylene 0.12

 55% Cu–45% Ni 19.5  PVC 0.17

 70% Ni–30% Cu 25  Polycarbonate 0.22

 1080 steel 50  Nylon 6,6 0.24

 Bronze (95% Cu–5% Sn) 80  Teflon 0.25

 Brass (63% Cu–37% Zn) 125  Polyethylene, low density 0.3

 Dural (95% Al–4% Cu–1% Mg) 147  Polyethylene, high density 0.5

THERMAL CONDUCTIVITY A 95∕5 (95% Cu–5% Sn) bronze bearing made of powdered 
metal contains 15v⁄o (vol.%) porosity. Calculate its thermal conductivity at 300 K, given that 
the electrical conductivity of 95∕5 bronze is 107 Ω−1 m−1.

 EXAMPLE 2.20
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SOLUTION

Recall that in Example 2.15, we found the electrical resistivity of the same bronze by using 
the mixture rule in Equation 2.32 in Section 2.4. We can use the same mixture rule again 
here, but we need the thermal conductivity of 95∕5 bronze. From κ∕σT = CWFL, we have

 κ = σTCWFL = (1 × 107)(300)(2.44 × 10−8) = 73.2 W m−1 K−1

 Thus, the effective thermal conductivity is

 
1

κeff
=

1
κc

[1 + 1
2 χd

1 − χd
] =

1
(73.2 W m−1 K−1)[1 + 1

2(0.15)
1 − 0.15 ]

so that

 κeff = 57.9 W m−1 K−1

2.6.2 THERMAL RESISTANCE

Consider a component of length L that has a temperature difference ΔT between its 
ends as in Figure 2.24a. The temperature gradient is ΔT∕L. Thus, the rate of heat 
flow Q′, or the heat current, is

 Q′ = Aκ 

ΔT

L
=

ΔT

(L∕κA)
 [2.43]

 This should be compared with Ohm’s law in electric circuits,

 I =
ΔV

R
=

ΔV

(L∕σA)
 [2.44]

where ΔV is the voltage difference across a conductor of resistance R, and I is the 
electric current.
 In analogy with electrical resistance, we may define thermal resistance θ by

 Q′ =
ΔT

θ
 [2.45]

where, in terms of thermal conductivity,

 θ =
L

κA
 [2.46]

Ohm’s law

Definition of 

thermal 

resistance

Thermal 

resistance

Fourier’s law

Hot

 L

ΔT

Q'

Cold

A
Q' Q'

Q' = ΔT/θ

ΔT

θ

(a) (b)

Figure 2.24 Conduction of heat through a  
component in (a) can be modeled as a thermal  
resistance θ shown in (b) where Q′ = ΔΤ∕θ.
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 The rate of heat flow Q′ and the temperature difference ΔT correspond to the 
electric current I and potential difference ΔV, respectively. Thermal resistance is the 
thermal analog of electrical resistance and its thermal circuit representation is shown 
in Figure 2.24b.

THERMAL RESISTANCE A brass disk of electrical resistivity 50 nΩ m conducts heat from 
a heat source to a heat sink at a rate of 10 W. If its diameter is 20 mm and its thickness is 
30 mm, what is the temperature drop across the disk, neglecting the heat losses from the surface?

SOLUTION

We first determine the thermal conductivity:

 κ = σTCWFL = (5 × 10−8 Ω m)−1(300 K)(2.44 × 10−8 W Ω K−2)

 = 146 W m−1 K−1

 The thermal resistance is

 θ =
L

κA
=

(30 × 10−3 m)

(146 W m−1 K−1)π(10 × 10−3 m)2
= 0.65 K W−1

 Therefore, the temperature drop is

 ΔT = θQ′ = (0.65 K W−1)(10 W) = 6.5 K or °C

2.7  ELECTRICAL CONDUCTIVITY OF NONMETALS

All metals are good conductors because they have a very large number of conduction 
electrons free inside the metal. We should therefore expect solids that do not have 
metallic bonding to be very poor conductors, indeed insulators. Figure 2.25 shows 

 EXAMPLE 2.21
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Figure 2.25 Range of conductivities exhibited by various materials.
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the range of conductivities exhibited by a variety of solids. Based on typical values 
of the conductivity, it is possible to empirically classify various materials into con-
ductors, semiconductors, and insulators as in Figure 2.25. It is apparent that nonmet-
als are not perfect insulators with zero conductivity. There is no well-defined sharp 
boundary between what we call insulators and semiconductors. Conductors are inti-
mately identified with metals. It is more appropriate to view insulators as high 

resistivity (or low conductivity) materials. In general terms, current conduction is 
due to the drift of mobile charge carriers through a solid by the application of an 
electric field. Each of the drifting species of charge carriers contributes to the 
observed current. In metals, there are only free electrons. In nonmetals there are 
other types of charge carriers that can drift.

2.7.1 SEMICONDUCTORS

A perfect Si crystal has each Si atom bonded to four neighbors, and each covalent 
bond has two shared electrons as we had shown in Figure 1.61a. We know from 
classical physics (the kinetic molecular theory and Boltzmann distribution) that all 
the atoms in the crystal are executing vibrations with a distribution of energies. As 
the temperature increases, the distribution spreads to higher energies. Statistically 
some of the atomic vibrations will be sufficiently energetic to rupture a bond as 
indicated in Figure 2.26a. This releases an electron from the bond which is free to 
wander inside the crystal. The free electron can drift in the presence of an applied 
field; it is called a conduction electron. As an electron has been removed from a 
region of the crystal that is otherwise neutral, the broken-bond region has a net 

positive charge. This broken-bond region is called a hole (h+). An electron in a 
neighboring bond can jump and repair this bond and thereby create a hole in its 

(b)

e–Hole

(a) (c)

E

Figure 2.26 (a) Thermal vibrations of the atoms rupture a bond and release a free electron into the crystal. A hole is left 
in the broken bond, which has an effective positive charge. (b) An electron in a neighboring bond can jump and repair 
this bond and thereby create a hole in its original site; the hole has been displaced. (c) When a field is applied, both 
holes and electrons contribute to electrical conduction.
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original site as shown in Figure 2.26b. Effectively, the hole has been displaced in 
the opposite direction to the electron jump by this bond switching. Holes can also 
wander in the crystal by the repetition of bond switching. When a field is applied, 
both holes and electrons contribute to electrical conduction as in Figure 2.26c. For 
all practical purposes, these holes behave as if they were free positively charged 
particles (independent of the original electrons) inside the crystal. In the presence 
of an applied field, holes drift along the field direction and contribute to conduction 
just as the free electrons released from the broken bonds drift in the opposite direc-
tion and contribute to conduction.
 It is also possible to create free electrons or holes by intentionally doping a 
semiconductor crystal, that is substituting impurity atoms for some of the Si atoms. 
Defects can also generate free carriers. The simplest example is nonstoichiometric 
ZnO that is shown in Figure 1.57b which has excess Zn. The electrons from the 
excess Zn are free to wander in the crystal and hence contribute to conduction.
 Suppose that n and p are the concentrations of electrons and holes in a semicon-
ductor crystal. If electrons and holes have drift mobilities of μe and μh, respectively, 
then the overall conductivity of the crystal is given by

 σ = epμh + enμe [2.47]

 Unless a semiconductor has been heavily doped, the concentrations n and p are 
much smaller than the electron concentration in a metal. Even though carrier drift 
mobilities in most semiconductors are higher than electron drift mobilities in metals, 
semiconductors have much lower conductivities due to their lower concentration of 
free charge carriers.

Conductivity 

of a semi-

conductor

Drift velocity 

and net force

HALL EFFECT IN SEMICONDUCTORS The hall effect in a sample where there are both 
negative and positive charge carriers, for example, electrons and holes in a semiconductor, 
involves not only the concentrations of electrons and holes, n and p, respectively, but also the 
electron and hole drift mobilities, μe and μh. We first have to reinterpret the relationship 
between the drift velocity and the electric field E.
 If μe is the drift mobility and ve is the drift velocity of the electrons, then we already 
know that ve = μeE. This has been derived by considering the net electrostatic force eE act-
ing on a single electron and the imparted acceleration a = eE∕me. The drift is therefore due 
to the net force Fnet = eE experienced by a conduction electron. If we were to keep eE as the 
net force Fnet acting on a single electron, then we would have found

 ve =
μe

e
Fnet [2.48]

Equation 2.48 emphasizes the fact that drift is due to a net force Fnet acting on an electron. 
A similar expression would also apply to the drift of a hole in a semiconductor.
 When both electrons and holes are present in a semiconductor sample, both charge car-
riers experience a Lorentz force in the same direction since they would be drifting in the 
opposite directions as illustrated in Figure 2.27. Thus, both holes and electrons tend to pile 
near the bottom surface. The magnitude of the Lorentz force, however, will be different since 
the drift mobilities and hence drift velocities will be different in general. Once equilibrium 
is reached, there should be no current flowing in the y direction as we have an open circuit. 
Suppose that more holes have accumulated near the bottom surface so there is a built-in 

 EXAMPLE 2.22
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electric field Ey along y as shown in Figure 2.27. Suppose that vey and vhy are the usual 
electron and hole drift velocities in the −y and +y directions, respectively, as if the electric 
field Ey existed alone in the +y direction. The net current along y is zero, which means that

 Jy = Jh + Je = epvhy + envey = 0 [2.49]

From Equation 2.49 we obtain

 pvhy = −nvey [2.50]

 We note that either the electron or the hole drift velocity must be reversed from its usual 
direction; for example, holes drifting in the opposite direction to Ey. The net force acting on 
the charge carriers cannot be zero. This is impossible when two types of carriers are involved 
and both carriers are drifting along y to give a net current Jy that is zero. This is what Equa-
tion 2.49 represents. We therefore conclude that, along y, both the electron and the hole must 
experience a driving force to drift them. The net force experienced by the carriers, as shown 
in Figure 2.27, is

 Fhy = eEy − evhxBz  and  −Fey = eEy + evexBz [2.51]

where vhx and vex are the hole and electron drift velocities, respectively, along x. In general, 
the drift velocity is determined by the net force acting on a charge carrier; that is, from 
Equation 2.48

 Fhy =
evhy

μh

  and  −Fey =
evey

μe

so that Equation 2.51 becomes,

 
evhy

μh

= eEy − evhxBz  and  
evey

μe

= eEy + evexBz

where vhy and vey are the hole and electron drift velocities along y. Substituting vhx = μhEx 

and vex = μeEx, these become

 
vhy

μh

= Ey − μhExBz  and  
vey

μe

= Ey + μeExBz [2.52]

Jy = 0

x
z

y

V

Bz

Bz

A

EyeEy

vhx vex

evhx Bz evex Bz

Ex
JxJx

eEy
Figure 2.27 Hall effect for ambipolar conduction 
as in a semiconductor where there are both 
electrons and holes.

The magnetic field Bz is out from the plane  
of the paper. Both electrons and holes are  
deflected toward the bottom surface of the  
conductor and consequently the Hall voltage 
depends on the relative mobilities and  
concentrations of electrons and holes.
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 From Equation 2.52 we can substitute for vhy and vey in Equation 2.50 to obtain

 pμhEy − pμ2
hExBz = −nμeEy − nμ2

eExBz

or

 Ey(pμh + nμe) = BzEx(pμ2
h − nμ2

e) [2.53]

 We now consider what happens along the x direction. The total current density is finite 
and is given by the usual expression,

 Jx = epvhx + envex = (pμh + nμe)eEx [2.54]

 We can use Equation 2.54 to substitute for Ex in Equation 2.53, to obtain

 eEy(nμe + pμh)
2 = BzJx(pμ2

h − nμ2
e)

 The Hall coefficient, by definition, is RH = Ey∕Jx Bz, so

 RH =
pμ2

h − nμ2
e

e(pμh + nμe)
2
 [2.55]

or

 RH =
p − nb2

e(p + nb)2
 [2.56]

where b = μe∕μh. It is clear that the Hall coefficient depends on both the drift mobility ratio 
and the concentrations of holes and electrons. For p > nb2, RH will be positive and for 
p < nb2, it will be negative. We should note that when only one type of carrier is involved, 
for example, electrons only, the Jy = 0 requirement means that Jy = envey = 0, or vey = 0. 
The drift velocity along y can only be zero, if the net driving force Fey along y is zero. This 
occurs when eEy − evex Bz = 0, that is, when the Lorentz force just balances the force due to 
the built-in field.

Current 

density  

along x

Hall effect for 

ambipolar 

conduction

Hall effect for 

ambipolar 

conduction 

HALL COEFFICIENT OF INTRINSIC SILICON At room temperature, a pure silicon crystal 
(called intrinsic silicon) has electron and hole concentrations n = p = ni = 1.0 × 1010 cm−3, 
and electron and hole drift mobilities μe = 1350 cm2 V−1 s−1 and μh = 450 cm2 V−1 s−1. 
Calculate the Hall coefficient and compare it with a typical metal.

SOLUTION

Given n = p = ni = 1.0 × 1010 cm−3, μe = 1350 cm2 V−1 s−1, and μh = 450 cm2 V−1 s−1,  
we have

 b =
μe

μh

=
1350

450
= 3

Then from Equation 2.56,

  RH =
(1.0 × 1016 m−3) − (1.0 × 1016 m−3) (3)2

(1.6 × 10−19 C)[(1.0 × 1016 m−3) + (1.0 × 1016 m−3) (3)]2

  = −312 m3 A−1 s−1

which is orders of magnitude larger than that for a typical metal. All Hall-effect devices use 
a semiconductor rather than a metal sample.

 EXAMPLE 2.23
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2.7.2 IONIC CRYSTALS AND GLASSES

Figure 2.28a shows how crystal defects in an ionic crystal lead to mobile charges 
that can contribute to the conduction process. All ionic crystals possess vacancies, 
which may be charged, and interstitial ions as a requirement of thermal equilibrium. 
These interstitial ions can jump, i.e., diffuse, from one interstitial site to another and 

Interstitial cation
diffuses

Anion vacancy
acts as a donor

Interstitial impurity
ion diffuses

Na+

O2–

e–

Si4+

(a) (b)

E E

Cation vacancy aids the
diffusion of positive ion Schottky defect

Figure 2.28 Possible contributions to the conductivity of ceramic and glass insulators. (a) Some possible 
mobile charges in a ceramic (ionic crystal). (b) An Na+ ion in the glass structure diffuses and therefore drifts 
in the direction of the field.

This soda glass rod when heated under  
a torch becomes electrically conducting.  
It passes 4 mA when the voltage is 50 V  
(2 × 25 V); a resistance of 12.5 kΩ! 
Ordinary soda glass at room temperature 
is an insulator but can be quite conducting 
at sufficiently high temperatures. 

 Photo by R.E. Johanson and S. Kasap.
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hence drift by diffusion in the presence of a field. A positive ion at an interstitial 
site such as that shown in Figure 2.28a always prefers to jump into a neighboring 
interstitial site along the direction of the field because it experiences an effective 
force in this direction. When an ion with charge qion jumps a distance d along the 
field, its potential energy decreases by qionEd. If it tries to jump in the opposite 
direction, it has to do work qionEd against the force of the field. We know from 
Chapter 1 that the interstitial ion also has to overcome a potential energy barrier to 
be able to jump into a neighboring available site, i.e., diffusion is a thermally acti-
vated process. Thus, we expect the conductivity to be thermally activated. Further, 
vacancies are well known to aid the diffusion of ions. For example, a cation in 
Figure 2.28a can jump into a nearby cation vacancy and thereby drift and contribute 
to conduction. A Schottky defect in an ionic crystal involves a missing cation-anion 
pair14. Such defects play an important role in many ionic crystals such as alkali 
halides (NaCl type ionic solids) because the cation diffusion intimately involves 
Schottky defects. There may also be impurity ions in the crystal that can contribute 
to conduction, especially if they are small and can diffuse easily. Table 2.6 sum-
marizes some typical examples.
 Deviations from stoichiometry in compound solids often lead to the generation 
of mobile electrons (or holes) and point defects such as vacancies. Therefore, there 
are electrons, holes, and various mobile ions available for conduction under an 
applied field as depicted in Figure 2.28a. Many glasses contain a certain concentra-
tion of mobile ions in the structure. An example of a Na+ ion in silica glass is shown 
in Figure 2.28b. Aided by the field, the Na+ can jump from one interstice to a 
neighboring interstice along the field and thereby drift in the glass and contribute to 

 14 Remember from Chapter 1 that, overall, the ionic crystal must be neutral, which is the reason a Schottky 
defect has an anion and cation vacancy pair. If there are interstitial impurity cations in the crystal, then there 
would need to be an equal number of electrons, additional anions, or host cation vacancies to maintain charge 
neutrality. The study of defects and ion diffusion in ceramics and glasses is a highly active research field.

Table 2.6  Examples of typical conduction mechanisms in a few selected materials involving 
cations and anions. Data compiled from various sources.

  σ(Ω−1 cm−1) 

Material T(°C) (Approximate) Main Conducting Ion

NaCl crystal  550 2 × 10−6 Cation, Na+

KCl crystal  550 3 × 10−7 Cation, K+

AgCl crystal 250 3 × 10−4 Cation, Ag+

RbAg4I5 crystal 25 2 × 10−1 Cation, Ag+

BaF2 crystal 500 1 × 10−5 Anion, F−

Silicate glassa with 26.5%Na2O 250 2 × 10−5 Cation, Na+

Borosilicate glassb with 20.4%Na2O 250 1 × 10−6 Cation, Na+

Borosilicate glassc with 19.1%K2O 250 5 × 10−8 Cation, K+

 aSiO2(73.5%)-Na2O(26.5%) bB2O3(26.1%)-SiO2(53.5%)-Na2O(20.4%) cB2O3(25.8%)-SiO2(55.1%)-K2O(19.1%)
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current conduction. The conduction process is then essentially field-directed diffusion. 
Ordinary window glass, in fact, has a high concentration of Na+ ions in the structure 
and becomes reasonably conducting above 300–400 °C. (See photo on page 172.)
 Conductivity σ of the material depends on all the conduction mechanisms with 
each species of charge carrier making a contribution, so it is given by

 σ = ∑qiniμi [2.57]

where ni is the concentration, qi is the charge carried by the charge carrier species 
of type i (for electrons and holes qi = e), and μi is the drift mobility of these carri-
ers. The dominant conduction mechanism in Equation 2.57 is often quite difficult to 
uniquely identify. Further, it may change with temperature, composition, and ambient 
conditions such as the air pressure as in some oxide ceramics. For many ceramics 
and glasses the conductivity has been observed to follow an exponential or Arrhenius-
type temperature dependence so that σ is thermally activated,

 σ = σo exp(−
Eσ

kT) [2.58a]

where Eσ is the activation energy for conductivity and the pre-exponential term σo 
is generally taken as constant. However, σo does have a small temperature dependence 
and is normally written as

 σo = A∕T [2.58b]

where A is a constant that is independent of the temperature and depends on mate-
rial properties among other factors.
 Figure 2.29 shows examples of the temperature dependence of conductivity for 
various high-resistivity solids such as ionic crystals (ceramics) and glasses. When 
Equation 2.58a is plotted as log(σ) versus 1∕T, the result is a straight line with a 
negative slope that indicates the activation energy Eσ. Equation 2.58 is useful in 
predicting the conductivity at different temperatures and evaluating the temperature 
stability of an insulator.
 The conductivity qiniμi arising from a given species of ions, such as Na+, in 
Equation 2.57 needs the concentration ni of these ions and their drift mobility μi. 
Higher the diffusion coefficient Di for a particular species of ions (e.g., Na+) the 
more mobile are the ions, i.e., higher the drift mobility μi. The two quantities are 
related through the Einstein relation,15

 μi =
1

f ( e

kT)Di [2.59]

where f is a numerical factor, called the Haven ratio, that is 1 or less, and accounts 
for the fact that the diffusion of ions maybe correlated. In simple terms, if the dif-
fusion of the ions are uncorrelated with each other then f is 1. If the diffusion of an 
ion is influenced by other ions, then the diffusion is not totally random and f 
becomes less than 1.

General 

conductivity
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dependence of 

conductivity

Pre-
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constant of 

conductivity

Einstein 

relation for 

drift mobility 

and diffusion

 15 The Einstein relation is proved in Chapter 5 for electrons in a semiconductor. For now, we can take it as given 
based on the intuitive link between the mobility (μi) of an ion and its ability to diffuse (Di). (Equation 2.59 is simple 
but it does have a few assumptions as mentioned in Chapter 5.)
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Figure 2.29 Conductivity versus reciprocal temperature for various solids in which 
conduction occurs by the drift of ions. Data extracted from various sources.

CONDUCTIVITY OF A PURE KCL CRYSTAL The electrical conductivity of a pure KCl 
crystal has been measured to be 1.65 × 10−7 Ω−1 cm−1 at 518 °C and 1.85 × 10−5 Ω−1 cm−1 
at 674 °C. What is the activation energy Eσ? What is the conductivity at 594 °C?

SOLUTION

The temperatures 518 °C and 674 °C correspond to T1 = 791 K and T2 = 947 K. Using 
Equation in 2.58a and b, that is

 σ1 =
A

T1
 exp(−

Eσ

kT1)  and  σ2 =
A

T2
 exp(−

Eσ

kT2)
we have two equations with two unknowns (Eσ and A). Dividing first by the second eliminates 
A and then we can solve for Eσ to find

  Eσ =
kT1T2

(T2 − T1)
ln(σ2T2

σ1T1) =
(1.38 × 10−23) (791)(947)

(947 − 791)
ln[ (1.85 × 10−5) (947)

(1.65 × 10−7) (791) ]
  Eσ = 2.03 eV

 EXAMPLE 2.24

 16 The data for Example 2.24 were taken from A. R. Allnatt and P. W. M. Jacobs, Trans. Faraday Soc., 58, 116, 
1968, and for Example 2.25 from L. Lim and D. E. Day, J. Am. Ceram. Soc., 60, 198, 1977.
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If we were to carefully measure the slope of the line in Figure 2.29 for KCl, we would find 
approximately 2.0 eV. We can substitute for Eσ in the expression for σ1 at T1 and solve for A 
to find A = 1.08 × 109 Ω−1 cm−1 K. It is then straightforward to find the conductivity σ3 at 
T3 = 594 + 273 = 867 K from Equation 2.58,

 σ3 = [(1.08 × 109)∕(867)]exp[−(2.03)∕(8.62 × 10−5)(867)] = 2.0 × 10−6 Ω−1 cm−1

CONDUCTIVITY OF SODA-SILICA GLASS Consider soda-silica glass of composition 
25%Na2O-75%SiO2, which represents (Na2O)0.25(SiO2)0.75. Its density is 2.39 g cm−3. The 
diffusion coefficient D of Na+ in this soda-silica glass at 400 °C is 1.03 × 10−8 cm2 s−1 
and the Haven ratio f is 0.53. Calculate the conductivity of 25%Na2O-75%SiO2 glass at 
400 °C and compare it with the measured value of 6.81 × 10−4 Ω−1 cm−1. What is your 
conclusion?

SOLUTION

We first calculate the concentration of Na+ ions in the glass. If MNa, MSi, and MO are the 
atomic masses of Na, Si, and O, respectively, the molecular mass of (Na2O)0.25(SiO2)0.75 is

 M = 0.25(2MNa + MO) + 0.75(MSi + 2MO) = 0.25(2 × 23.0 + 16.0) + 0.75(28.1 + 2 × 16)

 = 60.6 g mol−1

Given the density d, the concentration of (Na2O)0.25(SiO2)0.75 units (“molecules”) is

 nmolecule =
dNA

M
=

(2.39 g cm−3) (6.022 × 1023 mol−1)

(60.6 g mol−1)
= 2.38 × 1022 cm−3

Each of these (Na2O)0.25(SiO2)0.75 units has 0.25 × 2 number of Na atoms so that the Na+-ion 
concentration is

 ni = 0.25 × 2 × 2.38 × 1022 cm−3 = 1.19 × 1022 cm−3.

We need the drift mobility μi of the Na+ ions, which is

  μi =
1

f ( e

kT)Di =
1

0.53[ (1.602 × 10−19 C)

(1.381 × 10−23 J K−1) (400 + 273 K) ](1.03 × 10−8 cm2 s−1)

  μi = 3.35 × 10−7 cm2 s−1

Notice how small the ionic drift mobility is compared with the free electrons in a metal. The 
conductivity is

 σ = eniμi = (1.602 × 10−19 C)(1.19 × 1022 cm−3)(3.35 × 10−7 cm2 s−1)

 = 6.4 × 10−4 Ω−1 cm−1

which is very close to the experimental value. It is left as an exercise to show that 
at  400  °C, the conductivity of 24%NaO2-76%SiO2 glass in Figure 2.29 is roughly 
6 × 10−4 Ω−1 cm−1.

 EXAMPLE 2.25
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ADDITIONAL TOPICS

2.8   SKIN EFFECT: HF RESISTANCE OF A CONDUCTOR

Consider the cylindrical conductor shown in Figure 2.30a, which is carrying a cur-
rent I into the paper (×). The magnetic field B of I is clockwise. Consider two 
magnetic field values B1 and B2, which are shown in Figure 2.30a. B1 is inside the 
core and B2 is just outside the conductor.
 Assume that the conductor is divided into two conductors. The hypothetical 
cut is taken just outside of B1. The conductor in Figure 2.30a is now cut into a 
hollow cylinder and a smaller solid cylinder, as shown in Figure 2.30b and c, 
respectively. The currents I1 and I2 in the solid and hollow cylinders sum to I. We 
can arrange things and choose B1 such that our cut gives I1 = I2 = 1

2I. Obviously, 
I1 flowing in the inner conductor is threaded (or linked) by both B1 and B2. 
(Remember that B1 is just inside the conductor in Figure 2.30b, so it threads at 
least 99% of I1.) On the other hand, the outer conductor is only threaded by B2, 
simply because I2 flows in the hollow cylinder and there is no current in the hol-
low, which means that B1 is not threaded by I2. Clearly, I1 threads more magnetic 
field than I2 and thus conductor (c) has a higher inductance than (b). Recall that 
inductance is defined as the total magnetic flux threaded per unit current. Con-
sequently, an ac current will prefer paths near the surface where the inductive 
impedance is smaller. As the frequency increases, the current is confined more and 
more to the surface region.
 For a given conductor, we can assume that most of the current flows in a surface 
region of depth δ, called the skin depth, as indicated in Figure 2.31. In the central 

(a) Total current
into paper is I. (b) Current in hollow

outer cylinder is I/2.

(c) Current in solid
inner cylinder is I/2.

B2

B1

B2

B2

B1

B1

Figure 2.30 Illustration of the skin effect.

A hypothetical cut produces a hollow outer cylinder and a solid inner cylinder. Cut is placed 
where it would give equal current in each section. The two sections are in parallel so that 
the currents in (b) and (c) sum to that in (a).
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region, the current will be negligibly small. The skin depth will obviously depend 
on the frequency ω. To find δ, we must solve Maxwell’s equations in a conductive 
medium, a tedious task that, fortunately, has been done by others. We can therefore 
simply take the result that the skin depth δ is given by

 δ =
1

√1
2ωσμ

 [2.60]

where ω is the angular frequency of the current, σ is the conductivity (σ is constant 
from dc up to ∼1014 Hz in metals), and μ is the magnetic permeability of the 
medium, which is the product of the absolute (free space) permeability μo and the 
relative permeability μr.
 We can imagine the central conductor as a resistance R in series with an induc-
tance L. Intuitively, those factors that enhance the inductive impedance ωL over the 
resistance R will also tend to emphasize the skin effect and will hence tend to 
decrease the skin depth. For example, the greater the permeability of the conducting 
medium, the stronger the magnetic field inside the conductor, and hence the larger 
the inductance of the central region. The higher the frequency of the current, the 
greater the inductive impedance ωL compared with R and the more significant is the 
skin effect. The greater is the conductivity σ the smaller is R compared with ωL and 
hence the more important is the skin effect. All these dependences are accounted for 
in Equation 2.60.
 With the skin depth known, the effective cross-sectional area is given approxi-
mately by

 A = πa2 − π(a − δ)2 ≈ 2πaδ

where δ2 is neglected (δ ≪ a). The ac resistance rac of the conductor per unit length 
is therefore

 rac =
ρ

A
≈

ρ

2πaδ
 [2.61]

where ρ is the ac resistivity at the frequency of interest, which for all practical pur-
poses is equal to the dc resistivity of the metal. Equation 2.60 clearly shows that as 
ω increases, δ decreases, by virtue of δ ∝ ω−1∕2 and, as a result, rac increases.

Skin depth for 

conduction

HF resistance 

per unit 

length due to 

skin effect

2a

δ = Skin depth

R

ωL

Figure 2.31 At high frequencies, the core 
region exhibits more inductive impedance 
than the surface region, and the current 
flows in the surface region of a conductor 
defined approximately by the skin depth, δ.



 2 . 8  SKIN EFFECT: HF RESISTANCE OF A CONDUCTOR 179

 From this discussion, it is obvious that the skin effect arises because the mag-
netic field of the ac current in the conductor restricts the current flow to the surface 
region within a depth of δ < a. Since the current can only flow in the surface region, 
there is an effective increase in the resistance due to a decrease in the cross-sectional 
area for current flow. Taking this effective area for current flow as 2πaδ leads to 
Equation 2.61.
 The skin effect plays an important role in electronic engineering because it 
limits the use of solid-core conductors in high-frequency applications. As the signal 
frequencies reach and surpass the gigahertz (109 Hz) range, the transmission of the 
signal over a long distance becomes almost impossible through an ordinary, solid-
metal conductor. We must then resort to pipes (or waveguides).

Quantity Units Fundamental Units Comment

 δ m m
 ω s−1 s−1

 σ Ω−1 m−1 C2 s kg−1 m−3   Ω = V A−1 = (J C−1)(C s−1)−1

       = N m s C−2 = (kg m s−2)(m s C−2)

 μ Wb A−1 m−1 kg m C−2 Wb = T m2 = (N A−1 m−1)(m2)

       = (kg m s−2)(C−1 s)(m)

Therefore,

 [m] = [s−1]x[C2 s kg−1 m−3]y[kg m C−2]z

 Matching the dimensions of both sides, we see that y = z; otherwise C and kg do not 
cancel.

 For m 1 = −3y + z

 For s 0 = −x + y

 For C or kg 0 = 2y − 2z  or  0 = −y + z

 Clearly, x = y = z = −1
2  is the only possibility. Then, δ ∝ [ωσμ]−1∕2. It should be reem-

phasized that the dimensional analysis is not a proof of the skin depth expression, but a 
consistency check that assures confidence in the equation.

SKIN EFFECT FROM DIMENSIONAL ANALYSIS Using dimensional analysis, obtain the 
general form of the equation for the skin depth δ in terms of the angular frequency of the 
current ω, conductivity σ, and permeability μ.

SOLUTION

The skin effect depends on the angular frequency ω of the current, the conductivity σ, and 
the magnetic permeability μ of the conducting medium. In the most general way, we can 
group these effects as

 [δ] = [ω]x[σ]y[μ]z

where the indices x, y, and z are to be determined. We then substitute the dimensions of each 
quantity in this expression. The dimensions of each, in terms of the fundamental units, are 
as follows:

 EXAMPLE 2.26
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SKIN EFFECT IN AN INDUCTOR What is the change in the dc resistance of a copper wire 
of radius 1 mm for an ac signal at 10 MHz? What is the change in the dc resistance at 1 GHz? 
Copper has ρdc = 1.70 × 10−8 Ω m or σdc = 5.9 × 107 Ω−1 m−1 and a relative permeability 
near unity.

SOLUTION

Per unit length, rdc = ρdc∕πa2 and at high frequencies, from Equation 2.61, rac = ρdc∕2πaδ. 
Therefore, rac∕rdc = a∕2δ.
 We need to find δ. From Equation 2.60, at 10 MHz we have

  δ = [1

2
ωσdc μ]

−1∕2

= [1

2
× 2π × 10 × 106 × 5.9 × 107 × 1.257 × 10−6]

−1∕2

  = 2.07 × 10−5 m = 20.7 μm

Thus

 
rac

rdc

=
a

2δ
=

(10−3 m)

(2 × 2.07 × 10−5 m)
= 24.13

 The resistance has increased by 24 times. At 1 GHz, the increase is 240 times. Further-
more, the current is confined to a surface region of about ∼2 × 10−5 (20 μm) at 10 MHz 
and ∼2 × 10−6 m (2 μm) at 1 GHz, so most of the material is wasted. This is exactly the 
reason why solid conductors would not be used for high-frequency work. At very high fre-
quencies, in the gigahertz range and above, are reached, the best bet would be to use pipes 
(waveguides).
 One final comment is appropriate. An inductor wound from a copper wire would have 
a certain Q (quality factor) value17 that depends inversely on its resistance. At high frequen-
cies, Q would drop, because the current would be limited to the surface of the wire. One way 
to overcome this problem is to use a thick conductor that has a surface coating of higher-
conductivity metal, such as silver. This is what the early radio engineers practiced. In fact, 
tank circuits of high-power radio transmitters often have coils made from copper tubes with 
a coolant flowing inside.

2.9  AC CONDUCTIVITY σac

So far we have only considered the steady state motion of electrons in the presence 
of a dc electric field −Ex along x and resulting drift along x. Under these conditions, 
the average velocity vdx of electrons is time independent, that is, it is constant and 
given by Equation 2.9, vdx = eτEx∕me. In general, vdx may be time dependent due to 
two reasons. Either the field is time dependent or the electric field has just been 
applied so that the electrons have just started to accelerate. Suppose, we treat a con-
duction electron in a solid as a particle, and think of it as moving through a viscous 
medium as in Figure 2.32a, which tries to slow it down so that its velocity does not 
build up to infinity. Collisions with and deflections from the metal ions have the 
overall effect of hindering the electron’s motion in the x-direction, which we can 

 EXAMPLE 2.27

 17 The Q value refers to the quality factor of an inductor, which is defined by Q = ωoL∕R, where ωo is the 
resonant frequency, L is the inductance, and R is the resistance due to the losses in the inductor.
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represent through the action of a resistive force as in mechanics. Such a resistive 
force in mechanics is proportional to the velocity and we can write it as Kvdx, in 
which K is a constant. Thus, the general equation of motion of an electron, from net 
force = mass × acceleration, should be

 eEx − Kvdx = me

dvdx

dt
 [2.62]

where eEx is the driving force. The resistive force Kvdx opposes the continual build-
up of vdx to infinity as shown in Figure 2.32a. This equation is taken straight from 
classical mechanics.18

 After sometime, a steady state is reached and the drift velocity vdx is time inde-
pendent. Equation 2.62 should reduce to the familiar form, vdx = eτEx∕me when 
dvdx∕dt = 0. Therefore, the constant K must be K = me∕τ. With this in Equation 2.62, 
the general equation of motion of a conduction electron is

 eEx − (me∕τ)vdx = me

dvdx

dt
 [2.63]

 This needs to be solved for vdx(t) for a given time dependent Ex = Ex(t) and the 
solution determines the current density via Jx(t) = envdx(t).

Transient Behavior Let us calculate vdx(t) when a step field Ex is applied, i.e., 
Ex = 0, t ≤ 0, and Ex = Exo, t > 0 and t < toff as depicted in Figure 2.32b. Obviously, 
at t = 0, vdx = 0 and Jx = 0. At a time t > 0, the solution of Equation 2.63 with a 
constant field Exo is

 vdx(t) = vdx(∞)[1 − exp(−t∕τ)] [2.64]

 18 A similar version of it is used to describe the motion of a “body” like a car driven by a mechanical force 
against ground and air friction. In mechanics, opposing resistive forces are always proportional to the velocity. 
The greater the car velocity, the greater is the resistance. Since we are treating the electron like a football, 
Equation 2.62 is therefore a general description of its motion within classical phenomenology.
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Figure 2.32 (a) An electron drifting in the metal under a field Ex along the −x direction can be viewed as experiencing a driving 
for eEx along x and the viscous resistive force Kvdx that acts in the opposite direction to the driving force. (b) Suppose that 
we suddenly apply a step field at time t = 0. The drift velocity vdx builds up exponentially toward its steady state value with a 
time constant that is the mean scattering time τ of the electron. When the field is turned off, vdx decays with a time constant 
determined by the electron’s mean scattering time t. (c) The dependence of the ac conductivity on the angular frequency.



182 C H A P T E R  2  ∙ ELECTRICAL AND THERMAL CONDUCTION IN SOLIDS

where vdx(∞) = eτExo∕me. Clearly, vdx(t) rises exponentially with time and then 
saturates at vdx(∞) after t ≫ τ as illustrated in Figure 2.32b. The rise time constant 
τ is the mean free time and its value is typically ∼10−14 s. Thus, the mean free time 
determines the transient behavior. The current density Jx is envdx, so it follows the 
behavior of Equation 2.64 as shown in Figure 2.32b.
 As soon as a step voltage is applied to a conductor, the current does not follow 
the voltage but rises exponentially as if it were an RL circuit. We assumed no induc-
tance, nor stray capacitance, but nonetheless, found an intrinsic delay in the current 
density. Although this delay is very short, τ ∼10−14 s, it does nonetheless exist. A 
ball dropped into a long column of viscous liquid eventually reaches a terminal 
velocity when the pull of the gravitational force on the ball is balanced by the viscous 
drag it experiences through the liquid.

AC Conductivity Consider what happens when we apply an AC field19

 E = Exoexp( jωt) [2.65]

 Substituting Equation 2.65 into the general equation of motion in 2.63, we find

 eExoe 
jωt − (me∕τ)vdx = me

dvdx

dt

 The solution is straightforward

 vdx =
eτExo

me(1 + jωτ)
 exp(  jωt)  [2.66]

 The drift velocity now depends on the frequency. The current density is then given 
by Equation 2.2, Jx = envdx, so that it also depends on the frequency, similar to 
Equation 2.66. The AC conductivity σac is defined by Jx = σacEx, so that

 σac =
e2nτ

me(1 + jωτ)
=

σo

1 + jωτ
 [2.67]

where σo, by definition, is given by e2nτ∕me and represents the dc conductivity. As 
the frequency increases, ∣σac∣ decreases as shown in Figure 2.32c. From Equation 2.67, 
we can write σac = σ′ − jσ″ in terms of real and imaginary parts, that is,

 σ′ =
σo

1 + ω2τ2
  and  σ″ =

σoωτ

1 + ω2τ2
 [2.68]

 The Joule loss, that is what we normally consider as the energy dissipation 
associated with I 2R or V 2∕R, depends on the real part of σac and can be written  
as 1

2σ′E2
xo. As long as ωτ < 1 or ω < 1014 s−1, σac has a larger real part and we have 

a finite joule loss. But, when ωτ ≫ 1 or ω ≫ 1014 s−1, σ′ is proportional to 1∕ω2 
and so is the Joule loss, decreasing sharply with frequency. As shown in Chapter 9, 
absorption of light in certain semiconductors in the infrared region is controlled by 
σ′ and its frequency dependence.

 19 The exponential notation means that we are representing Exocos(ωt) as Exoexp( jωt), similar to the use of phasors 
in AC circuits, so we must take the real part at the end of our derivation. Note that many physics books use 
exp(−jωt), which causes sign change in j in subsequent equations. 
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AC CONDUCTIVITY AT 100 GHz AND 100 THz The mean free time, or the mean scattering 
time, τ of electrons in copper is about 2.5 × 10−14 s and the room temperature conductivity 
is 5.9 × 105 Ω−1 cm−1 (see Example 2.2). What is the change σac∕σo in the conductivity of 
copper from dc to 100 GHz and 100 THz?

SOLUTION

The angular frequency ω = 2π(100 × 109 Hz) = 6.28 × 1011 rad s−1 and ωτ = (6.28 ×  
1011 rad s−1)(2.5 × 10−14 s) = 0.0157. From Equation 2.67

  
σac

σo

=
1

1 + (ωτ)2 − j
ωτ

1 + (ωτ)2 =
1

1 + (0.0157)2 − j
(0.0157)

1 + (0.0157)2

  = 0.9997 − j 0.0157

so the decrease in the real part of the conductivity (power loss) is negligible and notice that 
σ′ ≫ σ″. There is something however that does increase the resistance of a metal wire car-
rying a high frequency current, which is called the skin effect as described in Section 2.8.
 We need to repeat the above calculation at 100 THz where ω = 2π(100 × 1012 Hz) =  
6.28 × 1014 rad s−1 and ωτ = (6.28 × 1014 rad s−1)(2.5 × 10−14 s) = 15.7 and substituting 
into Equation 2.67, we find

 
σac

σo

= 4.0 × 10−3 − j  6.3 × 10−2

in which σ″ ≫ σ′. Notice that σ′ is now much smaller than σo (by a factor of 250).

 EXAMPLE 2.28

AC CONDUCTIVITY AND JOULE LOSSES Consider an ac voltage Vme jωt applied across a 
conductor of length L. We can represent this ac voltage as a phasor with a magnitude 
V = Vm∕√2 and zero phase angle. The resulting current would be a phasor with a magnitude I 
and some phase angle ϕ. We can find I from I = VY where Y is the complex admittance of 
the conductor, that is

 Y =
Aσac

L
=

Aσ′
L

− j 
Aσ″

L

The power dissipated per unit volume is

 Pvol =
IV

AL
=

YV 
2

AL
=

σ′V 
2

L2 − j 
σ″V 

2

L2

The applied field is (Vm∕L)e jωt and we can define Exrms = Vrms∕L = Exo∕√2 so that

 Pvol = σ′E 2
xrms − jσ″E 2

xrms

We know from ac circuit theory that the real part represents the real power dissipated whereas 
the magnitude of the imaginary part is the reactive power. Thus, the power dissipated per 
unit volume in the medium, that is Joule heating, is given by

 Pvol = σ′E2
xrms =

1
2

 σ′E 
2
xo [2.69]

It should be emphasized that this energy dissipation involves the applied electric field driving 
the electrons, which then collide with lattice vibrations and dissipate the energy gained from 
the field. The driving field could be the field in a light wave. As we will see in Chapter 9, 
in this case, the attenuation of light is called free carrier absorption.

 EXAMPLE 2.29
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2.10  THIN METAL FILMS

2.10.1 CONDUCTION IN THIN METAL FILMS

The resistivity of a material, as listed in materials tables and in our analysis of 
conduction, refers to the resistivity of the material in bulk form; that is, any dimen-
sion of the specimen is much larger than the mean free path for electron scattering. 
In such cases resistivity is determined by scattering from lattice vibrations and, if 
significant, scattering from various impurities and defects in the crystal. In certain 
applications, notably microelectronics, metal films are widely used to provide elec-
trical conduction paths to and from the semiconductor devices. Various methods 
are used to deposit thin films. In many applications, the metal film is simply depos-
ited onto a substrate, such as a semiconductor or an insulator (e.g., SiO2), by phys-

ical vapor deposition (PVD), that is, by vacuum deposition, which typically 
involves either evaporation or sputtering. In thermal evaporation, the metal is 
evaporated from a heated source in a vacuum chamber as depicted in Figure 1.24. 
As the metal atoms, evaporated from the source, impinge and adhere to the semi-
conductor surface, they form a metal film which is often highly polycrystalline. 
Stated differently, the metal atoms in the vapor condense to form a metal film on 
a suitably placed substrate. In electron beam deposition, an energetic electron 
beam is used to melt and evaporate the metal. Sputtering is a vacuum deposition 
process that involves bombarding a metal target material with energetic Ar ions, 
which dislodges the metal atoms and then condenses them onto a  substrate. The 
use of sputtering is quite common in microelectronic fabrication. Copper metal 
interconnect films used in microelectronics are usually grown by electrodeposition, 

that is, using electroplating, an electrochemical process, to deposit the metal film 
onto the required chip areas. In many applications, especially in microelectronics, 
we are interested in the resistivity of a metal film in which the thickness of the film 
or the average size of the grains is comparable to the mean distance between scat-
tering events ℓbulk (the mean free path) in the bulk material. In such cases, the 
resistivity of the metal film is greater than the corresponding resistivity of the 
bulk crystal. A good example is the resistivity of interconnects and various metal 
films used in the “shrinking” world of microelectronics, in which more and more 
transistors are packed into a single Si crystal, and various device dimensions are 
scaled down.

2.10.2 RESISTIVITY OF THIN FILMS

Polycrystalline Films and Grain Boundary Scattering In a highly polycrys-
talline sample the conduction electrons are more likely to be scattered by grain 
boundaries than by other processes as depicted in Figure 2.33a. Consider the resistiv-
ity due to scattering from grain boundaries alone as shown in Figure 2.33b. The 
conduction electron is free within a grain, but becomes scattered at the grain bound-
ary. Its mean free path ℓgrain is therefore roughly equal to the average grain size d. 
If λ = ℓcrystal is the mean free path of the conduction electrons in the single crystal 
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(no grain boundaries), then

 
1
ℓ

=
1

ℓcrystal
+

1
ℓgrain

=
1
λ

+
1
d

 [2.70]

 The resistivity is inversely proportional to the mean free path which means that 
the resistivity of the bulk single crystal ρcrystal ∝ 1∕λ and the resistivity of the poly-
crystalline sample ρ ∝ 1∕ℓ. Thus,

 
ρ

ρcrystal

= 1 + (λ

d) [2.71]

Polycrystalline metal films with a smaller grain diameter d (i.e., more grainy films) 
will have a higher resistivity.
 In a more rigorous theory we have to consider a number of effects. It may take 
more than one scattering at a grain boundary to totally randomize the velocity, so 
we need to calculate the effective mean free path that accounts for how many colli-
sions are needed to randomize the velocity. There is a possibility that the electron 
may be totally reflected back at a grain boundary (bounce back). Suppose that the 
probability of reflection at a grain boundary is R. Suppose that the probability of 
reflection at a grain boundary is R and d is the average grain size (diameter), then 
the resistivity can be calculated by the Mayadas–Shatzkes formula

 
ρ

ρcrystal

= [1 −
3

2
 β + 3β2 − 3β3ln(1 + 1∕β)]

−1

 [2.72a]

in which the quantity β is defined by

 β =
λ

d( R

1 − R) [2.72b]
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Figure 2.33 (a) Grain boundaries cause scattering of the electron and therefore add to the resistivity by 
Matthiessen’s rule. (b) For a very grainy solid, the electron is scattered from grain boundary to grain boundary 
and the mean free path is approximately equal to the mean grain diameter. (c) TEM (transmission electron 
microscope) image of an annealed polycrystalline Cu thin film of thickness 41.7 nm, encapsulated in SiO2. 
The films structure is composed of grains with an average size 87.7 nm. The resistivity of this film is 30 nΩ m, 
higher than the bulk resistivity of Cu (17 nΩ m). 
 (c) Courtesy of Tik Sun and Bo Yao.
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 The β in Equation 2.72a represents the λ∕d ratio adjusted for the reflection to 
transmission ratio of the electron at the grain boundary. When the grain size is large, 
β is small and Equation 2.72a simplifies to20

 
ρ

ρcrystal
≈ 1 +

3
2

 β [2.73a]

 For highly polycrystalline films, the grain size would be small and β ≫ 1

 
ρ

ρcrystal
≈

4
3

 β [2.73b]

 Equation 2.73a implies that the Matthiessen’s rule is reasonably well obeyed 
when the grains are larger than the mean free path. For copper, typically R values 
are 0.24–0.40, and R is somewhat smaller for Al. Equation 2.72a for a Cu film with 
R ≈ 0.3 predicts ρ∕ρcrystal ≈ 1.21 for roughly d ≈ 3λ or a grain size d ≈ 120 nm 
since in the bulk crystal λ ≈ 40 nm.

Surface Scattering Consider the scattering of electrons from the surfaces of a 
conducting film as in Figure 2.34. Take the film thickness as D. Assume that the 
scattering from the surface is inelastic; that is, the electron loses the gained velocity 
from the field. Put differently, the direction of the electron after the scattering process 
is independent of the direction before the scattering process. This type of scattering 
is called nonspecular. (If the electron is elastically reflected from the surface just like 
a rubber ball bouncing off a wall, then there is no increase in the resistivity.) It is 
unlikely that one surface scattering will completely randomize the electron’s velocity. 
The mean free path ℓsurf of the electron will depend on its direction right after the 
scattering process as depicted in Figure 2.35. For example, if the angle θ after surface 
scattering is zero, (the electron moves transversely to the film length), then ℓsurf = D. 
In general, the mean free path ℓsurf will be D∕(cos θ) as illustrated in Figure 2.35.
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 20 This is obtained by expanding Equation 2.72a about β = 0 to the first term and represents the case with large 
grains. However, if we expand it around β = 1, the constant multiplying β is somewhat smaller and would represent 
the case where d and λ are comparable as in Example 2.31.
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 Consider the surface scattering example in Figure 2.35 where the electron is scat-
tered from the bottom surface. If the scattering of the electron were truly random, 
then the probability of being scattered in a direction back into the film, that is, in the 
+y direction, would be 0.5 on average. However, the electron’s direction right after 
the surface scattering is not totally random because we know that the electron cannot 
leave the film; thus θ is between −π∕2 and +π∕2 and cannot be between −π and +π. 
The electron’s velocity after the first surface scattering must have a y component along 
+y and not along −y. The electron can only acquire a velocity component along −y 
again after the second surface scattering as shown in Figure 2.35. It therefore takes 
two collisions to randomize the velocity, which means that the effective mean free 

path must be twice as long, that is 2D∕cos θ. To find the overall mean free path ℓ 
for calculating the resistivity we must use Matthiessen’s rule. If λ is the mean free 
path of the conduction electrons in the bulk crystal (no surface scattering), then

 
1

ℓ
=

1

λ
+

1

ℓsurf

=
1

λ
+

cos θ

2D
 [2.74]

 We have to average for all possible θ values per scattering, that is, θ from −π∕2 
to +π∕2. Once this is done we can relate ℓ to λ as follows:

 
λ

ℓ
= 1 +

λ

πD

 The resistivity of the bulk crystal is ρbulk ∝ 1∕λ, and the resistivity of the film 
is ρ ∝ 1∕ℓ. Thus,

 
ρ

ρbulk

= 1 +
1

π( λ

D) [2.75]

 A more rigorous calculation modifies the numerical factor 1∕π and also consid-
ers what fraction p of surface collisions is specular and results in what is known as 
the simplified Fuchs-Sondheimer equation21

 
ρ

ρbulk

≈ 1 +
3λ

8D
(1 − p)  

D

λ
> 0.3 [2.76]

which is valid down to about D ≈ 0.3λ. Equation 2.76 is in Matthiessen’s rule format, 
which means that the second term is the fractional contribution of the surfaces to 
the resistivity. It can be seen that for elastic or specular scattering p = 1 and there 
is no change in the resistivity. The parameter p is called the specularity parameter. 
When p = 0, the scattering at the surface is called diffusive, and represents the case 
when the momentum gained from the field is fully lost upon scattering; and the 
contribution of surface scattering is maximum. For p = 0, Equation 2.76 predicts 
ρ∕ρbulk ≈ 1.20 for roughly D ≈ 1.9λ or a thickness D ≈ 76 nm for Cu for which 
λ ≈ 40 nm. The value of p depends on the film preparation method (e.g., sputtering, 
epitaxial growth) and the substrate on which the film has been deposited.
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 21 Specular reflection refers to elastic reflection, that in which there is no energy loss. Such reflections do not 
increase the resistivity. (Why?) The actual Fuchs-Sondheimer equation is quite complicated and beyond the 
simplified treatment here.
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 Equation 2.76 involves scattering from two surfaces, that is, from the two inter-
faces of the film. In general the two interfaces will not be identical and hence will 
have different p coefficients; p in Equation 2.76 is some mean p value. Further, if 
the surface is rough, that is the surface has significant surface height variation, then 
the scattering will be more severe at the surfaces and Equation 2.76 needs to be 
modified by factor that represents the roughness of the surface.
 Table 2.7 summarizes the resistivity of thin Cu films deposited by various prep-
aration techniques. Notice that the changes in the resistivity with film thickness and 
polycrystallinity (grain size) follow, at least qualitatively, the basic models discussed 
above. It is generally very difficult to separate the effects of surface and grain bound-
ary scattering in thin polycrystalline films; the contribution from grain boundary 
scattering is likely to exceed that from the surfaces. In any event, both contributions, 
by Matthiessen’s general rule, increase the overall resistivity. Figure 2.36a shows an 
example in which the resistivity ρfilm of thin Cu polycrystalline films is due to grain 
boundary scattering, and thickness has no effect (D was 250–900 nm and much 
greater than λ). The resistivity ρfilm is plotted against the reciprocal mean grain size 
1∕d, which then follows the expected linear behavior in Equation 2.73a. On the other 
hand, Figure 2.36b shows the resistivity of Cu films as a function of film thickness 
D. The Cu thin films in this case are single crystal layers grown on the (001) surface 
of a single crystal of MgO (which is the substrate). As the film is a single crystal, 
there is no grain boundary scattering, and the observed increase in the resistivity with 
decreasing film thickness is due to the scattering of the electrons from the film surface. 
The experiments in Figure 2.36b can be explained by the simplified Fuchs– Sondheimer 
equation with an average p = 0.20.

Table 2.7 Resistivities of some thin Cu films at room temperature

Thin Cu Films D (nm) d (nm) ρ (nΩ m) Comment

Cu encapsulated in 45.3 101 28.0 DC sputtering. Cu film sandwiched in SiO2∕Cu∕SiO2,
 SiO2∕Cu∕SiO2 [1] 31.7 41 35.5  annealed at 150 °C. MS with R = 0.50
Cu encapsulated in 34.2 39.4 37.3 DC sputtering. Cu film sandwiched in SiO2∕Ta∕Cu∕
 SiO2∕Ta∕Cu∕Ta∕SiO2 [2]     Ta∕SiO2, annealed at 600 °C. MS with R = 0.47
Cu on Ta∕SiO2∕Si(001) [2] 35 40 31 Sputtering and then annealing at 350 °C
Cu (single crystal) on 40 ∞ 21 Cu single crystal epitaxial layer on TiN(100) on MgO

 TiN∕MgO(001) [3] 13 ∞ 29.7  surface (001). Ultra-high vacuum, DC sputtering.

     FS with p ≈ 0.6 in vacuum, p = 0 in air.

Cu on TiN, W and TiW [4] >250 186 21 CVD (chemical vapor deposition). Substrate temperature

  44 31  200 °C, ρ depends on d not D = 250–900 nm. MS.

Cu on crystalline 51.2 D∕2.3 32.2 Ion beam deposition with negative substrate bias.

 Si(100) surface [5] 17.2  70.5  Resistivity follows FS and MS equations combined;

 8.6  126  surface and grain boundary scattering. FS and MS,

     p = 0, R = 0.24, d = D∕2.3

 NOTE: D = film thickness; d = average grain size. At RT (room temperature) for Cu, λ = 38–40 nm. FS and MS refer to Fuchs–Sondheimer 
and Mayadas–Shatzkes descriptions of thin film resistivity. Only typical data shown.

 SOURCES: Sun, T., et al., Journal of Vacuum Science & Technology A, A 26, 605, 2008. Sun, T., et al., Physical Review B, 81, 155454, 
2010. Chawla, J.S., Zhang, X.Y., and Gall, D., Journal of Applied Physics, 110, 043714, 2011. Riedel, S. et al., Microelectronic Engineering, 
33, 165, 1997. Lim, J.W., and Isshiki, M., Journal of Applied Physics, 99, 094909, 2006.
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THIN-FILM RESISTIVITY AND SMALL GRAINS Consider the data presented in Figure 2.36a. 
What can you conclude from the plot given that the mean free path λ ≈ 40 nm in Cu?

SOLUTION

Consider the results in Figure 2.36a. According to the figure caption, the film thickness D = 
250–900 nm does not affect the resistivity, which implies that ρfilm is controlled only by the 
grain size d. The plot of ρfilm versus 1∕d in Figure 2.36a gives a best line that has an intercept 
of 17.8 nΩ m and a slope of 600 (nΩ m)(nm). In the Cu crystal, λ ≈ 40 nm but d values in 
Figure 2.36a are in the range 44 to 187 nm, larger than λ, so we actually need to use Equa-
tion 2.72a to represent the data and hence find β and then R. However, we can carry out a 
Taylor expansion22 of Equation 2.72 around β = 1

 
ρfilm

ρcrystal

≈ 1.03 + 1.35β  [2.77]

that is

 ρfilm ≈ 1.03ρcrystal + 1.35ρcrystal( R

1 − R)λ(1

d)
The above equation should represent the observed line when ρfilm is plotted against 1∕d as in 
Figure 2.36a. The intercept is 1.03ρcrystal and yields ρcrystal = 17.3 nΩ, which approximately 
matches the resistivity of Cu (17 nΩ m). The slope is

 slope ≈ 1.35ρcrystal( R

1 − R)λ
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Figure 2.36 (a) ρfilm of Cu polycrystalline films versus reciprocal mean grain size (diameter) 1∕d.  
Film thickness D = 250–900 nm does not affect the resistivity. The best straight line is ρfilm = 17.8 nΩ m +  
(600 nΩ m nm)(1∕d). (b) ρfilm of single crystal thin films of Cu versus reciprocal film thickness 1∕D at 25 °C. 
The films are grown on the surface of a single crystal of MgO and the best straight line is ρfilm = 17.0 nΩ m + 
(200 nΩ m nm)(1∕D).
 SOURCES: (a) Riedel, S., et al., Microelectronic Engineering, 33, 165, 1997. (b) Chawla, J.S., Applied Physics Letters, 94, 

252101, 2009.

 22 See Question 2.36 on how to do the expansion, or simply use a symbolic algebra math software to carry out 
the expansion to the first (β − 1) term. Remember also that for small β, Equation 2.73a is a better approximation.
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or 600(nΩ m)(nm) ≈ 1.35(17.3 nΩ m)( 1

R−1 − 1)(40 nm)

and solving the above equation yields R ≈ 0.39 for these copper films.

THIN FILM RESISITIVITY AND SURFACE SCATTERING Consider the resistivity versus film 
thickness results in Figure 2.36b. The Cu film is a single crystalline layer on a MgO crystal 
surface. The top and bottom surfaces of the film therefore have different p values and p in 
Equation 2.76 is some average of top and bottom surfaces. Equation 2.76 is expected to apply 
in the region D > 0.3λ and since λ = 40 nm, this means D > 12 nm, which is the case in 
Figure 2.37b. What is the average p?

SOLUTION

Equation 2.76 can be written as

 ρfilm ≈ ρcrystal +
3

8
 ρcrystal λ(1 − p)( 1

D) [2.78]

where p is the average value of p for the top and bottom surfaces of the film. Equation 2.78 
is a straight line when ρfilm is plotted against 1∕D. The intercept should be ρcrystal and from 
Figure 2.36b (see figure caption), ρcrystal ≈ 17.0 nΩ m, a typical value for a pure Cu crystal. 
The slope of the best line is 200 nΩ m nm, so that from Equation 2.78

 Slope =
3

8
 ρcrystal λ(1 − p) =

3

8
 (17.0 nΩ m)(40 nm)(1 − p) ≈ 200 nΩ m nm

which gives p ≈ 0.20.
 It was assumed that the surface roughness does not modify Equation 2.78. There are 
many thin film cases in which one needs to also introduce the effect of surface roughness on 
the scattering of electrons, which increases the resistivity above Equation 2.78.

2.11  INTERCONNECTS IN MICROELECTRONICS

An integrated circuit (IC) is a single crystal of Si that contains millions of transistors 
that have been fabricated within this one crystal. Interconnects are simply metal 
conductors that are used to wire the devices together to implement the desired over-
all operation of the IC. Figure 2.37a illustrates how metal stripes, separated by a 
dielectric medium, crisscross inside an integrated circuit to "wire" different semicon-
ductor devices within the silicon wafer. There are many layers of interconnects, 
which are separated by dielectric layers made of low-permittivity material. Each 
linterconnect layer is called a metalization layer. The vertical connections between 
stripes, or connections from interconnects to devices in the silicon crystal, as shown 
in Figure 2.37a, are called vias; vertical interconnect access. Figure 2.37b shows a 
scanning electron microscope image of an IC with eight levels of metallization. 
Aluminum and Al alloys, or Al silicides, have been the workhouse of the intercon-
nects, but today’s fast chips rely on copper interconnects, which have three distinct 
advantages. First, copper has a resistivity that is about 40 percent lower than that of 
Al. In high-transistor-density chips in which various voltages are switched on and 
off, what limits the speed of operation is the RC time constant, that is, the time 
constant that is involved in charging and discharging the capacitance between the 
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interconnects, and the input capacitance of the transistor; usually the former domi-
nates. The RC is substantially reduced with Cu replacing Al so that the chip speed 
is faster. The second advantage is that a lower overall interconnect resistance leads 
to a lower power consumption, lower I 2R.
 The third advantage is that copper has superior resistance to electromigration, 

a process in which metal atoms are forced to migrate by a large current density. Such 
electromigration can eventually lead to a failure of the interconnect. The current 
density in interconnects with a small cross-sectional area can be very high, and hence 
the electron drift velocities can also be very high. As these fast electrons collide 
with the metal ions there is a momentum transfer that slowly drifts the metal ions. 
Thus, the metal ions are forced to slowly migrate as a result of being bombarded by 
drifting electrons; the migration is in the direction of electron flow (not current 
flow). This atomic migration can deplete or accumulate material in certain local 
regions of the interconnect structure. The result is that electromigration can lead to 
voids (material depletion) or hillocks (material accumulation), and eventually there 
may be a break or a short between interconnects (an interconnect failure). The elec-
tromigration effects are reduced in Cu interconnects because the Cu atoms are 
heavier and cannot be as easily migrated by an electric current as are Al atoms.
 There is a relatively simple expression for estimating the RC time constant of 
multilevel interconnects that is useful in comparing various interconnect technologies 
and the effects of interconnect metal resistance ρ, the relative permittivity εr of the 
interlevel dielectric (insulation) between the interconnects, and the geometry of the 
whole interconnect wiring. First consider a simple interconnect line, as in Figure 2.38a, 

(a) (b)

Figure 2.37 (a) A schematic illustration of different layers of metal stripes that act as interconnects, separated by layers of 
dielectric. The semiconductor devices such as transistors are in the silicon crystal and are connected by these interconnects. 
A via is a vertical conductor that connects metal stripes on different layers, or a device in the silicon crystal to a metal  
interconnect. (b) Cross section of a chip with eight levels of metallization, M1 to M8. The interconnect metal is copper and 
the medium between the interconnect layers is a low permittivity dielectric. The image is obtained with a scanning electron 
microscope (SEM).
 (b) Courtesy of Mark Bohr, Intel.
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whose thickness is T, width is W, and length is L. Its resistance R is simply ρL∕(TW). 
In the chip, this interconnect will have other interconnects around it as shown in a 
highly simplified way in Figure 2.38b. It will couple with all these different conductors 
around it and will have an overall (effective) capacitance Ceff. RCeff is what we know 
as the RC time constant associated with the interconnect line in Figure 2.38b.
 Suppose that the interconnect is an Mth-level metallization. It will have a series 
of many “horizontal” neighbors along this Mth level. Let X be the nearest edge-to-
edge separation and P be the pitch of these horizontal neighbors at the Mth level. 
The pitch P refers to the separation from center to center, or the periodicity of 
interconnects; P = W + X. At a height H above the interconnect there will be a line 
running at the (M + 1) level. Similarly there will be an interconnect line at a distance 
H below at the (M − 1) level. We can identify two sets of capacitances. CV represents 
the capacitance in the vertical direction, between the interconnect and its upper or 
lower neighbor. CH is the lateral capacitance in the horizontal direction, between a 
neighbor on the right or left. Both are shown in Figure 2.38c. The interconnect there-
fore has two CV and two CH, four capacitances in total, and all are in parallel as shown 
in Figure 2.38c. From the simple parallel plate capacitance formula we can write

 CH =
εoεrTL

X
  and  CV =

εoεrWL

H

 Usually CH is greater than CV. From Figure 2.38c, the effective capacitance 
Ceff = 2(CH + CV),

 Ceff = 2εoεrL(T

X
+

W

H) [2.79]

which is the effective multilevel interconnect capacitance. We now multiply this 
with R = ρL∕(TW) to obtain the RC time constant,

 RC = 2εoεrρ( L2

TW)(T

X
+

W

H) [2.80]
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Figure 2.38 (a) A single line interconnect surrounded by dielectric insulation. (b) Interconnects crisscross each other. There 
are three levels of interconnect: M − 1, M, and M + 1. (c) An interconnect has vertical and horizontal capacitances CV and CH.
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 Equation 2.80 is only an approximate first-order calculation, but, nonetheless, it 
turns out to be quite a useful equation for roughly predicting the RC time constant 
and hence the speed of multilevel interconnect based high-transistor-density chips.23 
Most significantly, it highlights the importance of three influencing effects: the resis-
tivity of the interconnect metal; relative permittivity εr of the dielectric insulation 
between the conductors; and the geometry or “architecture” of the interconnects L, 
T, W, X, and H. Notice that L appears as L2 in Equation 2.80 and has significant 
control on the overall RC. Equation 2.80 does not obviously include the time it takes 
to turn on and off the individual transistors connected to the interconnects. In a 
high-transistor-density chip, the latter is smaller than the interconnect RC time constant.
 The reduction in the interconnect resistivity ρ by the use of Cu instead of Al 
has been a commendable achievement, and cuts down RC significantly. Further 
reduction in ρ is limited because Cu already has a very small resistivity; the small-
est ρ is for Ag which is only about 5 percent lower. Current research efforts for 
reducing RC further are concentrated on mainly two factors. First is the reduction 
of εr as much as possible by using dielectrics such as fluorinated SiO2 (known as 
FSG) for which εr = 3.6, or, more importantly, using what are called low-k dielectric 

materials (k stands for εr) such as various polymers or porous dielectrics24 that 
have a lower εr, typically 2–3, which is a substantial reduction from 3.6. The sec-
ond is the development of optimized interconnect geometries that reduce L2 in Equa-
tion 2.80. (T, W, X, and H are all of comparable size, so L2 is the most dominant 
geometric factor.)
 The ratio of the thickness T to width W of an interconnect is called the aspect 

ratio, Ar = T∕W. This ratio is typically between 1 to 2. Very roughly, in many cases, 
X and W are the same, X ≈ W and X ≈ P∕2 (see Figure 2.38b). Then Equation 2.80 
simplifies further,

 RC ≈ 2εoεrρL2( 4
P2 +

1
T2) [2.81]

 The signal delays between the transistors on a chip arise from the interconnect RC 
time constant. Equations 2.80 and 2.81 are often also used to calculate the multilevel 

interconnect delay time. Suppose that we take some typical values, L  ≈ 10 mm, 
T ≈ 1 μm, P ≈ 1 μm, ρ = 17 nΩ m for a Cu interconnect, and εr ≈ 3.6  for FSG; 
then RC ≈ 0.43 ns, not a negligible value in today’s speed hungry computing.

 23 A more rigorous theory would consider the interconnect system as having a distributed resistance and a 
distributed capacitance, similar to a transmission line; a topical research area. The treatment here is more than 
sufficient to obtain approximate results and understand the factors that control the interconnect delay time.

 24 The mixture rules mentioned in this chapter turn up again in a different but recognizable form for predicting 
the overall relative permittivity of porous dielectrics.
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MULTILEVEL INTERCONNECT RC TIME CONSTANT In a particular high-transistor-density 
IC where copper is used as the interconnect, one level of the multilevel interconnects has the 
following characteristics: pitch P = 0.45 μm, T = 0.36 μm, AR = 1.6, H = X, and εr ≈ 3.6. 
Find the effective capacitance per millimeter of interconnect length, and the RC delay time 
per L2 as ps/mm2 (as normally used in industry).

 EXAMPLE 2.32
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SOLUTION

Since AR = T∕W, W = T∕AR = 0.36∕1.6 = 0.225 μm. Further, from Figure 2.38b, P = W + X, 
so that X = P − W = 0.45 − 0.225 = 0.225 μm. H = X = 0.225 μm. Thus, Equation 2.79 
for L = 1 mm = 10−3 m gives

 Ceff = 2εoεr 
L(T

X
+

W

H) = 2(8.85 × 10−12) (3.6)(10−3)[ 0.36

0.225
+

0.225

0.225] = 0.17 pF

which is about 0.2 pF per millimeter of interconnect. The RC time constant per L2 is

  
RC

L2
= 2εoεr ρ( 1

TW)(T

X
+

W

H) = 2εoεr ρ( 1

WX
+

1

TH)
  = 2(8.85 × 10−12) (3.6)(17 × 10−9)

  [ 1

(0.225 × 10−6) (0.225 × 10−6)
+

1

(0.36 × 10−6) (0.225 × 10−6) ]
  = 3.4 × 10−5 s m−2  or  34 ps mm−2

2.12  ELECTROMIGRATION AND BLACK’S EQUATION

Interconnects have small cross-sectional dimensions, and consequently the current 
densities can be quite large. Figure 2.39a depicts how the continual bombardment 
of lattice atoms (metal ions) by many “fast” conduction electrons in high-current-
density regions can transfer enough momentum to a host metal atom to migrate it, 
that is, diffuse it along a suitable path in the crystal. The bombarded metal atom has 
to jump to a suitable lattice location to migrate, which is usually easiest along grain 
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Figure 2.39 (a) Electrons bombard the metal ions and force them to slowly migrate. (b) Formation of voids and hillocks in a 
polycrystalline metal interconnect by the electromigration of metal ions along grain boundaries and interfaces. (c) Accelerated 
tests on a 3 μm chemical vapor deposited Cu line: T = 200 °C and J = 6 MA cm−2. The photos show void formation and fatal 
failure (break), and hillock formation.
 (c) Courtesy of Dr. Lucile Arnaud, CEA-LETI, France.
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boundaries or surfaces where there is sufficient space as depicted in Figure 2.39a 
and b. Grain boundaries that are parallel to the electron flow therefore can migrate 
atoms more efficiently than grain boundaries in other directions. Atomic diffusion 
can also occur along a surface of the interconnect, that is, along an interface between 
the interconnect metal and the neighboring material. The final result of atomic 
migration is usually either material depletion or accumulation as depicted in Figure 
2.39c. The depletion of material leads to a void and a possible eventual break in the 
interconnect. The accumulation of material leads to a hillock and a short between 
lines. Interconnect failure by electromigration is measured by the mean time to 

50 percent failure tMTF. There are two factors that control the rate of electromigra-
tion REM. First is the activation energy EA involved in migrating (diffusing) the metal 
atom, and the second is the rate at which the atoms are bombarded with electrons, 
which depends on the current density J. Thus,

 REM ∝ J 
n exp(−

EA

kT) [2.82]

in which the rate is proportional to J n, instead of just J because it is found experi-
mentally that n ≥ 1. From the electromigration rate we can find the average time 
tMTF it takes for 50 percent failure of interconnects because this time is inversely 
proportional to the electromigration rate in Equation 2.82:

 tMTF = ABJ 
−n exp(EA

kT) [2.83]

where AB is a constant. Equation 2.83 is known as Black’s equation,25 and it is 
extremely useful in extrapolating high-temperature failure tests to normal operating 
temperatures. Electromigration-induced interconnect failures are typically examined 
at elevated temperatures where the failure times are over a measurable time scale in 
the laboratory (perhaps several hours or a few days). These experiments are called 
accelerated failure tests because they make use of the fact that at high temperatures 
the electromigration failure occurs more quickly. The results are then extrapolated 
to room temperature by using Black’s equation.
 Typically electromigration occurs along grain boundaries or along various inter-
faces that the interconnect has with its surroundings, the semiconductor, dielectric 
material, etc. The diffusion coefficient has a lower activation energy EA for these 
migration paths than for diffusion within the volume of the crystal. The electromigra-
tion process therefore depends on the microstructure of the interconnect metal, and 
its interfaces. Usually another metal, called a barrier, is deposited to occupy the 
interface space between the interconnect and the semiconductor or the oxide. The 
barrier passivates the interface, rendering it relatively inactive in terms of providing 
an electromigration path. An interconnect can also have a temperature gradient along 
it. (The heat generated by I2R may be conducted away faster at the ends of the inter-
connect, leaving the central region hotter.) Electromigration would be faster in the hot 
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tion rate

 25 James Black of Motorola reported his electromigration observations in a conference paper entitled “Mass 
transport of aluminum by momentum exchange with conducting electrons” Proc. 1967 Annual Symposium on 
Reliability Physics, IEEE Cat. 7-15C58, November 1967, p. 148.
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region and very slow (almost stationary) in the cold region since it is a thermally 
activated process. Consequently a pileup of electromigrated atoms can occur as atoms 
are migrated from hot to cold regions along the interconnect, leading to a hillock.26

 Pure Al suffers badly from electromigration problems and is usually alloyed with 
small amounts of Cu, called Al(Cu), to reduce electromigration to a tolerable level. But 
the resistivity increases. (Why?) In recent Cu interconnects, the most important diffu-
sion path seems to be the interface between the Cu surface and the dielectric. Surface 
coating of these Cu interconnects provides control over electromigration failures.

 26 Somewhat like a traffic accident pileup in which speeding cars run into stationary cars ahead of them.
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where vdx depends on Ex by virtue of vdx = μdEx, where 
μd is the drift mobility.

Electrical conductivity (σ) is a property of a material 
that quantifies the ease with which charges flow inside 
the material along an applied electric field or a voltage 
gradient. The conductivity is the inverse of electrical 
resistivity ρ. Since charge flow is caused by a voltage 
gradient, σ is the rate of charge flow across a unit area 
per unit voltage gradient, J = σE.

Electromigration is current density–induced diffusion 
of host metal atoms due to their repeated bombardment 
by conduction electrons at high current densities; the 
metal atoms migrate in the direction of electron flow. 
Black’s equation describes the mean time to failure of 
metal film interconnects due to electromigration failure.

Alloy is a metal that contains more than one element.

Brass is a copper-rich Cu–Zn alloy.

Bronze is a copper-rich Cu–Sn alloy.

Drift mobility is the drift velocity per unit applied 
field. If μd is the drift mobility, then the defining equa-
tion is vd = μdE, where vd is the drift velocity and E is 
the field.

Drift velocity is the average electron velocity, over all 
the conduction electrons in the conductor, in the direc-
tion of an applied electrical force (F = −eE for elec-
trons). In the absence of an applied field, all the 
electrons move around randomly, and the average ve-
locity over all the electrons in any direction is zero. 
With an applied field Ex, there is a net velocity per 
electron vdx, in the direction opposite to the field, 

(b)

(a)

Hillock Void

e–⊖

Electromigration in a Cu interconnect. SEM images 
depicting a 50 μm long and 130 nm wide Cu 
interconnect line (a) before and (b) after the 
electromigration failure. A hillock has formed on the 
interconnect line and a void has developed on the 
right interconnect pad that has led to a failure. The 
electron drift and hence atomic migration is from right 
to left.

 From Figure 2.10 in K. Mirpuri, J. Szpunar and  
H. Wendrock, Chapter 2, “Texture and Microstructure 
Dependence of Electromigration Defect Nucleation 
in Damascene Cu Interconnect Lines Studied  
in Situ by EBSD”, Krzysztof Iniewski (Editor), 
Nanoelectronics: Nanowires, Molecular Electronics, 
and Nanodevices, McGraw-Hill, New York, 2011.
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jumps in the opposite direction, then it has to do work 
against the force of the field which is undesirable. Thus 
the diffusion of the positive ion is directed along the 
field.

Isomorphous phase diagram is a phase diagram for 
an alloy that has unlimited solid solubility.

Joule’s law relates the power dissipated per unit volume 
Pvol by a current-carrying conductor to the applied field 
E and the current density J, such that Pvol = JE = σE2.

Lorentz force is the force experienced by a moving 
charge in a magnetic field. When a charge q is moving 
with a velocity v in a magnetic field B, the charge ex-
periences a force F that is proportional to the magni-
tude of its charge q, its velocity v, and the field B, such 
that F = qv × B.

Magnetic field, magnetic flux density, or magnetic 

induction (B) is a vector field quantity that describes 
the magnitude and direction of the magnetic force ex-
erted on a moving charge or a current-carrying conduc-
tor. The magnetic force is essentially the Lorentz force 
and excludes the electrostatic force qE.

Magnetic permeability (μ) or simply permeability is 
a property of the medium that characterizes the effec-
tiveness of a medium in generating as much magnetic 
field as possible for given external currents. It is the 
product of the permeability of free space (vacuum) or 
absolute permeability (μo) and relative permeability of 
the medium (μr), i.e., μ = μo μr.

Magnetometer is an instrument for measuring the 
magnitude of a magnetic field.

Matthiessen’s rule gives the overall resistivity of a 
metal as the sum of individual resistivities due to scat-
tering from thermal vibrations, impurities, and crystal 
defects. If the resistivity due to scattering from thermal 
vibrations is denoted ρT and the resistivities due to 
scattering from crystal defects and impurities can be 
lumped into a single resistivity term called the residual 
resistivity ρR, then ρ = ρT + ρR.

Mayadas–Shatzkes formula describes the resistivity 
of a thin metal film in which grain boundary scattering 
becomes significant or dominant; and the grain size is 
comparable or smaller than the mean free path of elec-
trons in the bulk crystal. The resistivity increases with 
decreasing grain size.

Fourier’s law states that the rate of heat flow Q′ 
through a sample, due to thermal conduction, is pro-
portional to the temperature gradient dT∕dx and the 
cross-sectional area A, that is, Q′ = −κA(dT∕dx), where 
κ is the thermal conductivity.

Fuchs-Sondheimer equation describes the resistivity 
of a thin metal film in which scattering from the sur-
faces of the thin film becomes significant or dominant 
when the film thickness is comparable or smaller than 
the mean free path of electrons in the bulk crystal. The 
resistivity increases with decreasing film thickness.

Hall coefficient (RH) is a parameter that gauges the 
magnitude of the Hall effect. If Ey is the electric field in 
the y direction, due to a current density Jx along x and 
a magnetic field Bz along z, then RH = Ey∕JxBz.

Hall effect is a phenomenon that occurs in a conduc-
tor carrying a current when the conductor is placed in 
a magnetic field perpendicular to the current. The 
charge carriers in the conductor are deflected by the 
magnetic field, giving rise to an electric field (Hall 
field) that is perpendicular to both the current and the 
magnetic field. If the current density Jx is along x and 
the magnetic field Bz is along z, then the Hall field is 
along either +y or −y, depending on the polarity of the 
charge carriers in the material.

Heterogeneous mixture is a mixture in which the in-
dividual components remain physically separate and 
possess different chemical and physical properties; that 
is, a mixture of different phases.

Homogeneous mixture is a mixture of two or more 
chemical species in which the chemical properties 
(e.g., composition) and physical properties (e.g., den-
sity, heat capacity) are uniform throughout. A homoge-
neous mixture is a solution.

Interconnects are various thin metal conductors in a 
Si integrated circuit that connect various devices to 
implement the required wiring of the devices. In mod-
ern ICs, these interconnects are primarily electrode-
posited Cu films.

Ionic conduction is the migration of ions in the mate-
rial as a result of field-directed diffusion. When a posi-
tive ion in an interstitial site jumps to a neighboring 
interstitial site in the direction of the field, it lowers its 
potential energy which is a favorable process. If it 
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Stefan’s law is a phenomenological description of the 
energy radiated (as electromagnetic waves) from a sur-
face per second. When a surface is heated to a tempera-
ture T, it radiates net energy at a rate given by Pradiated = 
ϵσSA(T 4 − T 0

4), where σS is Stefan’s constant (5.67 × 
10−8 W m−2 K−4), ϵ is the emissivity of the surface, A 
is the surface area, and T0 is the ambient temperature.

Temperature coefficient of resistivity (TCR) (α0) is 
defined as the fractional change in the electrical resis-
tivity of a material per unit increase in the temperature 
with respect to some reference temperature T0.

Thermal conductivity (κ) is a property of a material 
that quantifies the ease with which heat flows along the 
material from higher to lower temperature regions. 
Since heat flow is due to a temperature gradient, κ is 
the rate of heat flow across a unit area per unit tem-
perature gradient.

Thermal resistance (θ) is a measure of the difficulty 
with which heat conduction takes place along a mate-
rial sample. The thermal resistance is defined as the 
temperature drop per unit heat flow, θ = ΔT∕Q′. It de-
pends on both the material and its geometry. If the heat 
losses from the surfaces are negligible, then θ = L∕κA, 
where L is the length of the sample (along heat flow) 
and A is the cross-sectional area.

Thermally activated conductivity means that the 
conductivity increases in an exponential fashion with 
temperature as in σ = σo exp(−Eσ∕kT ) where Eσ is the 
activation energy.

Thin film is a conductor whose thickness is typically 
less than ∼1 micron; the thickness is also much less 
than the width and length of the conductor. Typically 
thin films have a higher resistivity than the correspond-
ing bulk material due to the grain boundary and surface 
scattering.

Mean free path is the mean distance traversed by an 
electron between scattering events. If τ is the mean free 
time between scattering events and u is the mean speed 
of the electron, then the mean free path is ℓ = uτ.

Mean free time is the average time it takes to scatter a 
conduction electron. If ti is the free time between colli-
sions (between scattering events) for an electron la-
beled i, then τ = ti averaged over all the electrons. The 
drift mobility is related to the mean free time by μd = 
eτ∕me. The reciprocal of the mean free time is the 
mean probability per unit time that a conduction elec-
tron will be scattered; in other words, the mean fre-
quency of scattering events.

Nordheim’s rule states that the resistivity of a solid 
solution (an isomorphous alloy) due to impurities ρI is 
proportional to the concentrations of the solute X and 
the solvent (1 − X ).

Phase (in materials science) is a physically homoge-
neous portion of a materials system that has uniform 
physical and chemical characteristics.

Relaxation time is an equivalent term for the mean 
free time between scattering events.

Residual resistivity (ρR) is the contribution to the re-
sistivity arising from scattering processes other than 
thermal vibrations of the lattice, for example, impuri-
ties, grain boundaries, dislocations, point defects.

Skin effect is an electromagnetic phenomenon that, at 
high frequencies, restricts ac current flow to near the 
surface of a conductor to reduce the energy stored in 
the magnetic field.

Solid solution is a crystalline material that is a homo-
geneous mixture of two or more chemical species. The 
mixing occurs at the atomic scale, as in mixing alcohol 
and water. Solid solutions can be substitutional (as in 
Cu–Ni) or interstitial (for example, C in Fe).

QUESTIONS AND PROBLEMS

2.1 Electrical conduction Na is a monovalent metal (BCC) with a density of 0.9712 g cm−3. Its atomic 
mass is 22.99 g mol−1. The drift mobility of electrons in Na is 53 cm2 V−1 s−1.
a. Consider the collection of conduction electrons in the solid. If each Na atom donates one electron 

to the electron sea, estimate the mean separation between the electrons. (Note: If n is the con-
centration of particles, then the particles’ mean separation d = 1∕n1∕3.)
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b. Estimate the mean separation between an electron (e−) and a metal ion (Na+), assuming that 
most of the time the electron prefers to be between two neighboring Na+ ions. What is the 
approximate Coulombic interaction energy (in eV) between an electron and an Na+ ion?

c. How does this electron/metal-ion interaction energy compare with the average thermal energy 
per particle, according to the kinetic molecular theory of matter? Do you expect the kinetic 
molecular theory to be applicable to the conduction electrons in Na? If the mean electron/metal-
ion interaction energy is of the same order of magnitude as the mean KE of the electrons, what 
is the mean speed of electrons in Na? Why should the mean kinetic energy be comparable to 
the mean electron/metal-ion interaction energy?

d. Calculate the electrical conductivity of Na and compare this with the experimental value of 
2.1 × 107 Ω−1 m−1 and comment on the difference.

2.2 Electrical conduction The resistivity of aluminum at 25 °C has been measured to be 2.72 ×  
10−8 Ω m. The thermal coefficient of resistivity of aluminum at 0 °C is 4.29 × 10−3 K−1. Aluminum 
has a valency of 3, a density of 2.70 g cm−3, and an atomic mass of 27.
a. Calculate the resistivity of aluminum at −40 °C.
b. What is the thermal coefficient of resistivity at −40 °C?
c. Estimate the mean free time between collisions for the conduction electrons in aluminum at 

25 °C, and hence estimate their drift mobility.
d. If the mean speed of the conduction electrons is about 2.0 × 106 m s−1, calculate the mean free 

path and compare this with the interatomic separation in Al (Al is FCC). What should be the 
thickness of an Al film that is deposited on an IC chip such that its resistivity is the same as 
that of bulk Al?

e. What is the percentage change in the power loss due to Joule heating of the aluminum wire when 
the temperature drops from 25 °C to −40 °C?

2.3 Conduction in gold Gold is in the same group as Cu and Ag. Assuming that each Au atom donates 
one conduction electron, calculate the drift mobility of the electrons in gold at 22 °C. What is the 
mean free path of the conduction electrons if their mean speed is 1.4 × 106 m s−1? (Use ρo and αo 
in Table 2.1.)

2.4 Mean free time between collisions Let 1∕τ be the mean probability per unit time that a conduc-
tion electron in a metal collides with (or is scattered by) lattice vibrations, impurities, or defects, 
etc. Then the probability that an electron makes a collision in a small time interval δt is δt∕τ. 
Suppose that n(t) is the concentration of electrons that have not yet collided. The change δn in 
the uncollided electron concentration is then −nδt∕τ. Thus, δn = −nδt∕τ, or δn∕n = −δt∕τ. We 
can integrate this from n = no at x = 0 to n = n(t) at time t to find the concentration of uncollided 
electrons n(t) at t

 n(t) = noexp(−t∕τ) [2.84]

 Show that the mean free time and mean square free time are given by

 t =
∫ ∞
0 tn(t)dt

∫ ∞
0 n(t)dt

= τ   and  t2 =
∫ ∞
0 t2n(t)dt

∫ ∞
0 n(t)dt

= 2τ2 [2.85]

 What is your conclusion?

2.5 Effective number of conduction electrons per atom

a. Electron drift mobility in tin (Sn) is 3.9 cm2 V−1 s−1. The room temperature (20 °C) resistivity 
of Sn is about 110 nΩ m. Atomic mass Mat and density of Sn are 118.69 g mol−1 and 7.30 g cm−3, 
respectively. How many “free” electrons are donated by each Sn atom in the crystal? How does 
this compare with the position of Sn in Group IVB of the Periodic Table?

b. Consider the resistivity of few selected metals from Groups I to IV in the Periodic Table in Table 2.8. 
Calculate the number of conduction electrons contributed per atom and compare this with the 
location of the element in the Periodic Table. What is your conclusion?

Concentration 

of uncollided 

electrons

Electron 

scattering 

statistics
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2.6 Resistivity of Ta Consider the resistivity of tantalum, which is summarized in Table 2.9. Plot ρ against 
T on a log–log plot and find n for the behavior ρ ∝ T n. Find the TCR at 0 and 25 °C. What is your 

conclusion?

Table 2.8 Selection of metals from Groups I to IV in the Periodic Table

 Periodic  Density Resistivity Mobility 

Metal Group Valency (g cm−3) (nΩ m) (cm2 V−1s−1)

Na IA 1 0.97 42.0 53

Mg IIA 2 1.74 44.5 17

Ag IB 1 10.5 15.9 56

Zn IIB 2 7.14 59.2 8

Al IIIB 3 2.7 26.5 12

Sn IVB 4 7.30 110 3.9

Pb IVB 4 11.4 206 2.3

 NOTE: Mobility from Hall-effect measurements.

2.7 TCR of isomorphous alloys Determine the composition of the Cu–Ni alloy that will have a TCR of 

4 × 10−4 K−1, that is, a TCR that is an order of magnitude less than that of Cu. Over the composition 
range of interest, the resistivity of the Cu–Ni alloy can be calculated from ρCuNi ≈ ρCu + CeffX(1 − X), 
where Ceff, the effective Nordheim coefficient, is about 1310 nΩ m.

2.8 Resistivity of isomorphous alloys and Nordheim’s rule What are the maximum atomic and weight 
percentages of Cu that can be added to Au without exceeding a resistivity that is twice that of pure 
gold? What are the maximum atomic and weight percentages of Au that can be added to pure Cu 
without exceeding twice the resistivity of pure copper? (Alloys are normally prepared by mixing the 
elements in weight.)

2.9 Physical properties of alloys Consider Cu–Sn alloys, called phosphor bronzes. Their properties are 
listed in Table 2.10 from the ASM Handbook. Plot these properties all in graph (using a log-scale 
for the properties axis) as a function of composition and deduce conclusions. How does κ∕σ change? 
Compositions are wt. %. Assume that Cu–Sn is a solid solution over this composition range.

Table 2.10 Selected properties of Cu with Sn at 20 °C

 ρ κ cs λ E d

 nΩ m W m−1 K−1 J kg−1 K−1 ×10−6 K−1 GPa g cm−3

Cu 17.1 391 385 17.0 115 8.94
98.7Cu-1.35Sn 36 208 380  17.8 117 8.89
92Cu-8Sn 133  62 380 18.2 110 8.80
90Cu-10Sn 157  50 380 18.4 110 8.78

 NOTE: ρ is resistivity, κ is thermal conductivity, cs is specific heat capacity, λ is linear thermal expansion 
coefficient, E is Young’s modulus and d is density.

Table 2.9 Resistivity of Ta

T (K) 200 273 293 298 300 400 500 600 700 800 900
ρ (nΩ m) 86.6 122 131 134 135 182 229 274 318 359 401

 SOURCE: Ed. Haynes, W.M., CRC Handbook of Chemistry and Physics, 96th Edition, 2015-2016. CRC Press. 
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2.10 Nordheim’s rule and brass Brass is a Cu–Zn alloy. Table 2.11 shows some typical resistivity 
values for various Cu–Zn compositions in which the alloy is a solid solution (up to 30% Zn).
a. Plot ρ versus X(1 − X). From the slope of the best-fit line find the mean (effective) Nordheim 

coefficient C  for Zn dissolved in Cu over this compositional range.
b. Since X is the atomic fraction of Zn in brass, for each atom in the alloy, there are X Zn atoms 

and (1 − X) Cu atoms. The conduction electrons consist of each Zn donating two electrons and 
each copper donating one electron.27 Thus, there are 2(X) + 1(1 − X) = 1 + X conduction 
electrons per atom. Since the conductivity is proportional to the electron concentration, the 
combined Nordheim–Matthiessens rule must be scaled up by (1 + X),

 ρbrass =
ρo + CX(1 − X)

(1 + X)

 Plot the data in Table 2.11 as ρ(1 + X) versus X(1 − X). From the best-fit line find C and ρo. What 
is your conclusion? (Compare the correlation coefficients of the best-fit lines in your two plots.)

Table 2.11 Cu–Zn brass alloys

Zn at.% in Cu–Zn 0 0.34 0.5 0.93 3.06 4.65 9.66 15.6 19.59 29.39
Resistivity nΩ m 17 18.1 18.84 20.7 26.8 29.9 39.1 49.0 54.8 63.5

 SOURCE: Fairbank, H.A., Physical Review, 66, 274, 1944.

 27 The approach in Question 2.10 is an empirical and a classical way to try and account for the fact that as the 
Zn concentration increases, the resistivity does not increase at a rate demanded by the Nordheim equation.  
An intuitive correction is then done by increasing the conduction electron concentration with Zn, based on 
valency. There is, however, a modern physics explanation that involves not only scattering from the introduction 
of impurities (Zn), but also changes in something called the “Fermi surface and density of states at the Fermi 
energy”, which can be found in advanced solid state physics textbooks.

2.11 Resistivity of solid solution metal alloys: testing Nordheim’s rule Nordheim’s rule accounts for 
the increase in the resistivity resulting from the scattering of electrons from the random distribution 
of impurity (solute) atoms in the host (solvent) crystal. It can nonetheless be quite useful in approxi-
mately predicting the resistivity at one composition of a solid solution metal alloy, given the value at 
another composition. Table 2.12 lists some solid solution metal alloys and gives the resistivity ρ at 
one composition X and asks for a prediction ρ′ based on Nordheim’s rule at another composition X′. 
Fill in the table for ρ′ and compare the predicted values with the experimental values, and comment.

Table 2.12 Resistivities of some solid solution metal alloys

 Alloy

 Ag–Au Au–Ag Cu–Pd Ag–Pd Au–Pd Pd–Pt Pt–Pd Cu–Ni

X (at.%) 8.8% Au 8.77% Ag 6.2% Pd 10.1% Pd 8.88% Pd 7.66% Pt  7.1% Pd 2.16% Ni
ρo (nΩ m) 16.2 22.7 17 16.2 22.7 108 105.8 17
ρ at X (nΩ m) 44.2 54.1 70.8 59.8 54.1 188.2 146.8 50
Ceff

X′ 15.4% Au 24.4% Ag 13% Pd 15.2% Pd 17.1% Pd 15.5% Pt 13.8% Pd 23.4% Ni
ρ′ at X′ (nΩ m)
ρ′ at X′ (nΩ m) 66.3 107.2 121.6 83.8 82.2 244 181 300
Experimental

 NOTE: First symbol (e.g., Ag in AgAu) is the matrix (solvent) and the second (Au) is the added solute. X is in at.%, converted from 
traditional weight percentages reported with alloys. Ceff is the effective Nordheim coefficient in ρ = ρo + Ceff X(1 − X).
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*2.12 TCR and alloy resistivity Table 2.13 shows the resistivity and TCR (α) of Cu–Ni alloys. Plot TCR 
versus 1∕ρ, and obtain the best-fit line. What is your conclusion? Consider the Matthiessen rule, and 

explain why the plot should be a straight line. What is the relationship between ρCu, αCu, ρCuNi, and 

αCuNi? Can this be generalized?

Table 2.13 Cu–Ni alloys, resistivity, and TCR

 Ni wt.% in Cu–Ni

 0 2 6 11 20

Resistivity (nΩ m) 17 50 100 150 300
TCR (ppm °C−1) 4270 1350 550 430 160

 NOTE: ppm-parts per million, i.e., 10−6.

2.13 Hall effect measurements The resistivity and the Hall coefficient of pure aluminum and Al with 
1 at.% Si have been measured at 20 °C (293 K) as ρ = 2.65 μΩ cm, RH = −3.51 × 10−11 m3 C−1 for 

Al and ρ = 3.33 μΩ cm, RH = −3.16 × 10−11 m3 C−1 for 99 at.% Al-1 at% Si. The lattice parameters 

for the pure metal and the alloy are 0.4049 nm and 0.4074 nm. What does the simple Drude model 

predict for the drift mobility in these two metals? How many conduction electrons are there per atom? 

(Data from M Bradley and John Stringer, J. Phys. F: Metal Phys., 4, 839, 1974).

2.14 Hall effect and the Drude model Table 2.14 shows the experimentally measured Hall coefficient 

and resistivities for various metals and their position in the periodic table. (a) Calculate the Hall 

mobility of each element. (b) Calculate the conduction electron concentration from the experimental 

value of RH. (c) Find how many electrons per atom are contributed to the conduction electron gas in 

the metal per metal atom. What is your conclusion?

Table 2.14 Measured Hall coefficients for a few metals at 25 °C

 Li Na K Cs Cu Ag Au Ca Mg Zn Al In

Group I I I I IB IB IB IIA IIA IIB III III

RH (×10−11 m3 C−1) −15 −24.8 −42.8 −73.3 −5.4 −9.0 −7.2 −17.8 −8.3 +10.4 −3.4 −0.73

ρ (nΩ m) 92.8 48.8 73.9 208 17.1 16.7 22.6 33.6 44.8 60.1 27.1 83.7

 SOURCE: Hurd, C., The Hall Coefficient of Metals and Alloys, Plenum, New York, NY, 1972, along with other sources.

2.15 The Hall effect Consider a rectangular sample, a metal or an n-type semiconductor, with a length 

L, width W, and thickness D. A current I is passed along L, perpendicular to the cross-sectional area 

WD. The face W × L is exposed to a magnetic field density B. A voltmeter is connected across the 

width, as shown in Figure 2.40, to read the Hall voltage VH.

a. Show that the Hall voltage recorded by the voltmeter is

 VH =
IB

Den

b. Consider a 1-micron-thick strip of gold layer on an insulating substrate that is a candidate for a 

Hall probe sensor. If the current through the film is maintained at constant 100 mA, what is the 

magnetic field that can be recorded per μV of Hall voltage?

Hall voltage
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2.16 Electrical and thermal conductivity of In Electron drift mobility in indium has been measured to 
be 6 cm2 V−1 s−1. The room temperature (27 °C) resistivity of In is 8.37 × 10−8 Ωm, and its atomic 
mass and density are 114.82 amu or g mol−1 and 7.31 g cm−3, respectively.
a. Based on the resistivity value, determine how many free electrons are donated by each In atom 

in the crystal. How does this compare with the position of In in the Periodic Table (Group IIIB)?
b. If the mean speed of conduction electrons in In is 1.74 × 108 cm s−1, what is the mean free 

path?
c. Calculate the thermal conductivity of In. How does this compare with the experimental value of 

81.6 W m−1 K−1?

2.17 Electrical and thermal conductivity of Ag The electron drift mobility in silver has been measured 
to be 54 cm2 V−1 s−1 at 27 °C. The atomic mass and density of Ag are given as 107.87 amu or g 
mol−1 and 10.50 g cm−3, respectively.
a. Assuming that each Ag atom contributes one conduction electron, calculate the resistivity of Ag 

at 27 °C. Compare this value with the measured value of 1.6 × 10−8 Ωm at the same temperature 
and suggest reasons for the difference.

b. Calculate the thermal conductivity of silver at 27 °C and at 0 °C.

2.18 Mixture rules A 70% Cu–30% Zn brass electrical component has been made of powdered metal 
and contains 15 vol.% porosity. Assume that the pores are dispersed randomly. Given that the resistiv-
ity of 70% Cu–30% Zn brass is 62 nΩ m, calculate the effective resistivity of the brass component 
using the simple conductivity mixture rule, Equation 2.32, and the Reynolds and Hough rule.

2.19 Mixture rules

a. A certain carbon electrode used in electrical arcing applications is 47 percent porous. Given that 
the resistivity of graphite (in polycrystalline form) at room temperature is about 9.1 μΩ m, 
estimate the effective resistivity of the carbon electrode using the appropriate Reynolds and 
Hough rule and the simple conductivity mixture rule. Compare your estimates with the measured 
value of 18 μΩ m and comment on the differences.

b. Silver particles are dispersed in a graphite paste to increase the effective conductivity of the 
paste. If the volume fraction of dispersed silver is 50 percent, what is the effective conductivity 
of this paste?

2.20 Ag–Ni alloys (contact materials) and the mixture rules Silver alloys, particularly Ag alloys with 
the precious metals Pt, Pd, Ni, and Au, are extensively used as contact materials in various switches. 
Alloying Ag with other metals generally increases the hardness, wear resistance, and corrosion resis-
tance at the expense of electrical and thermal conductivity. For example, Ag–Ni alloys are widely 
used as contact materials in switches in domestic appliances, control and selector switches, circuit 
breakers, and automotive switches up to several hundred amperes of current. Table 2.15 shows the 
resistivities of four Ag–Ni alloys used in make-and-break as well as disconnect contacts with current 
ratings up to ∼100 A.

L
W

D

B

I

VH

Figure 2.40 Hall effect in a rectangular material with 
length L, width W, and thickness D.

The voltmeter is across the width W.
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Table 2.15 Resistivity of Ag–Ni contact alloys for switches

 Ni % in Ag–Ni alloy
 0 10  15 20 30 40 100
d (g cm−3) 10.49 10.25 10.15 10.05 9.8 9.7 8.91
ρ (nΩ m) 16.9 18.7 19.0 20.0 24.4 27.0 71.0

 NOTE: Compositions are in wt.%. Ag–10% Ni means 90% Ag–10% Ni. d = density and  
ρ = resistivity. Use volume fraction of Ni = wNi(dalloy∕dNi), where wNi is the Ni weight 
fraction, to convert wt.% to volume %. Data combined from various sources.

Mixture rule and 

weight fractions

 NOTE: ρ = resistivity and d = density.

Table 2.16 Dependence of resistivity in Ag–W alloy on composition as a function of wt.% W

 W (wt.%)
 0 10 15 20 30 40 65 70 75 80 85 90 100

ρ (nΩ m) 16.2 18.6 19.7 20.9 22.7 27.6 35.5 38.3 40 46 47.9 53.9 55.6
d (g cm−3) 10.5 10.75 10.95 11.3 12.0 12.35 14.485 15.02 15.325 16.18 16.6 17.25 19.1

a. Ag–Ni is a two-phase alloy, a mixture of Ag-rich and Ni-rich phases. Using an appropriate 
mixture rule, predict the resistivity of the alloy and compare with the measured values in Table 
2.15. Explain the difference between the predicted and experimental values.

b. Compare the resistivity of Ag–10% Ni with that of Ag–10% Pd in Table 2.12. The resistivity 
of the Ag–Pd alloy is almost a factor of 3 greater. Ag–Pd is an isomorphous solid solution, 
whereas Ag–Ni is a two-phase mixture. Explain the difference in the resistivities of Ag–Ni and 
Ag–Pd.

2.21 Ag–W alloys (contact materials) and the mixture rule Silver–tungsten alloys are frequently used 
in heavy-duty switching applications (e.g., current-carrying contacts and oil circuit breakers) and in 
arcing tips. Ag–W is a two-phase alloy, a mixture of Ag-rich and W-rich phases. The measured 
resistivity and density for various Ag–W compositions are summarized in Table 2.16.
a. Plot the resistivity and density of the Ag–W alloy against the W content (wt.%)
b. Show that the density of the mixture, d, is given by

 d−1 = wαdα
−1 + wβdβ

−1

 where wα is the weight fraction of phase α, wβ is the weight fraction of phase β, dα is the density 
of phase α, and dβ is the density of phase β.

c. Show that the resistivity mixture rule is

 ρ = ρα 

dwα

dα

+ ρβ 

dwβ

dβ

 where ρ is the resistivity of the alloy (mixture), d is the density of the alloy (mixture), and 
subscripts α and β refer to phases α and β, respectively. Calculate d and plot it in a above.

d. Calculate the density d and the resistivity ρ of the mixture for various values of W content (in 
wt.%) and plot the calculated values in the same graph as the experimental values. Use the 
Reynolds-Hough rule for mixtures in Equation 2.34. What is your conclusion?
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2.22 Strain gauges Consider a strain gauge that consists of a nichrome wire of resistivity 1100 nΩ m, 
TCR (α) = 0.0004 K−1, a total length of 35 cm, and a diameter of 20 μm. What is δR for a strain of 
10−3? For nichrome, ν ≈ 0.3. What is δR if there is a temperature variation of 1 °C, given that the 
linear thermal expansion coefficient is 15 ppm K−1?

2.23 Strain measurements How would you use strain gauges in a Wheatstone bridge circuit to measure 
strains and reduce the effects of temperature variations? What would be the advantages and disad-
vantages of such a bridge circuit?

2.24 Strain gauges Suppose you wish to construct a strain gauge from constantan, which is 55%Cu-
45%Ni alloy. Constantan has a resistivity of 500 nΩ m, TCR (α) of 8 × 10−6 K−1, linear thermal 
expansion coefficient (λ) of 14.9 × 10−6 K−1, and a Poisson ratio ν of 0.3. Suppose that the strain 
gauge uses 50 cm of wire and the diameter is 5 μm. What is δR for a strain of 10−3? What is δR if 
there is a temperature variation of 1 °C?

2.25 Strain gauges Consider the derivation of Equation 2.26 for metal strain gauges. Is the equation the 
same if the cross section that is a rectangle with dimensions a × b instead of a circular area of diam-
eter D? Does this equation depend on the shape of the cross section? What would be the advantage 
of using a gauge made from thin film strips on a carrier substrate that could be bonded to the structure 
under test? How important is the substrate in strain measurements?

2.26 Thermal coefficients of expansion and resistivity

a. Consider a thin metal wire of length L and diameter D. Its resistance is R = ρL∕A, where  
A = πD2∕4. By considering the temperature dependence of L, A, and ρ individually, show that

 
1
R

 
dR

dT
= α0 − λ0

 where α0 is the temperature coefficient of resistivity (TCR), and λ0 is the temperature coefficient 
of linear expansion (thermal expansion coefficient or expansivity), that is,

 λ0 = L−1
0 (dL

dT)
T=T0

  or  λ0 = D−1
0 (dD

dT )
T=T0

 Note: Consider differentiating R = ρL∕[(πD2)∕4] with respect to T with each parameter, ρ, L, 
and D, having a temperature dependence.

  Given that typically, for most pure metals, α0 ≈ 1∕273 K−1 and λ0 ≈ 2 × 10−5 K−1, con-
firm that the temperature dependence of ρ controls R, rather than the temperature dependence 
of the geometry. Is it necessary to modify the given equation for a wire with a noncircular cross 
section?

b. Is it possible to design a resistor from a suitable alloy such that its temperature dependence is 
almost nil? Consider the TCR of an alloy of two metals A and B, for which αAB ≈ αΑρΑ∕ρAB.

2.27 Thermal conduction Consider brass alloys with an X atomic fraction of Zn. These alloys form a 
solid solution up to 30 at.%, and we can use the combined Matthiessen-Nordhein rule in Equation 
2.21 to calculate the resistivity of the alloy. Take C = 300 nΩ m and ρo = ρCu = 17 nΩ m.
a. An 80 at.% Cu–20 at.% Zn brass disk of 40 mm diameter and 5 mm thickness is used to conduct 

heat from a heat source to a heat sink.
 (1) Calculate the thermal resistance of the brass disk.
 (2) If the disk is conducting heat at a rate of 100 W, calculate the temperature drop along the disk.
b. What should be the composition of brass if the temperature drop across the disk is to be halved?

2.28 Thermal resistance Consider a thin insulating disk made of mica to electrically insulate a semi-
conductor device from a conducting heat sink. Mica has κ = 0.75 W m−1 K−1. The disk thickness is 
0.1 mm, and the diameter is 10 mm. What is the thermal resistance of the disk? What is the tem-
perature drop across the disk if the heat current through it is 5 W?

Change in R with 

temperature
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*2.29 Thermal resistance Consider a coaxial cable operating under steady-state conditions when the 
current flow through the inner conductor generates Joule heat at a rate P = I 2R. The heat generated 
per second by the core conductor flows through the dielectric; Q′ = I 2R. The inner conductor reaches 
a temperature Ti, whereas the outer conductor is at To. Show that the thermal resistance θ of the hollow 
cylindrical insulation for heat flow in the radial direction is

 θ =
(Ti − To)

Q′
=

ln(b∕a)
2π κ L

 [2.86]

 where a is the inside (core conductor) radius, b is the outside radius (outer conductor), κ is the ther-
mal conductivity of the insulation, and L is the cable length. Consider a coaxial cable that has a 
copper core conductor and polyethylene (PE) dielectric with the following properties: Core conductor 
resistivity ρ = 19 nΩ m, core radius a = 4 mm, dielectric thickness b − a = 3.5 mm, dielectric 
thermal conductivity κ = 0.3 W m−1 K−1. The outside temperature To is 25 °C. The cable is carrying 
a current of 500 A. What is the temperature of the inner conductor?

2.30 Temperature of a light bulb filament

a. Consider a 100 W, 120 V incandescent bulb (lamp). The tungsten filament has a length of 
0.579 m and a diameter of 63.5 μm. Its resistivity at room temperature is 56 nΩ m. Given that 
the resistivity of the filament can be represented as

 ρ = ρ0[ T

T0]
n

 [2.87]

 where T is the temperature in K, ρ0 is the resistance of the filament at T0 K, and n = 1.24 
(Table 2.1), estimate the temperature of the bulb when it is operated at the rated voltage, that 
is, directly from the main outlet. Note that the bulb dissipates 100 W at 120 V.

b. Suppose that the electrical power dissipated in the tungsten wire is totally radiated from the 
surface of the filament. The radiated power at the absolute temperature T can be described by 
Stefan’s law

 Pradiated = ϵσSA(T 4 − T 4
0) [2.88]

 where σS is Stefan’s constant (5.67 × 10−8 W m−2 K−4), ϵ is the emissivity of the surface (0.35 for 
tungsten), A is the surface area of the tungsten filament, and T0 is room temperature (293 K). 
Obviously, for T > T0, Pradiated = ϵσSAT 4.

  Assuming that all the electrical power is radiated from the surface, estimate the temperature 
of the filament and compare it with your answer in part (a).

c. If the melting temperature of W is 3407 °C, what is the voltage that guarantees that the light 
bulb will blow?

2.31 Superionic conduction in RbAg4I5 Figure 2.29 shows that the RbAg4I5 (rubidium silver iodide) 
crystal has a conductivity that is orders of magnitude higher than traditional ceramics and glasses in 
the same temperature range. Table 2.17 gives the conductivity of RbAg4I5 as a function of tempera-
ture. By carrying out a suitable plot, find the activation energy Eσ(eV) and the pre-exponential con-
stant A in the expression for ionic conduction, σ = (A∕T )exp(−Eσ∕kT ).

Resistivity of W

Radiated power

 SOURCE: Kim, K.S., and Piak, W., Journal of Chemical & Engineering Data, 20, 356, 1975.

Table 2.17 Conductivity versus temperature data for a RbAg4I5 crystal

T (°C) 25 27 34 51 56 65 75 77
σ (Ω−1 cm−1) 0.288 0.304 0.322 0.339 0.371 0.395 0.427 0.434
T (°C) 87 89 92 107 121 132 134 147
σ (Ω−1 cm−1) 0.455 0.465 0.477 0.527 0.55 0.581 0.608 0.659

Thermal 

resistance of 

hollow cylinder
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2.32 Hall effect with ions in ionic crystals By using various sensitive measurement techniques, it is 
possible to carry out Hall effect measurements on certain ionic crystals. Stuhrmann, Kreiterling and 
Funke in 2002 (Solid State Ionics, 154, 109) were able to measure the Hall voltage on superionic 
RbAg4I5 crystals in a magnetic field. The results at 100 °C indicate that the Hall coefficient is 
5.7 × 10−4 cm3 C−1. The conductivity of the sample at the same temperature is 0.53 Ω−1 cm−1. The 
mobile charges are Ag+ ions. What is the Hall mobility of Ag+ ions? The Ag+ concentration in 
the crystal can be estimated from the density of the crystal (d = 5.35 g cm−3) and is approximately 
1.1 × 1022 cm−3. Assuming that all the ions are moving, what should be the drift mobility of Ag+ 
ions at 100 °C? What is your conclusion?

2.33 Ionic conduction in soda-silicate glasses Consider soda-silica glass of composition 25%Na2O-
75%SiO2 that represents (Na2O)0.25(SiO2)0.75. Its density is 2.39 g cm−3. The diffusion coefficient D 
of Na+ in this soda-silica at 350 °C is 3.38 × 10−9 cm2 s−1 and the Haven ratio f is 0.53. Calculate 
the conductivity of 25%Na2O-75%SiO2 glass at 350 °C and compare it with the value deduced from 
Figure 2.29.

2.34 Ionic conduction in borosilicate glasses Table 2.18 shows the conductivities of four types of boro-
silicate glass identified as samples L, N, K, and C where L is 53.4SiO2-25.8B2O3-20.8Li2O, N is 
53.5SiO2-26.1B2O3-20.4Na2O, K is 55.1SiO2-25.8B2O3-19.1K2O, and C is 58.1SiO2-24.7B2O3-
17.2Na2O. The numbers represent molar percentages, i.e., 55.1%SiO2, etc. The main difference 
between the samples is the alkaline ion species: L has Li+, N has Na+, K has K+, and C has Cs+ 
mobile ions.
a. Find the constant A, the activation energy Eσ for each sample. Plot Eσ versus the alkaline ion 

radius.
b. Calculate and compare the conductivities at the same temperature, say at 400 °C. Which are 

lower? Why? Plot semilogarithmically σ at 400 °C vs. ionic radius.
c. Find approximately the temperature for each glass so that all four glasses at this temperature 

have the same conductivity of σ = 8.00 × 10−6 Ω−1 cm−1. For example, T is 235 °C for glass L. 
What is your conclusion?

 NOTE: Conductivity and ionic radius values from Neyret, M., et al, Journal of Non-Crystalline Solids, 410, 74, 2015.

Table 2.18  Selected conductivities and properties of borosilicate glasses with different  
alkaline ions

  Ionic σ1 at T1 σ2 at T2 

Sample Mobile Ion Radius (nm) Ω−1 cm−1 Ω−1 cm−1

 L Li+ 0.061 9.18 × 10−6 at 240 °C 8.86 × 10−4 at 490 °C
 N Na+ 0.086 1.54 × 10−7 at 190 °C 2.34 × 10−4 at 500 °C
 K K+ 0.139 2.22 × 10−8 at 220 °C 1.25 × 10−4 at 520 °C
 C Cs+ 0.160 5.43 × 10−9 at 230 °C 9.50 × 10−6 at 500 °C

2.35 Skin effect

a. What is the skin depth for a solid core copper wire carrying a current at 60 Hz? The resistivity 
of copper at 27 °C is 17 nΩ m. Its relative permeability μr ≈ 1. Is there any sense in using a 
conductor for power transmission which has a diameter more than 2 cm?

b. What is the skin depth for a solid core iron wire carrying a current at 60 Hz? The resistivity of 
iron at 27 °C is 97 nΩ m. Assume that its relative permeability μr ≈ 700. How does this compare 
with the copper wire? Discuss why copper is preferred over iron for power transmission even 
though iron is nearly 100 times cheaper than copper.
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*2.36 Mayadas–Shatzkes thin film resistivity Consider Equation 2.72 for the resistivity of a polycrystal-
line thin film in terms of β. Consider the expansion of Equation 2.72 around β = 1. If Δβ = β − 1, 
then show that

 (ρfilm∕ρcrystal) = 2.378 + 1.3475Δβ + …

so that

 
ρfilm

ρcrystal
≈ 1.030 + 1.348β [2.89]

 Plot the actual expression for (ρfilm∕ρcrystal) versus β and then Equations 2.89 and 2.73a versus β and 
compare the two. What would be a range of values for which Equation 2.89 can be used with 3 percent 
error? What is your conclusion?

2.37 Polycrystalline copper films Consider the data in Figure 2.38a, which are reproduced below in 
Table 2.19 in terms of the average grain size (d) and the resistivity of the film. Plot these on an excel 
graph. Plot the Mayadas–Shatzkes equation as a function of d on the same graph. You need to first 
calculate β = (λ∕d)R∕(1−R) for each d value by assuming a particular R (e.g., R = 0.4) and then use 
Equation 2.72a. You can then modify R to bring the theoretical curve as close as possible to the 
experimental curve. What is your conclusion? Assume λ = 40 nm and ρCu = 17.3 nΩ m.

 SOURCE: Riedel, S., et al., Microelectronic Engineering, 33, 165, 1997.

Table 2.19 Dependence of the resistivity of polycrystalline films of copper on the grain size

d (nm) 189 168 139 140 128 107 99.3 59.8 44.3
ρfilm (nΩ m) 20.97 21.16 22.21 22.65 22.09 23.39 23.89 27.92 31.20

Surface and 

grain boundary 

scattering in 

films

Surface and 

grain boundary 

scattering in 

films

2.38 Thin films

a. Consider a polycrystalline copper film that has R = 0.40. What is the approximate mean grain 
size d in terms of the mean free path λ in the bulk that would lead to the polycrystalline Cu 
film having a resistivity that is 1.5ρbulk. If the mean free path in the crystal is about 40 nm at 
room temperature, what is d? (Assume D ≫ d.)

b. What is the thickness D of an epitaxial copper film in terms of λ in which surface scattering 
increases the film resistivity to 1.2ρbulk if the specular scattering fraction p is 0.1?

2.39 Thin films of Cu Consider the resistivity of three types of Cu thin films as shown in 
Table 2.20. Thin films are one single crystal layer, and two polycrystalline layers with an average 
grain size shown in the table. All have the same thickness D = 40 nm. The resistivity measurements 
have an error bar (representing experimental scatter in data) that is roughly ±3 percent. Suppose, 
we write Matthiessen’s rule as

 ρfilm = ρcrystal + ΔρMS + ΔρSF [2.90a]

 or

 ρfilm∕ρcrystal ≈ 1 + (3∕2)β + (3∕8)(λ∕D)(1 − p) [2.90b]

 where β is defined in Equation 2.72b, ρcrystal is the bulk resistivity of the Cu crystal, and ΔρMS and 
ΔρSF are the contributions to resistivity arising from the scattering of electrons at the grain bound-
ary and surfaces, respectively; that is, the Mayadas–Shatzkes and Fuchs–Sondheimer contributions, 
respectively.

Grain boundary 

scattering in 

thin films
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2.41 Thin films of W Thin single crystal films of W have been grown epitaxial on sapphire (Al2O3) 
substrates. The resistivity of a 187-nm-thick film is 64 nΩ m, which can be taken as the bulk resis-

tivity. The W film with a thickness 19.9 nm has a resistivity of 86 nΩ m. If the mean free path λ in 

the bulk is 19.1 nm, what is the average p?

2.42 Thin films of Cu on Si (100) surface Different thickness polycrystalline Cu films have been 

deposited on the (100) surface of a Si crystal and their resistivities have been measured as sum-

marized in Table 2.22. For these films, the average grain size d has been shown to be related to the 

film thickness D by d ≈ D∕2.3. Use Matthiessen’s rule to combine Fuchs–Sondheimer and Mayadas–
Shatzkes equations as in Equation 2.90b and plot ρ against 1∕D and also ρ against D as a log-log 
plot on excel or a similar application. Plot the expected ρ in these graphs from Equation 2.90b by 
taking p = 0, λ = 40 nm, and R = 0.25. Try a slightly greater and slightly lower R values (e.g., 

0.20 and 0.30) to see how the predicted curve changes with respect to the data. What is your 

conclusion?

 SOURCE: Chawla, J.S., Physical Review B, 84, 235423, 2011. d = ∞ means a single crystal film.

Table 2.20 The resistivity of three types of thin Cu films with the same thickness D = 40 nm

d (nm) ρfilm (nΩ m) ΔρMS (nΩ m) ΔρSF (nΩ m) ρcrystal + ρMS + ρSF

 ∞ 24.8

 160 26.8

 40 29.1

 SOURCE: Chawla, J.S., et al., Journal of Applied Physics, 110, 043714, 
2011.

Table 2.21  The resistivity of Cu single crystal thin films 
deposited on TiN (001) surface in situ in vacuum

D (nm) 830 40.0 13.3 6.20

ρ (nΩ m) (vacuum) 17.1 21.0 29.7 44.4

 SOURCE: Lim, J.W., and Isshiki, M., Journal of Applied Physics, 99, 094909, 2006.

Table 2.22 The resistivity of thin polycrystalline Cu films on the Si (100) surface

D (nm) 407 222 170 120 101 85.4 68.5 51.2 34.1 17.2 8.59

ρ (nΩ m) 19.8 20.8 20.0 22.1 23.5 27.9 30.7 32.2 50.4 70.5 126

2.40 Thin films of single crystal Cu on TiN Thin single crystal films of Cu have been deposited 

onto a TiN (001) surface grown on a MgO crystal substrate by. Room temperature (25 °C) resis-

tivity measurements in situ (in vacuum) give the data in Table 2.21. How would you interpret 

the data? (λ = 40 nm for Cu)

  Complete Table 2.20 by taking ρcrystal = 17.0 nΩ m and assuming p = 0 and R = 0.25. What is 

your conclusion?
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2.43 Interconnects Consider a CMOS chip in which the interconnects are copper with a pitch P of 
500 nm, interconnect thickness T of 400 nm, aspect ratio 1.4, and H = X. The dielectric is FSG with 
εr = 3.6. Consider two cases, L = 1 mm and L = 10 mm, and calculate the overall effective inter-
connect capacitance Ceff and the RC delay time. Suppose that Al, which is normally Al with about 
4 wt.% Cu in the microelectronics industry with a resistivity 31 nΩ m, is used as the interconnect. 

What is the corresponding RC delay time?

*2.44 Thin 50 nm interconnects Equation 2.76 is for conduction in a thin film of thickness D and assumes 

scattering from two surfaces, which shows that the increase in the resistivity Δρ2 = ρbulk 
3
8(λ∕D) (1 − p). 

An interconnect line in an IC is not quite a thin film and has four surfaces (interfaces), because the 

thickness T of the conductor is comparable to the width W. If we assume T = W, we can very roughly 

take the resistivity increase with four surfaces as Δρ4 ≈ Δρ2 + Δρ2 ≈ ρbulk 
3
4(λ∕D) (1 − p)  in which 

D = T. (The exact expression is more complicated, but the latter will suffice for this problem.) In 

addition there will be a contribution from grain boundary scattering so that we need to use Equation 

2.90a. For simplicity assume T ≈ W ≈ X ≈ H ≈ 50 nm, λ = 40 nm, p = 0 and εr = 3.6. If the mean 

grain size d is roughly 30 nm and R = 0.4, estimate the resistivity of the interconnect and hence the 

RC delay for a 0.5 mm interconnect. (You can consider Equation 2.90b but the surface scattering now 

is from four surfaces as explained above.)

2.45 Electromigration Although electromigration-induced failure in Cu metallization is less severe 

than in Al metallization, it can still lead to interconnect failure depending on current densities and 

the operating temperature. In a set of experiments carried out on electroplated Cu metallization 

lines, failure of the Cu interconnects have been examined under accelerated tests (at elevated tem-

peratures). The mean lifetime t50 (time for 50 percent of the lines to break) have been measured as 

a function of current density J and temperature T at a given current density. The results are sum-

marized in Table 2.23.

a. Plot semilogarithmically t50 versus 1∕T (T in Kelvins) for the first three interconnects. Al(Cu) 

and Cu (1.3 × 0.7 μm2) have single activation energies EA. Calculate EA for these interconnects. 

Cu (1.3 × 0.7 μm2) exhibits different activation energies for the high-and low-temperature 

regions. Estimate these EA.

b. Plot on a log-log plot t50 versus J at 370 °C. Show that at low J, n ≈ 1.1 and at high J, 

n ≈ 1.8.

Table 2.23 Results of electromigration failure experiments on various Al and Cu interconnects

Al(Cu) Cu Cu Cu

[J = 25 mA∕μm2, [J = 25 mA∕μm2, [J = 25 mA∕μm2, (T = 370 °C)

 A = 0.35 × 0.2 (μm)2]  A = 0.24 × 0.28 (μm)2]  A = 1.3 × 0.7 (μm)2]

T (°C) t50 (hr) T (°C) t50 (hr) T (°C) t50 (hr) J mA μm−2 t50 (hr)

 365 0.11 397 2.87 395 40.3 3.54 131.5

 300 0.98 354 12.8 360 196 11.7 25.2

 259 5.73 315 70.53 314 825 24.8 14.9

 233 15.7 269 180 285 2098 49.2 4.28

   232 899   74.1 2.29

       140 0.69

 NOTE: A = width × height in micron2.

 SOURCE: Rosenberg, R., et al., Annual Review of Materials Science, 30, 229, 2000.
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A commercial strain gauge by Micro-Measurements (Vishay Precision Group). This gauge has a maximum strain range of ±5%.  
The overall resistance of the gauge is 350 Ω. The gauge wire is a constantan alloy with a small thermal coefficient of resistance. The 
gauge wires are embedded in a polyimide polymer flexible substrate. The external solder pads are copper coated. Its useful temper-
ature range is −75 °C to +175 °C.

 Photo by S. Kasap.

Void

Hillock

28 hours and failure6 hours

Scanning electron microscope images of the growth of a hillock and a 
void in a polycrystalline aluminum interconnect line carrying a current 
of 2 × 106 A cm−2 at 230 °C. The interconnect line was 8 µm wide 
and the mean grain size was 4 µm. Left: After 6 hours. Right: After  
28 hours and failure.

 From K. Weyzig, H. Wendrock, A. Buerke and T. Kötter, “In-situ  
study of interconnect failures by electromigration inside a scanning 
electron microscope” AIP Conference Proceedings, 491, 89–99 
(1999); with the permission of AIP Publishing.



3 ×  103 photons 1.2 ×  104 photons

9.3 ×  104 photons 7.6 ×  105 photons

3.6 ×  106 photons 2.8 ×  107 photons

These electronic images were made with the number of photons indicated. The discrete nature of photons 
means that a large number of photons are needed to constitute an image with satisfactorily discernable details.

 SOURCE: A. Rose, “Quantum and noise limitations of the visual process” J. Opt. Soc. of America, vol. 43, 
715, 1953.
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3

Elementary Quantum Physics

The triumph of modern physics is the triumph of quantum mechanics. Even the 
simplest experimental observation that the resistivity of a metal depends linearly on 
the temperature can only be explained by quantum physics, because we must take 
the mean speed of the conduction electrons to be nearly independent of temperature. 
The modern definitions of voltage and ohm, adopted in January 1990 and now part 
of the IEEE standards, are based on Josephson and quantum Hall effects, both of 
which are quantum mechanical phenomena.
 One of the most important discoveries in physics has been the wave–particle 
duality of nature. The electron, which we have so far considered to be a particle and 
hence to be obeying Newton’s second law (F = ma), can also exhibit wave-like 
properties quite contrary to our intuition. An electron beam can give rise to diffrac-
tion patterns and interference fringes, just like a light wave. Interference and diffrac-
tion phenomena displayed by light can only be explained by treating light as an 
electromagnetic wave. But light can also exhibit particle-like properties in which it 
behaves as if it were a stream of discrete entities (“photons”), each carrying a linear 
momentum and each interacting discretely with electrons in matter ( just like a particle 
colliding with another particle).

3.1  PHOTONS

3.1.1 LIGHT AS A WAVE

In introductory physics courses, light is considered to be a wave. Indeed, such phe-
nomena as interference, diffraction, refraction, and reflection can all be explained 
by the theory of waves. In all these phenomena, a ray of light is considered to be 
an electromagnetic (EM) wave with a given frequency, as depicted in Figure 3.1. 
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The electric and magnetic fields, Ey and Bz, of this wave are perpendicular to each 
other and to the direction of propagation x. The electric field Ey at position x at time 
t may be described by

 Ey(x, t) = Eo sin(kx − ωt) [3.1]

where k is the wavenumber, or the propagation constant, related to the wavelength 
λ by k = 2π∕λ, and ω is the angular frequency of the wave (or 2πf, where f is the 
frequency). A similar equation describes the variation of the magnetic field Bz 
(directed along z) with x at any time t. Equation 3.1 represents a traveling wave in 
the x direction, which, in the present example, is a sinusoidally varying function 
(Figure 3.1). The velocity of the wave (strictly the phase velocity) is

 c =
ω

k
= f λ

where f is the frequency. The intensity I, that is, the energy flowing per unit area 
per second, of the wave represented by Equation 3.1 is given by

 I =
1
2

 cεo E 
2
o [3.2]

where εo is the absolute permittivity.
 Understanding the wave nature of light is fundamental to understanding interfer-
ence and diffraction, two phenomena that we experience with sound waves almost 
on a daily basis. Figure 3.2 illustrates how the interference of secondary waves from 
the two slits S1 and S2 gives rise to the dark and bright fringes (called Young’s 

fringes) on a screen placed at some distance from the slits. At point P on the screen, 
the waves emanating from S1 and S2 interfere constructively, if they are in phase. 
This is the case if the path difference between the two rays is an integer multiple of 
the wavelength λ, or

 S1P − S2P = nλ

Traveling 

wave

Classical 

light intensity

Direction
of propagation

y

z

x

Ey

Bz

x

Velocity = c 

Figure 3.1 The classical view of light as an electromagnetic wave.

An electromagnetic wave is a traveling wave with time-varying electric and magnetic fields that 
are perpendicular to each other and to the direction of propagation.
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where n is an integer. If the two waves are out of phase by a path difference of λ∕2, or

 S1P − S2P = (n +
1
2)λ

then the waves interfere destructively and the intensity at point P vanishes. Thus, in 
the y direction, the observer sees a pattern of bright and dark fringes.
 When X-rays are incident on a crystalline material, they give rise to typical dif-
fraction patterns on a photographic plate, as shown in Figure 3.3a and b, which can 
only be explained by using wave concepts. For simplicity, consider two waves, 1 and 2, 
in an X-ray beam. The waves are initially in phase, as shown in Figure 3.3c. Suppose 
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Figure 3.2 Schematic illustration of Young’s double-slit experiment.
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Figure 3.3 Diffraction patterns obtained by passing X-rays through crystals can only be explained by using ideas based 
on the interference of waves. (a) Diffraction of X-rays from a single crystal gives a diffraction pattern of bright spots on  
a photographic film. (b) Diffraction of X-rays from a powdered crystalline material or a polycrystalline material gives a  
diffraction pattern of bright rings on a photographic film. (c) X-ray diffraction involves the constructive interference of 
waves being “reflected” by various atomic planes in the crystal.
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that wave 1 is “reflected” from the first plane of atoms in the crystal, whereas wave 
2 is “reflected” from the second plane.1 After reflection, wave 2 has traveled an 
additional distance equivalent to 2d sin θ before reaching wave 1. The path difference 
between the two waves is 2d sin θ, where d is the separation of the atomic planes. 
For constructive interference, this must be nλ, where n is an integer. Otherwise, 
waves 1 and 2 will interfere destructively and will cancel each other. Waves reflected 
from adjacent atomic planes interfere constructively to constitute a diffracted beam 
only when the path difference between the waves is an integer multiple of the wave-
length, and this will only be the case for certain directions. Therefore, the condition 
for the existence of a diffracted beam is

 2d sin θ = nλ  n = 1, 2, 3, . . . [3.3]

 The condition expressed in Equation 3.3, for observing a diffracted beam, forms 
the whole basis for identifying and studying various crystal structures (the science 
of crystallography). The equation is referred to as Bragg’s law, and arises from the 
constructive interference of waves.
 Aside from exhibiting wave-like properties, light can behave like a stream of 
“particles” of zero rest-mass. As it turns out, the only way to explain a vast number 
of experiments is to view light as a stream of discrete entities or energy packets 
called photons, each carrying a quantum of energy hf, and momentum h∕λ, where 
h is a universal constant that can be determined experimentally, and f is the frequency 
of light. This photonic view of light is drastically different than the simple wave 
picture and must be examined closely to understand its origin.

3.1.2 THE PHOTOELECTRIC EFFECT

Consider a quartz glass vacuum tube with two metal electrodes, a photocathode and 
an anode, which are connected externally to a voltage supply V (variable and revers-
ible) via an ammeter, as schematically illustrated in Figure 3.4. When the cathode 
is illuminated with light, if the frequency f of the light is greater than a certain 
critical value f0, the ammeter registers a current I, even when the anode voltage is zero 
(i.e., the supply is bypassed). When light strikes the cathode, electrons are emitted 
with sufficient kinetic energy to reach the opposite electrode. Applying a positive 
voltage to the anode helps to collect more of the electrons and thus increases the 
current, until it saturates because all the photoemitted electrons have been collected. 
The current, then, is limited by the rate of supply of photoemitted electrons. If, on 
the other hand, we apply a negative voltage to the anode, we can “push” back the 
photoemitted electrons and hence reduce the current I. Figure 3.5a shows the depen-
dence of the photocurrent on the anode voltage, for one particular frequency of light.
 Recall that when an electron traverses a voltage difference V, its potential energy 
changes by eV (potential difference is defined as work done per unit charge). When 
a negative voltage is applied to the anode, the electron has to do work to get to this 

 1 Strictly, one must consider the scattering of waves from the electrons in individual atoms (e.g., atoms A and B 
in Figure 3.3c) and examine the constructive interference of these scattered waves, which leads to the same 
condition as that derived in Equation 3.3.

Bragg 

diffraction 

condition
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electrode, and this work comes from its kinetic energy just after photoemission. 
When the negative anode voltage V is equal to V0, which just “extinguishes” the 
current I, we know that the potential energy “gained” by the electron is just the 
kinetic energy lost by the electron, or

 eV0 =
1
2

mev 
2 = KEm

where v is the velocity and KEm is the kinetic energy of the electron just after pho-
toemission. Therefore, we can conveniently measure the maximum kinetic energy 
KEm of an emitted electron.
 For a given frequency of light, increasing the intensity of light I requires the 
same voltage V0 to extinguish the current; that is, the KEm of the emitted electrons 
is independent of the light intensity I. This is quite surprising. However, increasing 
the intensity does increase the saturation current. Both of these effects are noted in 
the I–V results shown in Figure 3.5a.

V
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Figure 3.4 The photoelectric effect.
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Figure 3.5 Results from the photoelectric experiment.
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 Since the magnitude of the saturation photocurrent depends on the light inten-
sity I, whereas the KE of the emitted electron is independent of I, we are forced to 
conclude that only the number of electrons ejected depends on the light intensity. 
Furthermore, if we plot KEm (from the V0 value) against the light frequency f for 
different electrode metals for the cathode, we find the typical behavior shown in 
Figure 3.6. This shows that the KE of the emitted electron depends on the frequency 
of light. The experimental results shown in Figure 3.6 can be summarized by a state-
ment that relates the KEm of the electron to the frequency of light and the electrode 
metal, as follows:

 KEm = hf − hf0 [3.4]

where h is the slope of the straight line and is independent of the type of metal, 
whereas f0 depends on the electrode material for the photocathode (e.g., f01, f02, etc.). 
Equation 3.4 is essentially a succinct statement of the experimental observations of 
the photoelectric effect as exhibited in Figure 3.6. The constant h is called Planck’s 

constant, which, from the slope of the straight lines in Figure 3.6, can be shown to be 
about 6.6 × 10−34 J s. This was beautifully demonstrated by Millikan in 1915, in an 
excellent series of photoelectric experiments using different photocathode materials.2

 The successful interpretation of the photoelectric effect was first given in 1905 
by Einstein, who proposed that light consists of “energy packets,” each of which has 
the magnitude hf. We can call these energy quanta photons. When one photon strikes 
an electron, its energy is transferred to the electron. The whole photon becomes 
absorbed by the electron. But, an electron in a metal is in a lower state of potential 
energy (PE) than in vacuum, by an amount Φ, which we call the work function of 
the metal, as illustrated in Figure 3.7. The lower PE is what keeps the electron in 
the metal; otherwise, it would “drop out.”
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Figure 3.6 The effect of varying the  
frequency of light and the cathode material  
in the photoelectric experiment. The lines for 
the different materials have the same slope h 
but different intercepts.
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 2 R. A. Millikan, Phys. Rev. 7, 355, 1916.
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 This lower PE is a result of the Coulombic attraction interaction between the 
electron and the positive metal ions. Some of the photon energy hf therefore goes 
toward overcoming this PE barrier. The energy that is left (hf − Φ) gives the electron 
its KE. The work function Φ changes from one metal to another. Photoemission only 
occurs when hf is greater than Φ. This is clearly borne out by experiment, since a 
critical frequency f0 is needed to register a photocurrent. When f is less than f0, even 
if we use an extremely intense light, no current exists because no photoemission 
occurs, as demonstrated by the experimental results in Figure 3.6. Inasmuch as Φ 
depends on the metal, so does f0. Therefore, in Einstein’s interpretation hf0 = Φ. In 
fact, the measurement of f0 constitutes one method of determining the work function 
of a metal.
 This explanation for the photoelectric effect is further supported by the fact that 
the work function Φ from hf0 is in good agreement with that from thermionic emis-
sion experiments.3 There is an apparent similarity between the I–V characteristics of 
the phototube and that of the vacuum tube used in early radios. The only difference 
is that in the vacuum tube, the emission of electrons from the cathode is achieved 
by heating the cathode. Thermal energy ejects some electrons over the PE barrier 
Φ. The measurement of Φ by this thermionic emission process agrees with that from 
photoemission experiments.
 In the photonic interpretation of light, we still have to resolve the meaning of 
the intensity of light, because the classical intensity in Equation 3.2 is obviously not 
acceptable. Increasing the intensity of illumination in the photoelectric experiment 
increases the saturation current, which means that more electrons are emitted per 
unit time. We therefore infer that the cathode must be receiving more photons per 

 3 You can take a quick look into Section 4.9.1 to see that the thermionic emission current in a vacuum tube 
depends on the work function Φ of the cathode metal.
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unit time at higher intensities. By definition, “intensity” refers to the amount of 
energy flowing through a unit area per unit time. The number of photons crossing 
a unit area per unit time is defined as the photon flux density, and denoted by Γph. 
The flow of energy through a unit area per unit time, the light intensity, is the 
product of this photon flux density and the energy per photon, that is,

 I = Γphhf [3.5]

where

 Γph =
ΔNph

AΔt
 [3.6]

in which ΔNph is the net number of photons crossing an area A in time Δt. With 
the energy of a photon given as hf and the intensity of light defined as Γphhf, the 
explanation for the photoelectric effect becomes self-consistent. The interpretation 
of light as a stream of photons can perhaps be intuitively imagined as depicted in 
Figure 3.8.

Light 

intensity

Photon flux 

density

ENERGY OF A BLUE PHOTON What is the energy of a blue photon that has a wavelength 
of 450 nm?

SOLUTION

The energy of the photon is given by

 Eph = hf =
hc

λ
=

(6.6 × 10−34 J s) (3 × 108 m s−1)

450 × 10−9 m
= 4.4 × 10−19 J

 Generally, with such small energy values, we prefer electron–volts (eV), so the energy 
of the photon is

 
4.4 × 10−19 J

1.6 × 10−19 J/eV
= 2.75 eV

 EXAMPLE 3.1

Stream of photons

Eph = hf and p = h/λ

Flux of photons

Figure 3.8 Intuitive visualization of light consisting of a stream of photons (not to be taken  
too literally).
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THE PHOTOELECTRIC EXPERIMENT In the photoelectric experiment, green light, with a 
wavelength of 522 nm, is the longest-wavelength radiation that can cause the photoemission 
of electrons from a clean sodium surface.

a. What is the work function of sodium, in electron–volts?
b. If UV (ultraviolet) radiation of wavelength 250 nm is incident to the sodium surface, 

what will be the kinetic energy of the photoemitted electrons, in electron–volts?
c. Suppose that the UV light of wavelength 250 nm has an intensity of 20 mW cm−2. If 

the emitted electrons are collected by applying a positive bias to the opposite electrode, 
what will be the photoelectric current density?

SOLUTION

a. At threshold, the photon energy just causes photoemissions; that is, the electron just 
overcomes the potential barrier Φ. Thus, hc∕λ0 = eΦ, where Φ is the work function in 
eV, and λ0 is the longest wavelength.

 Φ =
hc

eλ0

=
(6.626 × 10−34 J s) (3 × 108 m s−1)

(1.6 × 10−19 J/eV)(522 × 10−9 m)
= 2.38 eV

b. The energy of the incoming photon Eph is (hc∕λ), so the excess energy over eΦ goes to 
the kinetic energy of the electron. Thus,

 KE =
hc

eλ
− Φ =

(6.626 × 10−34 J s) (3 × 108 m s−1)

(1.6 × 10−19 J/eV)(250 × 10−9 m)
− 2.38 eV = 2.58 eV

c. The light intensity (defined as energy flux) is given by I = Γph(hc∕λ), where Γph is the num-
ber of photons arriving per unit area per unit time; that is, photon flux density and (hc∕λ) is 
the energy per photon. Thus, if each photon releases one electron, the electron flux will be 
equal to the photon flux, and the current density, which is the charge flux density, will be

  J = eΓph =
eIλ

hc
=

(1.6 × 10−19 C)(20 × 10−3 × 104 J s−1 m−2) (250 × 10−9 m)

(6.626 × 10−34 J s) (3 × 108 m s−1)

  = 40.3 A m−2  or  4.0 mA cm−2

3.1.3 COMPTON SCATTERING

When an X-ray strikes an electron, it is deflected, or “scattered.” In addition, the 
electron moves away after the interaction, as depicted in Figure 3.9. The wavelength 
of the incoming and scattered X-rays can readily be measured. The frequency f ′ of 
the scattered X-ray is less than the frequency f of the incoming X-ray. When the KE 
of the electron is determined, we find that

 KE = hf − hf ′

Since the electron now also has a momentum pe, then from the conservation of 
linear momentum law, we are forced to accept that the X-ray also has a momentum. 
The Compton scattering experiments show that the momentum of the photon is 
related to its wavelength by

 p =
h

λ
 [3.7]

 EXAMPLE 3.2

Momentum of 

a photon
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 We see that a photon not only has an energy hf, but also a momentum p, and it 
interacts as if it were a discrete entity like a particle. Therefore, when discussing 
the properties of a photon, we must consider its energy and momentum as if it were 
a particle.
 We should mention that the description of the Compton effect shown in Figure 3.9 
is, in fact, the inference from a more practical experiment involving the scattering of 
X-rays from a metal target. A collimated monochromatic beam of X-rays of wavelength 
λ0 strikes a conducting target, such as graphite, as illustrated in Figure 3.10a. A conduct-
ing target contains a large number of nearly “free” electrons (conduction electrons), 
which can scatter the X-rays. The scattered X-rays are detected at various angles θ with 
respect to the original direction, and their wavelength λ′ is measured. The result of the 
experiment is therefore the scattered wavelength λ′ measured at various scattering angles 
θ, as shown in Figure 3.10b. It turns out that the λ′ versus θ results agree with the 
conservation of linear momentum law applied to an X-ray photon colliding with an 
electron with the momentum of the photon given precisely by Equation 3.7.
 The photoelectric experiment and the Compton effect are just two convincing 
experiments in modern physics that force us to accept that light can have particle-like 
properties. We already know that it can also exhibit wave-like properties, in such 
experiments as Young’s interference fringes. We are then faced with what is known 
as the wave–particle dilemma. How do we know whether light is going to behave 
like a wave or a particle? The properties exhibited by light depend very much on 
the nature of the experiment. Some experiments will require the wave model, whereas 
others may use the particulate interpretation of light. We should perhaps view the 
two interpretations as two complementary ways of modeling the behavior of light 
when it interacts with matter, accepting the fact that light has a dual nature. Both 
models are needed for a full description of the behavior of light.
 The expressions for the energy and momentum of the photon, E = hf and p = 
h∕λ, can also be written in terms of the angular frequency ω (= 2πf ) and the wave 
number k, defined as k = 2π∕λ. If we define ħ = h∕2π, then4

 E = hf = ħω  and  p =
h

λ
= ħk [3.8]
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Figure 3.9 Scattering of an X-ray photon by 
a “free” electron in a conductor.
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 4 ħ is pronounced “h-bar.”
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X-RAY PHOTON ENERGY AND MOMENTUM X-rays are photons with very short wave-
lengths that can penetrate or pass through objects, hence their use in medical imaging, secu-
rity scans at airports, and many other applications including X-ray diffraction studies of 
crystal structures. Typical X-rays used in mammography (medical imaging of breasts) have 
a wavelength of about 0.6 angstrom (1 Å = 10−10 m). Calculate the energy and momentum 
of an X-ray photon with this wavelength, and the velocity of a corresponding electron that 
has the same momentum.

SOLUTION

The photon energy Eph is given by

  Eph = hf =
hc

λ
=

(6.6 × 10−34 J s) (3 × 108 m s−1)

0.6 × 10−10 m
×

eV J−1

1.6 × 10−19

  = 2.06 × 104 eV  or  20.6 keV

The momentum p of this X-ray photon is

 p =
h

λ
=

6.6 × 10−34 J s
0.6 × 10−10 m

= 1.1 × 10−23 kg m s−1

 EXAMPLE 3.3
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A corresponding electron with the same momentum, mevelectron = p, would have a velocity

 velectron =
p

me

=
1.1 × 10−23 kg m s−1

9.1 × 10−31 kg
= 1.2 × 107 m s−1

This is much greater than the average speed of conduction (free) electrons whizzing around 
inside a metal, which is ∼106 m s−1.

3.1.4 BLACK BODY RADIATION

Experiments indicate that all objects emit and absorb energy in the form of radia-
tion, and the intensity of this radiation depends on the radiation wavelength and 
temperature of the object. This radiation is frequently termed thermal radiation. 
When the object is in thermal equilibrium with its surroundings, that is, at the 
same temperature, the object absorbs as much radiation energy as it emits. On the 
other hand, when the temperature of the object is above the temperature of its 
surroundings, there is a net emission of radiation energy. The maximum amount 
of radiation energy that can be emitted by an object is called the black body 

radiation. Although, in general, the intensity of the radiated energy depends on 
the material’s surface, the radiation emitted from a cavity with a small aperture is 
independent of the material of the cavity and corresponds very closely to black 
body radiation.
 The intensity of the emitted radiation has the spectrum (i.e., intensity vs. wave-
length characteristic), and the temperature dependence illustrated in Figure 3.11. 
It is useful to define a spectral irradiance Iλ as the emitted radiation intensity 
(power per unit area) per unit wavelength, so that Iλ δλ is the intensity in a small 
range of wavelengths δλ. Figure 3.11 shows the typical Iλ versus λ behavior of 
black body radiation at two temperatures. We assume that the characteristics of 
the radiation emerging from the aperture represent those of the radiation within 
the cavity.
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Figure 3.11 Schematic illustration of black body radiation and its characteristics.

Spectral irradiance versus wavelength at two temperatures (3000 K is about the temperature of the incandescent 
tungsten filament in a light bulb).
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 Classical physics predicts that the acceleration and deceleration of the charges 
due to various thermal vibrations, oscillations, or motions of the atoms in the surface 
region of the cavity material result in electromagnetic waves of the emissions. These 
waves then interfere with each other, giving rise to many types of standing electro-
magnetic waves with different wavelengths in the cavity. Each wave contributes an 
energy kT to the emitted intensity. If we calculate the number of standing waves 
within a small range of wavelength, the classical prediction leads to the Rayleigh–

Jeans law in which Iλ ∝ 1∕λ4 and Iλ ∝ T, which are not in agreement with the 
experiment, especially in the short-wavelength range (see Figure 3.11).
 Max Planck (1900) was able to show that the experimental results can be 
explained if we assume that the radiation within the cavity involves the emission 
and absorption of discrete amounts of light energy by the oscillation of the mole-
cules of the cavity material. He assumed that oscillating molecules emit and absorb 
a quantity of energy that is an integer multiple of a discrete energy quantum that 
is determined by the frequency f of the radiation and given by hf. This is what we 
now call a photon. He then considered the energy distribution (the statistics) in the 
molecular oscillations and took the probability of an oscillator possessing an energy 
nhf (where n is an integer) to be proportional to the Boltzmann factor, exp(−nhf∕kT). 
He eventually derived the mathematical form of the black body radiation charac-
teristics in Figure 3.11. Planck’s black body radiation formula for Iλ is generally 
expressed as

 Iλ =
2πhc2

λ5[exp( hc

λkT) − 1]
 [3.9]

where k is the Boltzmann constant. Planck’s radiation law based on the emission and 
absorption of photons is in excellent agreement with all observed black body radia-
tion characteristics as depicted in Figure 3.11.
 Planck’s radiation law is undoubtedly one of the major successes of modern 
physics. We can take Equation 3.9 one step further and derive Stefan’s black body 

radiation law that was used in Chapter 2 to calculate the rate of radiation energy 
emitted from the hot filament of a light bulb. If we integrate Iλ over all wavelengths,5 
we will obtain the total radiative power PS emitted by a black body per unit surface 
area at a temperature T,

  PS = ∫
∞

0

Iλ dλ = ( 2π5k4

15c2h3)T4 = σST
4  [3.10]

where  σS =
2π5k4

15c2h3 = 5.670 × 10−8 W m−2 K−4 [3.11]

Planck’s 

radiation law

Stefan’s  

black body 

radiation law

Stefan’s 

constant

 5 The integration of Equation 3.9 can be done by looking up definite integral tables in math handbooks—we 
only need the result of the mathematics, which is Equation 3.10. The PS in Equation 3.10 is sometimes called the 
radiant emittance. Stefan’s law is also known as the Stefan–Boltzmann law.
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Equation 3.10 in which PS = σST
4 is Stefan’s law for black body radiation, and the 

σS in Equation 3.11 is the Stefan constant with a value of approximately 5.67 × 
10−8 W m−2 K−4. Stefan’s law was known before Planck used quantum physics to 
derive his black body radiation law embedded in Iλ. A complete explanation of Stefan’s 
law and the value for σS however had to wait for Planck’s law. The h in Equation 3.10 
or 3.11 is a clear pointer that the origin of Stefan’s law lies in quantum physics.

STEFAN’S LAW AND THE INCANDESCENT LIGHT BULB Stefan’s law as stated in Equa-
tion 3.10 applies to a perfect black body that is emitting radiation into its environment which 
is at absolute zero. If the environment or the surroundings of the black body is at a finite 
temperature To, than the surroundings would also be emitting radiation. The same black body 
will then also absorb radiation from its environment. By definition, a black body is not only 
a perfect emitter of radiation but also a perfect absorber of radiation. The rate of radiation 
absorbed from the environment per unit surface is again given by Equation 3.10 but with To 
instead of T since it is the surroundings that are emitting the radiation. Thus, σST

4
o is the 

absorbed radiation rate from the surroundings, so

 Net rate of radiative power emission per unit surface = σST
4 − σST

4
o

Further, not all surfaces are perfect black bodies. Black body emission is the maximum pos-
sible emission from a surface at a given temperature. A real surface emits less than a black 
body. Emissivity ε of a surface measures the efficiency of a surface in terms of a black body 
emitter; it is the ratio of the emitted radiation from a real surface to that emitted from a black 
body at a given temperature and over the same wavelength range. The total net rate of 
radiative power emission becomes

 Pradiation = SεσS(T
4 − T 4

o) [3.12]

where S is the surface area that is emitting the radiation. Consider the tungsten filament of 
a 100 W incandescent light bulb in a lamp. When we switch the lamp on, the current through 
the filament generates heat which quickly heats up the filament to an operating temperature 
Tf. At this temperature, the electric energy that is input into the bulb is radiated away from 
the filament as radiation energy. A typical 100 W bulb filament has a length of 57.9 cm and 
a diameter of 63.5 μm. Its surface area is then

 S = π(63.5 × 10−6 m)(0.579 m) = 1.155 × 10−4 m2

The emissivity ε of tungsten is about 0.35. Assuming that under steady-state operation all the 
electric power that is input into the bulb’s filament is radiated away,

  100 W = Pradiation = SεσS(T 
4
f − T 

4
o)

  = (1.155 × 10−4 m2) (0.35)(5.67 × 10−8 W m−2 K−4) (T 
4
f − 3004)

Solving we find,

 Tf = 2570 K  or  2297 °C

which is well below the melting temperature of tungsten which is 3422 °C. The second term 
that has T 4

o has very little effect on the calculation as radiation absorption from the environ-
ment is practically nil compared with the emitted radiation at Tf.
 The shift in the spectral intensity emitted from a black body with temperature is of 
particular interest to many photoinstrumention engineers. The peak spectral intensity in Fig-
ure 3.11 occurs at a wavelength λmax, which, by virtue of Equation 3.9, depends on the 

 EXAMPLE 3.4

Stefan’s law 

for a real 

surface



 3 . 2  THE ELECTRON AS A WAVE 227

temperature of the black body. By substituting a new variable x = hc∕(kTλ) into Equation 3.9 
and differentiating it, or plotting it against x, we can show that the peak occurs when

 λmax T ≈ 2.89 × 10−3 m K

which is known as Wien’s displacement law. The peak emission shifts to lower wavelengths as 
the temperature increases. We can calculate the wavelength λmax corresponding to the peak in 
the spectral distribution of emitted radiation from our 100 W lamp: λmax = (2.89 × 10−3 m K)∕ 
(2570 K) = 1.13 μm (in the infrared).

3.2  THE ELECTRON AS A WAVE

3.2.1 DE BROGLIE RELATIONSHIP

It is apparent from the photoelectric and Compton effects that light, which we 
thought was a wave, can behave as if it were a stream of particulate-like entities 
called photons. Can electrons exhibit wave-like properties? Again, this depends on 
the experiment and on the energy of the electrons.
 When the interference and diffraction experiments in Figures 3.2 and 3.3 are 
repeated with an electron beam, very similar results are found to those obtainable 
with light and X-rays. When we use an electron beam in Young’s double-slit exper-
iment, we observe high- and low-intensity regions (i.e., Young’s fringes), as illus-
trated in Figure 3.12. The interference pattern is viewed on a fluorescent TV screen. 
When an energetic electron beam hits a polycrystalline aluminum sheet, it produces 
diffraction rings on a fluorescent screen as shown in Figures 3.13a and b just like 
X-rays do on a photographic plate. When we bring a magnet to the screen, the elec-
trons moving toward the screen experience a force that would bend their paths, which 
results in a distorted diffraction pattern as shown in Figure 3.13c. An X-ray diffrac-
tion pattern, on the other hand, would be unaffected by a magnetic field. If we 

Figure 3.12 Young’s double-slit experiment with electrons involves an electron 
gun and two slits in a cathode ray tube (CRT) (hence, in vacuum).

Electrons from the filament are accelerated by a 50 kV anode voltage to produce 
a beam that is made to pass through the slits. The electrons then produce a visible 
pattern when they strike a fluorescent screen (e.g., a TV screen), and the resulting 
visual pattern is photographed.
 Jönsson, C., Brandt, D., and Hirschi, S., “Electron Diffraction at Multiple Slits” American Journal 

of Physics, 42, 1974, p. 9, figure 8.
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analyze the diffraction pattern obtained with an electron beam, for example Fig-
ure  3.13b, we would find that the electrons obey the Bragg diffraction condition 
2d sin θ = nλ just as much as the X-ray waves.
 Since we know the interatomic spacing d and we can measure the angle of dif-
fraction 2θ, we can readily evaluate the wavelength λ associated with the wave-like 
behavior of the electrons. Furthermore, from the accelerating voltage V in the elec-
tron tube, we can also determine the momentum of the electrons, because the kinetic 
energy gained by the electrons, (p2∕2me), is equal to eV. Simply by adjusting the 
accelerating voltage V, we can therefore study how the wavelength of the electron 
depends on the momentum.
 As a result of such studies and other similar experiments, it has been found that an 
electron traveling with a momentum p behaves like a wave of wavelength λ given by

 λ =
h

p
 [3.13]

 This is just the reverse of the equation for the momentum of a photon given its 
wavelength. The same equation therefore relates wave-like and particle-like proper-
ties to and from each other. Thus,

 λ =
h

p
  or  p =

h

λ
 [3.14]

is an equation that exposes the wave–particle duality of nature. It was first hypoth-
esized by de Broglie (1924). As an example, we can calculate the wavelengths of a 
number of particle-like objects:

a. A 50 gram golf ball traveling at a velocity of 20 m s−1.
  The wavelength is

 λ =
h

mv
=

6.63 × 10−34 J s
(50 × 10−3 kg)(20 m s−1)

= 6.63 × 10−34 m

Wavelength of 

the electron

De Broglie 

relations

Electron Beam

Al sheet

Vacuum

Diffraction
Pattern

Screen

(a)

Figure 3.13 (a) When an electron beam in a vacuum tube is passed through an Al foil, a diffraction pattern is produced as 
the X-rays interact with the planes of atoms in the Al sample. The diffraction pattern consists of rings because the sample is 
polycrystalline. (b) A diffraction pattern as observed on the screen of a cathode ray tube when electrons accelerated by  
a high voltage (10 kV) impinge on an Al sheet become diffracted. (c) If we bring a magnet to the screen, the electrons will be 
deflected by the magnetic field (moving electrons experience a force in a magnetic field) and the pattern becomes distorted. 
An X-ray diffraction pattern would not be affected by a magnetic field. 

 (b)–(c) Photo by S. Kasap.

(b) (c)
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  The wavelength is so small that this golf ball will not exhibit any wave 
effects. Firing a stream of golf balls at a wall will not result in “diffraction rings” 
of golf balls.

b. A proton traveling at 2200 m s−1.
  Using mp = 1.67 × 10−27 kg, we have λ = (h∕mv) ≈ 0.18 nm. This is only 

slightly smaller than the interatomic distance in crystals, so firing protons at a 
crystal can result in diffraction. (Recall that to get a diffraction peak, we must 
satisfy the Bragg condition, 2d sin θ = nλ.) Protons, however, are charged, so 
they can penetrate only a small distance into the crystal. Hence, they are not 
used in crystal diffraction studies.

c. Electron accelerated by 100 V.
  This voltage accelerates the electron to a KE equal to eV. From KE = 

p2∕2me = eV, we can calculate p and hence λ = h∕p. The result is λ = 0.123 nm. 
Since this is comparable to typical interatomic distances in solids, we would see 
a diffraction pattern when an electron beam strikes a crystal. The actual pattern 
is determined by the Bragg diffraction condition.

L
λ >> L
It’s a wave

λ << L
I’m hit,
it’s a particle

Sea

λ

Sea

Wave

One clever dolphin has figured out the wave-particle duality of nature (SK)

ELECTRON WAVELENGTH, DIFFRACTION AND h Figure 3.14a shows how electrons emit-
ted from the hot filament in a cathode ray tube can be accelerated by an anode voltage V, 
and made to impinge on a sample, an Al sheet, placed in their path. The electron diffraction 
from the Al sheet leads to a diffraction pattern on the phosphor screen as shown in Figure 
3.14b. The screen is at a distance R = 18.3 cm away from the sample. Al has an FCC crys-
tal structure with a lattice parameter a = 0.4049 nm, and the first ring corresponds to dif-
fraction from the (111) planes. Suppose that we vary the anode voltage V and measure the 
diameter D1 of the first ring on the fluorescent screen as shown in Table 3.1. What can we 
do with such data?

SOLUTION

From Figure 3.14a, the kinetic energy KE = p2∕2me gained by an electron in reaching the 
anode at V is eV, the decrease in the electrostatic potential energy of the electron. Thus,

 p = (2emeV)1∕2 [3.15]

 EXAMPLE 3.5
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Table 3.1 Results from electron diffraction experiments on a polycrystalline Al sample

V (kV) 10 9 8 7 6 5
D1 (mm) 19.6 20.5 22.3 23.4 25.4 27.6
1∕V1∕2 (V−1∕2) 0.0100 0.0105 0.0112 0.0120 0.0129 0.0141
2θ1 = arctan(1

2D1∕R) 3.0654° 3.2058° 3.4867° 3.6582° 3.9699° 4.3125°
sin θ1 0.0267 0.0280 0.0304 0.0319 0.0346 0.0376

If de Broglie’s hypothesis is correct, then the electron’s wavelength λ is given by

 λ =
h

p
=

h

(2emeV)1∕2  [3.16]

When we adjust the anode voltage V, we are actually changing the de Broglie wavelength λ of 
the electrons in the experiment. We should be able to use the experimental data to show that this 
expression is indeed correct and find an experimental value for h from electron diffraction exper-
iments. The separation d between the (111) planes in the FCC crystal is6 d = a∕31∕2 where a is 
the unit cell lattice parameter, given as 0.4049 nm. The first diffraction ring satisfies the Bragg 
diffraction condition 2d sin θ1 = nλ in Equation 3.3, in which 2θ1 is the diffraction angle, and 
normally n = 1. Thus, using Equation 3.15 in the Bragg diffraction condition for the (111) planes

 sin θ1 =
31∕2λ

2a
= [ 31∕2h

2a(2eme)
1∕2] 1

V1∕2  [3.17]

 If we were to plot sin θ1 versus 1∕V1∕2, we should get a straight line through the origin 
whose slope would give us an experimental value for h. We can find sin θ1 as follows. We 

Electron 
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Bragg 

condition for 

the first 

diffraction 

ring

 6 It is not difficult to show that for all cubic crystals, the separation between (hkl) planes is given by  
d = a∕(h2 + k2 + l2)1∕2. See Appendix A and Chapter 1.
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Figure 3.14 Electron diffraction experiments. (a) A simplified view of an electron diffraction experiment. The voltage V on the 
anode accelerates the electrons, which pass the anode toward a fluorescent screen. When the beam impinges on the Al sheet, 
it becomes diffracted. (b) A comparison of an actual electron diffraction ring pattern from an Al sample (left) with the diffraction 
pattern that would be obtained from an X-ray beam of wavelength 0.0357 nm (right). The electron kinetic energy was 10 keV, 
which corresponds to the same wavelength. (c) A plot of sin θ1 along the y-axis against 1∕V 1∕2 along x-axis. The best straight 
line is y = 2.641x + 3 × 10−4 with an R2 fit of 0.9958. The experiments confirm the de Broglie relationship, λ = h∕p.

 (b) Photo by S. Kasap.

(a) (c)(b)
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know the distance R from the sample to the screen, R = 18.3 cm, and that the diffraction angle 
is actually 2θ1 (see Figure 3.3c or Figure A.2 in Appendix A). Thus,

 tan 2θ1 =
1
2D1

R

so that

 sin θ1 = sin[1
2

 arctan 

1
2D1

R ] [3.18]

Table 3.1 has 1∕V1∕2 and sin θ1 (from Equation 3.18) rows calculated from the V and D1 data. 
Figure 3.14c shows a plot sin θ1 along the y-axis against 1∕V1∕2 along x-axis. The best straight 
line is y = 2.641x + 3 × 10−4. The intercept is so small that, within experimental errors, we 
can neglect it. Clearly, λ ∝ 1∕p ∝ 1∕V1∕2. From the slope of Equation 3.17 and Figure 3.14c, 
we have

 Slope =
31∕2 h

2a(2eme)
1∕2 = 2.641

Substituting for e, me, and a, we find h = 6.67 × 10−34 J s, which is within about 0.7 percent 
of the actual value of h. Further, if we include small relativistic effects,7 experimental h 
becomes 6.65 × 10−34 J s. Such electron diffraction experiments, as in this example, clearly 
show that the de Broglie relationship λ = h∕p in Equation 3.13 represents the wave-like 
behavior of the electron.

3.2.2 TIME-INDEPENDENT SCHRÖDINGER EQUATION

The experiments in which electrons exhibit interference and diffraction phenomena 
show quite clearly that, under certain conditions, the electron can behave as a wave; 
in other words, it can exhibit wave-like properties. There is a general equation that 
describes this wave-like behavior and, with the appropriate potential energy and 
boundary conditions, will predict the results of the experiments. The equation is 
called the Schrödinger equation and it forms the foundations of quantum theory. 
Its fundamental nature is analogous to the classical physics assertion of Newton’s 
second law, F = ma, which of course cannot be proved. As a fundamental equation, 
Schrödinger’s has been found to successfully predict every observable physical phe-
nomenon at the atomic scale. Without this equation, we will not be able to under-
stand the properties of electronic materials and the principles of operation of many 
semiconductor devices. We introduce the equation through an analogy.
 A traveling electromagnetic wave resulting from sinusoidal current oscillations, 
or the traveling voltage wave on a long transmission line, can generally be described 
by a traveling-wave equation of the form

 E(x, t) = Eo exp j(kx − ωt) = E(x) exp(−jωt) [3.19]

 7 The momentum of the electron in Equation 3.15 needs a correction term when the electron is traveling fast, 
which is due to relativistic effects as discussed in modern physics textbook. An electron with a kinetic energy 
KE has a moment p given by p2 = 2meKE + KE2∕c2. The second term is the relativistic effect. In the present 
case, the ratio of second to first term is 1 percent.
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where E(x) = E0 exp( jkx) represents the spatial dependence, which is separate from 
the time variation. We assume that no transients exist to upset this perfect sinusoidal 
propagation. We note that the time dependence is harmonic and therefore predictable. 
For this reason, in ac circuits we put aside the exp(−jωt) term until we need the 
instantaneous magnitude of the voltage.
 The average intensity Iav = 1

2cεoE
2
o depends on the square of the amplitude. In 

Young’s double-slit experiment, the intensity varies along the y direction, which 
means that E2

o for the resultant wave depends on y. In the electron version of this 
experiment in Figure 3.12, what changes in the y direction is the probability of 
observing electrons; that is, there are peaks and troughs in the probability of finding 
electrons along y, just like the E2

o variation along y. We should therefore attach some 
probability interpretation to the wave description of the electron.
 In 1926, Max Born suggested a probability wave interpretation for the wave-like 
behavior of the electron.

 E(x, t) = Eo sin(kx − ωt)

is a plane traveling wavefunction for an electric field; experimentally, we measure 
and interpret the intensity of a wave, namely ∣E(x, t)∣2. There may be a similar wave 
function for the electron, which we can represent by a function Ψ(x, t). According 
to Born, the significance of Ψ(x, t) is that its amplitude squared represents the prob-
ability of finding the electron per unit distance. Thus, in three dimensions, if Ψ(x, y, 
z, t) represents the wave property of the electron, it must have one of the following 
interpretations:

∣Ψ(x, y, z, t)∣2 is the probability of finding the electron per unit volume at  
x, y, z at time t.
∣Ψ(x, y, z, t)∣2 dx dy dz is the probability of finding the electron in a small 
elemental volume dx dy dz at x, y, z at time t.

 If we are just considering one dimension, then the wavefunction is Ψ(x, t), and 
∣Ψ(x, t)∣2 dx is the probability of finding the electron between x and (x + dx) at time t.
 We should note that since only ∣Ψ∣2 has meaning, not Ψ, the latter function need 
not be real; it can be a complex function with real and imaginary parts. For this 
reason, we tend to use Ψ* Ψ, where Ψ* is the complex conjugate of Ψ, instead of 
∣Ψ∣2, to represent the probability per unit volume.
 To obtain the wavefunction Ψ(x, t) for the electron, we need to know how the 
electron interacts with its environment. This is embodied in its potential energy func-
tion V = V(x, t), because the net force the electron experiences is given by

 F = −dV∕dx.

For example, if the electron is attracted by a positive charge (e.g., the proton in a 
hydrogen atom), then it clearly has an electrostatic potential energy given by

 V(r) = −
e2

4πεor

where r = √x2 + y2 + z2 is the distance between the electron and the proton.
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 If the PE of the electron is time independent, which means that V = V(x) in 
one dimension, then the spatial and time dependences of Ψ(x, t) can be separated, 
just as in Equation 3.19, and the total wavefunction Ψ(x, t) of the electron can be 
written as

 Ψ(x, t) = ψ(x) exp(−
jEt

ħ ) [3.20]

where ψ (x) is the electron wavefunction that describes only the spatial behavior, and 
E is the energy of the electron. The temporal behavior is simply harmonic, by virtue 
of exp(−jEt∕ħ), which corresponds to exp(−jωt) with an angular frequency ω = E∕ħ. 
The fundamental equation that describes the electron’s behavior by determining ψ (x) 
is called the time-independent Schrödinger equation. It is given by the famous 
equation

 
d 

2ψ

dx2 +
2me

ħ2 (E − V)ψ = 0 [3.21a]

where me is the mass of the electron.
 This is a second-order differential equation. It should be reemphasized that the 
potential energy V in Equation 3.21a depends only on x. If the potential energy of 
the electron depends on time as well, that is, if V = V(x, t), then in general Ψ(x, t) 
cannot be written as ψ (x) exp(−jEt∕ħ). Instead, we must use the full version of the 
Schrödinger equation, which is discussed in more advanced textbooks.
 In three dimensions, there will be derivatives of ψ with respect to x, y, and z. 
We use the calculus notation (∂ψ∕∂x), differentiating ψ (x, y, z) with respect to x but 
keeping y and z constant. Similar notations ∂ψ∕∂y and ∂ψ∕∂z are used for derivatives 
with respect to y alone and with respect to z alone, respectively. In three dimensions, 
Equation 3.21a becomes

 
∂2ψ

∂x2 +
∂2ψ

∂y2 +
∂2ψ

∂z2 +
2me

ħ2 (E − V)ψ = 0 [3.21b]

where V = V(x, y, z) and ψ = ψ (x, y, z).
 Equation 3.21b is a fundamental equation, called the time-independent Schrödinger 
equation, the solution of which gives the steady-state behavior of the electron in a 
time-independent potential energy environment described by V = V(x, y, z). By solv-
ing Equation 3.21b, we will know the probability distribution and the energy of the 
electron. Once ψ (x, y, z) has been determined, the total wavefunction for the electron 
is given by Equation 3.20 so that

 ∣Ψ(x, y, z, t)∣2 = ∣ψ (x, y, z)∣2

which means that the steady-state probability distribution of the electron is simply 
∣ψ (x, y, z)∣2.
 The time-independent Schrödinger equation can be viewed as a “mathematical 
crank.” We input the potential energy of the electron and the boundary conditions, 
turn the crank, and get the probability distribution and the energy of the electron 
under steady-state conditions.
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total wave 

function

Schrödinger’s 

equation  
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equation  
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 Two important boundary conditions are often used to solve the Schrödinger 
equation. First, as an analogy, when we stretch a string between two fixed points 
and put it into a steady-state vibration, there are no discontinuities or kinks along 
the string. We can therefore intelligently guess that because ψ (x) represents wave-like 
behavior, it must be a smooth function without any discontinuities.
 The first boundary condition is that Ψ must be continuous, and the second is that 
dΨ∕dx must be continuous. In the steady state, these two conditions translate directly 
to ψ and dψ∕dx being continuous. Since the probability of finding the electron is rep-
resented by ∣ψ ∣2, this function must be single-valued and smooth, without any discon-
tinuities, as illustrated in Figure 3.15. The enforcement of these boundary conditions 
results in strict requirements on the wavefunction ψ(x), as a result of which only certain 
wavefunctions are acceptable. These wavefunctions are called the eigenfunctions 
(characteristic functions) of the system, and they determine the behavior and energy 
of the electron under steady-state conditions. The eigenfunctions ψ(x) are also called 
stationary states, inasmuch as we are only considering steady-state behavior.
 It is important to note that the Schrödinger equation is generally applicable to 
all matter, not just the electron. For example, the equation can also be used to 
describe the behavior of a proton, if the appropriate potential energy V(x, y, z) and 
mass (mproton) are used. Wavefunctions associated with particles are frequently called 
matter waves.

x

not continuous

x x

ψ(x) ψ(x) ψ(x)
ψ(x) not continuous dψ

dx
ψ(x) not single-valued

Figure 3.15 Unacceptable forms of ψ (x).

THE FREE ELECTRON Solve the Schrödinger equation for a free electron whose energy is 
E. What is the uncertainty in the position of the electron and the uncertainty in the momen-
tum of the electron?

SOLUTION

Since the electron is free, its potential energy is zero, V = 0. In the Schrödinger equation, 
this leads to

 
d 

2ψ

dx2 +
2me

ħ2  Eψ = 0

We can write this as

 
d 

2ψ

dx2 + k2ψ = 0

where we defined k2 = (2me∕ħ2)E. Solving the differential equation, we get

 ψ (x) = A exp( jkx)  or  B exp(−jkx)

 EXAMPLE 3.6
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 The total wavefunction is obtained by multiplying ψ (x) by exp(−jEt∕ħ). We can define 
a fictitious frequency for the electron by ω = E∕ħ and multiply ψ (x) by exp(−jωt):

 Ψ(x, t) = A exp j(kx − ωt)  or  B exp j(−kx − ωt)

 Each of these is a traveling wave. The first solution is a traveling wave in the +x direc-
tion, and the second one is in the −x direction. Thus, the free electron has a traveling wave 
solution with a wavenumber k = 2π∕λ, that can have any value. The energy E of the electron 
is simply KE, so

 KE = E =
(ħk)2

2me

 When we compare this with the classical physics expression KE = (p2∕2me), we see that 
the momentum is given by

 p = ħk  or  p =
h

λ

 This is the de Broglie relationship. The latter therefore results naturally from the 
Schrödinger equation for a free electron.
 The probability distribution for the electron is

 ∣ψ (x)∣2 = ∣A exp j(kx)∣2 = A2

which is constant over the entire space. Thus, the electron can be anywhere between x = −∞ 
and x = +∞. The uncertainty Δx in its position is infinite. Since the electron has a well-
defined wavenumber k, its momentum p is also well-defined by virtue of p = ħk. The uncer-
tainty Δp in its momentum is thus zero.

3.3   INFINITE POTENTIAL WELL:  

A CONFINED ELECTRON

Consider the behavior of the electron when it is confined to a certain region, 0 < x < a. 
Its PE is zero inside that region and infinite outside, as shown in Figure 3.16. The 
electron cannot escape, because it would need an infinite PE. Clearly the probability 
∣ψ ∣2 of finding the electron per unit volume is zero outside 0 < x < a. Thus, ψ = 0 
when x ≤ 0 and x ≥ a, and ψ is determined by the Schrödinger equation in 0 < x < a 
with V = 0. Therefore, in the region 0 < x < a

 
d 

2ψ

dx2 +
2me

ħ2  Eψ = 0 [3.22]

 This is a second-order linear differential equation. As a general solution, we 
can take

 ψ (x) = A exp( jkx) + B exp(−jkx) [3.23]

where k is some constant (to be determined) and substitute this in Equation 3.22 to 
find k. We first note that ψ (0) = 0; therefore, B = −A so that

 ψ (x) = A[exp( jkx) − exp(−jkx)] = 2Aj sin kx [3.24]
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 We now substitute this into the Schrödinger Equation 3.22 to relate the energy 
E to k. Thus, Equation 3.22 becomes

 −2Ajk2(sin kx) + (2me

ħ2 ) E(2Aj sin kx) = 0

which can be rearranged to obtain the energy of the electron:

 E =
ħ2k2

2me

 [3.25]

 Since the electron has no PE within the well, its total energy E is kinetic energy 
KE, and we can write

 E = KE =
p2
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Figure 3.16 Electron in a one-dimensional infinite PE well.

The energy of the electron is quantized. Possible wavefunctions and the probability distributions 
for the electron are shown.
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where px is its momentum. Comparing this with Equation 3.25, we see that the 
momentum of the electron must be

 px = ±ħk [3.26]

 The momentum px may be in the +x direction or the −x direction (which is the 
reason for ±), so the average momentum is actually zero, pav = 0.
 We have already seen this relationship, when we defined k as 2π∕λ (wavenumber) 
for a free traveling wave. So the constant k here is a wavenumber-type quantity even 
though there is no distinct traveling wave. Its value is determined by the boundary 
condition at x = a where ψ = 0, or

 ψ (a) = 2Aj sin ka = 0

 The solution to ka = 0 is simply ka = nπ, where n = 1, 2, 3, . . . is an integer. 
We exclude n = 0 because it will result in ψ = 0 everywhere (no electron at all).
 We notice immediately that k, and therefore the energy of the electron, can only 
have certain values; they are quantized by virtue of n being an integer. Here, n is 
called a quantum number. For each n, there is a special wavefunction

 ψn(x) = 2Aj sin(nπx

a ) [3.27]

which is called an eigenfunction.8 All ψn for n = 1, 2, 3 . . . constitute the eigenfunc-
tions of the system. Each eigenfunction identifies a possible state for the electron. 
For each n, there is one special k value, kn = nπ∕a, and hence a special energy value 
En, since

 En =
ħ2k2

n

2me

that is,

 En =
ħ2(πn)2

2mea
2 =

h2n2

8mea
2  [3.28]

The energies En defined by Equation 3.28 with n = 1, 2, 3 . . . are called eigenenergies 
of the system.
 We still have not completely solved the problem, because A has yet to be deter-
mined. To find A, we use what is called the normalization condition. The total 
probability of finding the electron in the whole region 0 < x < a is unity, because 
we know the electron is somewhere in this region. Thus, ∣ψ ∣2 dx summed between 
x = 0 and x = a must be unity, or

 ∫
x=a

x=0

∣ψ(x)∣2 dx = ∫
x=a

x=0
∣2Aj sin(nπx

a ) ∣ 2 

dx = 1

Wavefunction 
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Electron 

energy in 

infinite PE 

well

 8 From the German meaning “characteristic function.”
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 Carrying out the simple integration, we find

 A = ( 1
2a)

1∕2

The resulting wavefunction for the electron is thus

 ψn(x) = j(2
a)

1∕2

 sin(nπx

a ) [3.29]

 We can now summarize the behavior of an electron in a one-dimensional PE 
well. Its wavefunction and energy, shown in Figure 3.16, are given by Equations 3.29 
and 3.28, respectively. Both depend on the quantum number n. The energy of the 
electron increases with n2, so the minimum energy of the electron corresponds to 
n  = 1. This is called the ground state, and the energy of the ground state is the 
lowest energy the electron can possess. Note also that the energy of the electron in 
this potential well cannot be zero, even though the PE is zero. Thus, the electron 
always has KE, even when it is in the ground state.
 The node of a wavefunction is defined as the point where ψ = 0 inside the well. 
It is apparent from Figure 3.16 that the ground wavefunction ψ1 with the lowest 
energy has no nodes, ψ2 has one node, ψ3 has two nodes, and so on. Thus, the energy 
increases as the number of nodes increases in a wavefunction.
 It may seem surprising that the energy of the electron is quantized; that is, it 
can only have finite values, given by Equation 3.28. The electron cannot be made 
to take on any value of energy, as in the classical case. If the electron behaved like 
a classical particle, then an applied force F could impart any value of energy to it, 
because F = dp∕dt (Newton’s second law), or p = ∫ F dt. By applying a force F for 
a time t, we can give the electron a KE of

 E =
p2

2me

=
1

2me
[ ∫F dt]

2

However, Equation 3.28 tells us that, in the microscopic world, the energy can only 
have quantized values. The two conflicting views can be reconciled if we consider 
the energy difference between two consecutive energy levels, as follows:

 ΔE = En+1 − En =
h2(2n + 1)

8mea
2  [3.30]

 As a increases to macroscopic dimensions, a → ∞, the electron is completely 
free and ΔE → 0. Since ΔE = 0, the energy of a completely free electron (a = ∞) 
is continuous. The energy of a confined electron, however, is quantized, and ΔE 
depends on the dimension (or size) of the potential well confining the electron.
 In general, an electron will be “contained” in a spatial region of three dimen-
sions, within which the PE will be lower (hence the confinement). We must then 
solve the Schrödinger equation in three dimensions. The result is three quantum 
numbers that characterize the behavior of the electron.
 Examination of the wavefunctions ψn in Figure 3.16 shows that these are either 
symmetric or antisymmetric with respect to the center of the well at x = 1

2a. The 

Energy 

separation  

in infinite  

PE well
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symmetry of a wavefunction is called its parity. Whenever the potential energy 
function V(x) exhibits symmetry about a certain point C, for example, about x = 1

2a in 
Figure 3.16, then the wavefunctions have either even parity (such as ψ1, ψ3, . . . that 
are symmetric) or have odd parity (such as ψ2, ψ4, . . . that are antisymmetric) with 
respect to C.
 An electron in an infinite PE well would normally occupy the lowest state that 
corresponds to ψ1 with an energy E1. The next possible state is ψ2 at an energy E2. 
The electron in the ground state at E1 can be excited to E2 by the absorption of a 
photon of exactly the energy E2 − E1, which corresponds to a radiation frequency 
f12 such that hf12 = E2 − E1. An electromagnetic radiation that is incident on the 
quantum well and has the right frequency f12 will be absorbed by the electron at E1, 
which will be excited to the energy level E2. In this particular case, as apparent from 
Figure 3.16, the excitation of the electron by the absorption of a photon from ψ1 to 
ψ2 involves a change in the parity of the wavefunction, from even to odd. This 
observation turns out to be generally true. Whenever an electron in a quantum well 

absorbs or emits electromagnetic radiation, its parity must change. Those transitions 
in which the parity does not change have a low probability (but not zero) of occur-
rence and are usually called forbidden transitions.9 For example, suppose the electron 
is in a state ψ3 at an energy level E3. It can emit a photon and decay down from E3 
to E2 or E1. It will transit down to E2 because the parity of its wavefunction will 
change, and this transition has a much higher probability. The transition from ψ3 to 
ψ1 is “forbidden” and the probability of its occurrence is low. From E2, the electron 
will decay down to E1.

 9 The proof of this requirement involves a detailed calculation of the interaction of the electric field in the 
incident radiation with the electron, and is treated in advanced books.

ELECTRON CONFINED WITHIN ATOMIC DIMENSIONS Consider an electron in an infinite 
potential well of size 0.1 nm (typical size of an atom). What is the ground energy of the 
electron? What is the energy required to put the electron at the second energy level? How 
can this energy be provided?

SOLUTION

The electron is confined in an infinite potential well, so its energy is given by

 En =
h2n2

8mea
2

We use n = 1 for the ground level and a = 0.1 nm. Therefore,

 E1 =
(6.6 × 10−34 J s)2(1)2

8(9.1 × 10−31 kg)(0.1 × 10−9 m)2 = 6.025 × 10−18 J  or  37.6 eV

The frequency of the electron associated with this energy is

 ω =
E

ħ
=

6.025 × 10−18 J
1.055 × 10−34 J s

= 5.71 × 1016 rad s−1  or  f = 9.092 × 1015 s−1

 EXAMPLE 3.7
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The second energy level E2 is

 E2 = E1n
2 = (37.6 eV)(2)2 = 150.4 eV

The energy required to take the electron from 37.6 eV to 150.4 eV is 112.8 eV. This can be 
provided by a photon of exactly that energy; no less, and no more. Since the photon energy 
is E = hf = hc∕λ, or

  λ =
hc

E
=

(6.6 × 10−34 J s) (3 × 108 m s−1)

112.8 eV × 1.6 × 10−19 C
  = 11 nm

which is within the extreme UV wavelength range.

ENERGY OF AN APPLE IN A CRATE Consider a macroscopic object of mass 100 grams 
(say, an apple) confined to move between two rigid walls separated by 1 m (say, a typical 
size of a large apple crate). What is the minimum speed of the object? What should the 
quantum number n be if the object is moving with a speed 1 m s−1? What is the separation 
of the energy levels of the object moving with that speed?

SOLUTION

Since the object is within rigid walls, we take the PE outside the walls as infinite and use

 En =
h2n2

8ma2

to find the ground-level energy. With n = 1, a = 1 m, m = 0.1 kg, we have

 E1 =
(6.6 × 10−34 J s)2(1)2

8(0.1 kg)(1 m)2 = 5.45 × 10−67 J = 3.4 × 10−48 eV

 Since this is kinetic energy, 1
2 mv 

2
1 = E1, so the minimum speed is

 v1 = √ 2E1

m
= √ 2(5.45 × 10−67 J)

0.1 kg
= 3.3 × 10−33 m s−1

This speed cannot be measured by any instrument; therefore, for all practical purposes, the 
apple is at rest in the crate (a relief for the fruit grocer). The time required for the object to 
move a distance of 1 mm is 3 × 1029 s or 1021 years, which is more than the present age of 
the universe!
 When the object is moving with a speed 1 m s−1,

 KE =
1
2

mv 
2 =

1
2

(0.1 kg)(1 m s−1)2 = 0.05 J

This must be equal to En = h2n2∕8ma2 for some value of n

 n = (8ma2En

h2 )
1∕2

= [8(0.1 kg)(1 m)2(0.05 J)

(6.6 × 10−34 J s)2 ]
1∕2

= 3.03 × 1032

which is an enormous number. The separation between two energy levels corresponds to a 
change in n from 3.03 × 1032 to 3.03 × 1032 + 1. This is such a negligibly small change in 

 EXAMPLE 3.8
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n that for all practical purposes, the energy levels form a continuum. Thus,

  ΔE = En+1 − En =
h2(2n + 1)

8ma2

  =
[(6.6 × 10−34 J s)2(2 × 3.03 × 1032 + 1)]

[8(0.1 kg)(1 m)2]
  = 3.30 × 10−34 J  or  2.06 × 10−15 eV

This energy separation is not detectable by any instrument. So for all practical purposes, the 
energy of the object changes continuously.
 We see from this example that in the limit of large quantum numbers, quantum predictions 
agree with the classical results. This is the essence of Bohr’s correspondence principle.

3.4  HEISENBERG’S UNCERTAINTY PRINCIPLE

The wavefunction of a free electron corresponds to a traveling wave with a single 
wavelength λ, as shown in Example 3.6. The traveling wave extends over all space, 
along all x, with the same amplitude, so the probability distribution function is uni-
form throughout the whole of space. The uncertainty Δx in the position of the 
electron is therefore infinite. Yet, the uncertainty Δpx in the momentum of the elec-
tron is zero, because λ is well-defined, which means that we know px exactly from 
the de Broglie relationship, px = h∕λ.
 For an electron trapped in a one-dimensional infinite PE well, the wavefunction 
extends from x = 0 to x = a, so the uncertainty in the position of the electron is a. We 
know that the electron is within the well, but we cannot pinpoint with certainty exactly 
where it is. The momentum of the electron is either px = ħk in the +x direction or −ħk 
in the −x direction. The uncertainty Δpx in the momentum is therefore 2ħk; that is, 
Δpx = 2ħk. For the ground-state wavefunction, which corresponds to n = 1, we have 
ka = π. Thus, Δpx = 2ħπ∕a. Taking the product of the uncertainties in x and p, we get

 (Δx) (Δpx) = (a)(2ħπ

a ) = h

Werner Heisenberg (1901–1976) received the Nobel prize in 
physics in 1932 for the uncertainty principle. This photo was 
apparently taken in 1936, while he was lecturing on quantum 
mechanics. “An expert is someone who knows some of the 
worst mistakes that can be made in his subject, and how to 
avoid them.” W. Heisenberg.

 © AIP/Science Source.
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 In other words, the product of the position and momentum uncertainties is sim-
ply h. This relationship is fundamental; and it constitutes a limit to our knowledge 
of the behavior of a system. We cannot exactly and simultaneously know both the 

position and momentum of a particle along a given coordinate. In general, if Δx and 
Δpx are the respective uncertainties in the simultaneous measurement of the position 
and momentum of a particle along a particular coordinate (such as x), the Heisenberg 

uncertainty principle states that10

 Δx Δpx ≳ ħ [3.31]

 We are therefore forced to conclude that as previously stated, because of the 
wave nature of quantum mechanics, we are unable to determine exactly and simul-
taneously the position and momentum of a particle along a given coordinate. There 
will be an uncertainty Δx in the position and an uncertainty Δpx in the momentum 
of the particle and these uncertainties will be related by Heisenberg’s uncertainty 
relationship in Equation 3.31.
 These uncertainties are not in any way a consequence of the accuracy of a mea-
surement or the precision of an instrument. Rather, they are the theoretical limits to 
what we can determine about a system. They are part of the quantum nature of the 
universe. In other words, even if we build the most perfectly engineered instrument 
to measure the position and momentum of a particle at one instant, we will still be 
faced with position and momentum uncertainties Δx and Δpx such that Δx Δpx > ħ.
 There is a similar uncertainty relationship between the uncertainty ΔE in the 
energy E (or angular frequency ω) of the particle and the time duration Δt during 
which it possesses the energy (or during which its energy is measured). We know that 
the kx part of the wave leads to the uncertainty relation Δx Δpx > ħ or Δx Δk ≥ 1. 
By analogy we should expect a similar relationship for the ωt part, or Δω Δt ≥ 1. 
This hypothesis is true, and since E = ħω, we have the uncertainty relation for the 
particle energy and time:

 ΔE Δt ≳ ħ [3.32]

 Note that the uncertainty relationships in Equations 3.31 and 3.32 have been 
written in terms of ħ, rather than h, as implied by the electron in an infinite potential 
energy well (Δx Δpx ≥ h). In general, there is also a numerical factor of 1

2 multiply-
ing ħ in Equations 3.31 and 3.32 which comes about when we consider a Gaussian 
spread for all possible position and momentum values. The proof is not presented 
here, but can be found in advanced quantum mechanics books.
 It is important to note that the uncertainty relationship applies only when the 
position and momentum are measured in the same direction (such as the x direc-
tion). On the other hand, the exact momentum, along, say, the y direction and the 
exact position, along, say, the x direction can be determined exactly, since Δx Δpy 
need not satisfy the Heisenberg uncertainty relationship (in other words, Δx Δpy 
can be zero).

 10 The Heisenberg uncertainty principle is normally written in terms of ħ rather than h. Further, in some physics 
texts, ħ in Equation 3.31 has a factor 1

2  multiplying it.
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THE MEASUREMENT TIME AND THE FREQUENCY OF WAVES: AN ANALOGY WITH  

ΔE Δt ≥ ħ Consider the measurement of the frequency of a sinusoidal wave of frequency 
1000 Hz (or cycles/s). Suppose we can only measure the number of cycles to an accuracy of 
1 cycle, because we need to receive a whole cycle to record it as one complete cycle. Then, 
in a time interval of Δt = 1 s, we will register 1000 ± 1 cycles. The uncertainty Δf in the 
frequency is 1 cycle/1 s or 1 Hz. If Δt is 2 s, we will measure 2000 ± 1 cycles, and the 
uncertainty Δf will be 1 cycle/2 s or 1

2  cycle/s or 1
2  Hz. Thus, Δf decreases with Δt.

 Suppose that in a time interval Δt, we measure N ± 1 cycles. Since the uncertainty is 
1 cycle in a time interval Δt, the uncertainty in f will be

 Δf =
(1 cycle)

Δt
=

1
Δt

 Hz

Since ω = 2πf, we have

 Δω Δt = 2π

 In quantum mechanics, under steady-state conditions, an object has a time-oscillating wave-
function with a frequency ω which is related to its energy E by ω = E∕ħ (see Equation 3.20). 
Substituting this into the previous relationship gives

 ΔE Δt = h

 The uncertainty in the energy of a quantum object is therefore related, in a fundamental 
way, to the time duration during which the energy is observed. Notice that we again have h, 
as for Δx Δpx = h, though the quantum mechanical uncertainty relationship in Equation 3.32 
has ħ.

 EXAMPLE 3.9

THE UNCERTAINTY PRINCIPLE ON THE ATOMIC SCALE Consider an electron confined 
to a region of size 0.1 nm, which is the typical dimension of an atom. What will be the 
uncertainty in its momentum and hence its kinetic energy?

SOLUTION

We apply the Heisenberg uncertainty relationship, Δx Δpx ≈ ħ, or

 Δpx ≈
ħ

Δx
=

1.055 × 10−34 J s
0.1 × 10−9 m

= 1.055 × 10−24 kg m s−1

 The uncertainty in the velocity is therefore

 Δv =
Δpx

me

=
1.055 × 10−24 kg m s−1

9.1 × 10−31 kg
= 1.16 × 106 m s−1

 We can take this uncertainty to represent the order of magnitude of the actual speed. 
The kinetic energy associated with this momentum is

  KE =
Δp2

x

2me

=
(1.055 × 10−24 kg m s−1)2

2(9.1 × 10−31 kg)

  = 6.11 × 10−19 J  or  3.82 eV

 EXAMPLE 3.10
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THE UNCERTAINTY PRINCIPLE WITH MACROSCOPIC OBJECTS Estimate the minimum 
velocity of an apple of mass 100 g confined to a crate of size 1 m.

SOLUTION

Taking the uncertainty in the position of the apple as 1 m, the apple is somewhere in the 
crate,

 Δpx ≈
ħ

Δx
=

1.05 × 10−34 J s
1 m

= 1.05 × 10−34 kg m s−1

So the minimum uncertainty in the velocity is

 Δvx =
Δpx

m
=

1.05 × 10−34 kg m s−1

0.1 kg
= 1.05 × 10−33 m s−1

 The quantum nature of the universe implies that the apple in the crate is moving with a 
velocity on the order of 10−33 m s−1. This cannot be measured by any instrument; indeed, it 
would take the apple ~1019 years to move an atomic distance of 0.1 nm.

3.5   CONFINED ELECTRON IN A FINITE POTENTIAL 

ENERGY WELL

When the electron is contained in a finite PE well as shown in Figure 3.17a, due to 
the confinement, the electron energy is again quantized but the energy values are 
not given by the simple expression in Equation 3.28 for an infinite PE well. For the 
infinite well, the electron wavefunction ψ (x) abruptly terminates at x = 0 and x = a 
as in Figure 3.16; ψ(x) = 0 outside the well. This may seem contrary to the boundary 

 EXAMPLE 3.11
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Figure 3.17 (a) A finite potential energy well has zero potential energy (V = 0) inside the well (0 ≤ x ≤ a) but a finite potential 
energy (V = Vo) outside the well (x < 0 and x > a). (b) The PE function has a center of symmetry at x = a∕2. (c) A finite PE 
well that has a width 2 nm and a barrier height of 0.5 eV. There are only three allowed energy levels. The dashed energy 
lines are the first two levels of the infinite well. (The third energy level is not shown.)
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condition that dψ∕dx should be continuous (see Figure 3.15). However, the infinite 
PE well is an exceptional case because V = ∞ means that only ψ = 0 outside the 
well can satisfy the Schrödinger equation.
 We can divide the problem into three regions I, II, and III as shown in Figure 
3.17a. In region II, inside the well V = 0, and we define k as before

 k2 =
2meE

ħ2  [3.33]

so that in II, the Schrödinger equation becomes

 
d2ψ

dx2 + k2ψ = 0 [3.34]

The general solutions to Equation 3.34 is

 ψ II(x) = B1exp( jkx) + B2exp(−jkx) [3.35]

where B1 and B2 are the integration constants we need to find from boundary conditions.
 In I and III, the PE is finite and V = Vo for x ≤ a and x ≥ a. We define

 α2 =
2me(Vo − E)

ħ2  [3.36]

which depends on Vo; and hence α is a characteristic parameter for the finite well. 
With the above definition, the Schrödinger equation in I and III becomes11

 
d 

2ψ

dx2 −
2me

h2 α2ψ = 0 [3.37]

Notice that the second term has the opposite sign to Equation 3.34. The general 
solutions in I and III are
 ψI(x) = A1exp(αx) + A2exp(−αx) [3.38a]

 ψIII(x) = C1exp(αx) + C2exp(−αx) [3.38b]

where As and Cs are integration constants.
 We are looking for electron energies inside the well, that is, E < Vo, which means 
α is positive. Each of Equations 3.35 and 3.38a, and 3.38b has two constants that we 
need to find through boundary conditions and requirements on the wavefunction. In 
the present case, ψ (x) cannot be zero at the boundaries, ψ (x) exists both inside and 
outside the well, and it must be continuous, single valued and have a continuous 
slope, that is dψ∕dx must be continuous. (See Figure 3.15.) Further, the normaliza-
tion requirement means that if we integrate ∣ψ (x)∣2 over all space, it should be 1, 
so that A2 and C1 must be zero; otherwise C1exp(αx) would increase to infinity as 
x → +∞ and similarly so would A2exp(−αx) as x → −∞.
 Figure 3.17b and c show the wavefunctions and the energies of the electron 
derived by continuing the mathematical steps above further. Within the well, we have 

Definition of k

Electron 

wavefunction

Characteristic 

well 

parameter

Schrödinger 

equation 

inside the 

well

Schrödinger 

equation 

outside the 

well

Electron 

wavefunction 

in the barrier

 11 It is easy to show that while we need an exp(± jkx) type of solution for Equation 3.34, for Equation 3.37, which 
has the opposite sign, the solution cannot have the j, and must be of the form exp(±αx).
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harmonic-type solutions somewhat similar to before but ψ is not zero at the bound-
aries. The potential energy V(x) is symmetric about x = a∕2, which means that the 
wavefunctions must be either even or odd parity as in Figure 3.17. Outside the well, 
ψ decreases exponentially as we move away from the well. The waveforms in I, II, 
and III need to be joined smoothly and provide the overall wavefunction. The energy 
E of the electron is quantized because only certain energies give the right k and α 
for the wavefunctions in Equations 3.35 and 3.38a and b to satisfy the Schrödinger 
Equations 3.34 and 3.37. In addition, not all solutions exist inasmuch as if we were 
to impart sufficient energy to the electron such that E > Vo, the electron would 
become free. The number of solutions and the energy values depend on the width a 
and depth of the well, Vo. The example in Figure 3.17a has only three solutions with 
the three wavefunctions ψ1, ψ2, and ψ3 shown in Figure 3.17b. Notice that the wave-
functions penetrate into the barriers as exponentially decaying functions. For exam-
ple, in region III, the wavefunction ψIII ∝ exp[−α(x−a)]. The quantity 1∕α is a 
measure of the extent of penetration of the electron into the barrier, and is called 
the penetration depth.

 As a simple example, consider a finite well that has a width of 2 nm and a PE 
barrier Vo of 0.50 eV as shown in Figure 3.17c. If this were an infinite PE well, the 
first three levels would be 0.094 eV, 0.38 eV and 0.85 eV. For this finite PE well, 
only three solutions exist that correspond to E1 = 0.057 eV, E2 = 0.22 eV, and 
E3 = 0.45 eV. Notice that the energies are significantly different and lower (Why?).12 
Finite PE wells play an important role in confining charge carriers in today’s opto-
electronic devices as we will see in Chapter 6. One particular optoelectronic application 
is Terahertz emitters. Electrons are injected into the well and they move from one level 
to the next, for example from E3 to E2. By choosing the width a and the height Vo, the 
emitted radiation from E3 to E2 or E2 to E1 can be made to be in the terahertz range.

FINITE QUANTUM WELL Consider a finite one-dimensional potential energy well. The 
width a is 2 nm and the height of the barrier is 0.5 eV. There are only three energy levels 
E1 = 0.057 eV, E2 = 0.22 eV, and E3 = 0.45 eV. Find the penetration depth into the barrier 
for the corresponding wavefunctions.

SOLUTION

The wavefunction in the barrier decays exponentially in which the decay constant is α, given 
by Equation 3.36. Thus, for the first energy level E1

  α1 = [2me(Vo − E1)

ħ2 ]
1∕2

= [2(9.11 × 10−31 kg)(0.50 eV − 0.057 eV)(1.602 × 10−19 J∕eV)

(1.055 × 10−34 J s)2 ]
1∕2

  = 3.4 × 109 m−1

so that the penetration depth δ1 = 1∕α1 is 0.29 nm. Repeating the above calculation for 
E2  and  E3, we find δ2 = 1∕α2 is 0.37 nm and δ3 = 1∕α3 is 0.87 nm. Notice that for the 
E3-wavefunction, the penetration is extensive as in Figure 3.17b.

 EXAMPLE 3.12

 12 With the wavefunction extending further into the barriers, the uncertainty Δx in the position of the electron is 
now larger than that in the infinite PE well. From the Heisenberg uncertainty relation, this corresponds to a 
smaller uncertainty in the momentum, which implies a smaller energy.
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QUANTIZED ENERGY IN A FINITE QUANTUM WELL Figure 3.17b shows three of the 
allowed wavefunctions ψ1(x), ψ2(x), and ψ3(x) for the finite potential well. We know that there 
is a center of symmetry at x = a∕2. Thus, ψ(x) must reflect this symmetry and must be either 
even or odd functions. Therefore, in region II in Figure 3.17a, we have two types of possible 
solutions corresponding to cosine (even) and sine (odd) functions about the center of sym-
metry as in Figure 3.17b. Consider the cosine function

 ψII(x) = A cos k(x −
1
2

a)
where A is a constant. This satisfies the Schrödinger equation in region II. Further, in region III, 
the wavefunction decays with distance and we can write it simply as ψ III(x) = C2exp(−αx) = 
C3exp[−α(x − a)], where C3 is a new constant. We now apply the boundary conditions that 
at x = a, ψ II(a) = ψ III(a), and dψ II∕dx = dψ III∕dx. Clearly, these are

  A cos k(a −
1
2

a) = C3 exp[−α(a − a) ] and −Ak sin k(a −
1
2

a) = −αC3 exp[−α(a − a) ]

Dividing the right equation by the left, we obtain

 α = k tan(1
2

ka) [3.39]

 Now, both k and α depend on the energy through Equations 3.33 and 3.36. Thus, Equa-
tion 3.39 is an equation for the energy of the electron. Only certain energy values can satisfy 
Equation 3.39, which means that the energy is quantized. If we were to use the odd wavefunc-
tion, ψII(x) = B sin k(x − 1

2a), we would find α = −k cot(1
2ka) whose solutions would also 

be quantized energies. Both equations are normally used in finding the electron energies in 
a quantum well because we need to consider all possible wavefunctions.
 For a quantum well that has a = 2 nm, and Vo = 0.5 eV, the solution of Equation 3.39 
is obtained graphically by plotting the left and right hand sides, that is, α and ktan(ka∕2) 
as a function of energy E as shown in Figure 3.18. The intersection point represents the 
solution, which is E1 = 0.57 eV. The second level E2 is found from the intersection of α and 
−kcot(ka∕2) versus E plots, which is E2 = 0.22 eV, as also shown in Figure 3.18. There are 
only three solutions and the energies are quantized.

 EXAMPLE 3.13
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3.6  TUNNELING PHENOMENON: QUANTUM LEAK

To understand the tunneling phenomenon, let us examine the thrilling events expe-
rienced by the roller coaster shown in Figure 3.19a. Consider what the roller coaster 
can do when released from rest at a height A. The conservation of energy means 
that the carriage can reach B and at most C, but certainly not beyond C and definitely 
not D and E. Classically, there is no possible way the carriage will reach E at the 
other side of the potential barrier D. An extra energy corresponding to the height 
difference, D − A, is needed. Anyone standing at E will be quite safe. Ignoring 
frictional losses, the roller coaster will go back and forth between A and C.
 Now, consider an analogous event on an atomic scale. An electron moves with 
an energy E in a region x < 0 where the potential energy PE is zero; therefore, E 
is solely kinetic energy. The electron then encounters a potential barrier of “height” 
Vo, which is greater than E at x = 0. The extent (width) of the potential barrier is 
a. On the other side of the potential barrier, x > a, the PE is again zero as shown 
in Figure 3.19b. What will the electron do? Classically, just like the roller coaster, 
the electron should bounce back and thus be confined to the region x < 0, because 
its total energy E is less than Vo. In the quantum world, however, there is a distinct 
possibility that the electron will “tunnel” through the potential barrier and appear 
on the other side; it will leak through.
 To show this, we need to solve the Schrödinger equation for the present choice 
of V(x). Remember that the only way the Schrödinger equation will have the solution 
ψ (x) = 0 is if the PE is infinite, that is, V = ∞. Therefore, within any zero or finite 
PE region, there will always be a solution ψ (x) and there always will be some prob-
ability of finding the electron.

A

B

C

D

(a)

(b)

E

Start here from rest

V(x) Vo

x = 0 x = a

E < Vo 

Incident

Reflected Transmitted

I II III

A1

A2

x

ψI(x)
ψII(x)

ψIII(x)

Figure 3.19 (a) The roller coaster  
released from A can at most make it  
to C, but not to E. Its PE at A is less than 
the PE at D. When the car is at the  
bottom, its energy is totally KE. CD is 
the energy barrier that prevents the car 
from making it to E. In quantum theory, 
on the other hand, there is a chance 
that the car could tunnel (leak) through 
the potential energy barrier between C 
and E and emerge on the other side of 
the hill at E. (b) The wavefunction for the 
electron incident on a potential energy 
barrier (Vo). The incident and reflected 
waves interfere to give ψI(x). There is  
no reflected wave in region III. In  
region II, the wavefunction decays  
with x because E < Vo.
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 We can divide the electron’s space into three regions, I, II, and III, as indicated 
in Figure 3.19b. We can then solve the Schrödinger equation for each region, to 
obtain three wavefunctions ψ I(x), ψ II(x), and ψ III(x). In regions I and III, ψ (x) must 
be traveling waves, as there is no PE (the electron is free and moving with a kinetic 
energy E). In zone II, however, E − Vo is negative, so the general solution of the 
Schrödinger equation is the sum of an exponentially decaying function and an expo-
nentially increasing function. In other words,

 ψ I(x) = A1 exp( jkx) + A2 exp(−jkx) [3.40a]

 ψ II(x) = B1 exp(αx) + B2 exp(−αx) [3.40b]

 ψ III(x) = C1 exp( jkx) + C2 exp(−jkx) [3.40c]

are the wavefunctions in which

 k2 =
2meE

ħ2  [3.41]

and

 α2 =
2me(Vo − E)

ħ2  [3.42]

 Equation 3.41 follows from substituting ψ I(x) and ψ III(x) into the Schrödinger 
equation in regions I and III, respectively. Equation 3.42 for α2 follows from substi-
tuting ψ II(x) into the Schrödinger equation in region II. Both k2 and α2, and hence k 
and α, in Equations 3.40a to c are positive numbers. This means that exp( jkx) and 
exp(−jkx) represent traveling waves in opposite directions, and exp(−αx) and exp(αx) 
represent an exponential decay and rise, respectively. We see that in region I, ψ I(x) 
consists of the incident wave A1 exp( jkx) in the +x direction, and a reflected wave 
A2 exp(−jkx), in the −x direction. Furthermore, because the electron is traveling 
toward the right in region III, there is no reflected wave, so C2 = 0.
 We must now apply the boundary conditions and the normalization condition to 
determine the various constants A1, A2, B1, B2, and C1. In other words, we must match 
the three waveforms in Equations 3.40a to c at their boundaries (x = 0 and x = a) 
so that they form a continuous single-valued wavefunction. With the boundary con-
ditions enforced onto the wavefunctions ψ I(x), ψ II(x), and ψ III(x), all the constants can 
be determined in terms of the amplitude A1 of the incoming wave. The relative 
probability that the electron will tunnel from region I through II to III is defined as 
the transmission coefficient T, and this depends very strongly on both the relative 
PE barrier height (Vo − E) and the width a of the barrier. The final result that comes 
out from a tedious application of the boundary conditions is

 T =
∣ψIII(x)∣2

∣ψI(incident)∣2 =
C 

2
1

A2
1

=
1

1 + D sinh2(αa)
 [3.43]

where

 D =
V 

2
o

4E(Vo − E)
 [3.44]

Probability of 

tunneling



250 C H A P T E R  3  ∙ ELEMENTARY QUANTUM PHYSICS

and α is the rate of decay of ψII(x) as expressed in Equation 3.42. For a wide or high 
barrier, using αa ≫ 1 in Equation 3.43 and sinh(αa) ≈ 1

2 exp(αa), we can deduce

 T = To exp(−2αa) [3.45]

where

 To =
16E(Vo − E)

V2
o

 [3.46]

 By contrast, the relative probability of reflection is determined by the ratio of 
the square of the amplitude of the reflected wave to that of the incident wave. This 
quantity is the reflection coefficient R, which is given by

 R =
A2

2

A2
1

= 1 − T  [3.47]

 We can now summarize the entire tunneling affair as follows. When an elec-
tron encounters a potential energy barrier of height Vo greater than its energy E, 
there is a finite probability that it will leak through that barrier. This probabil-
ity depends sensitively on the energy and width of the barrier. For a wide poten-
tial barrier, the probability of tunneling is proportional to exp(−2αa), as in 
Equation 3.45. The wider or higher the potential barrier, the smaller the chance 
of the electron tunneling.
 One of the most remarkable technological uses of the tunneling effect is in the 
scanning tunneling microscope (STM), which elegantly maps out the surfaces of 
solids. A conducting probe is brought so close to the surface of a solid that electrons 
can tunnel from the surface of the solid to the probe, as illustrated in Figure 3.20. 
When the probe is far removed, the wavefunction of an electron decays exponentially 
outside the material, by virtue of the potential energy barrier being finite (the work 
function is ∼10 eV). When the probe is brought very close to the surface, the wave-
function penetrates into the probe and, as a result, the electron can tunnel from the 
material into the probe. Without an applied voltage, there will be as many electrons 
tunneling from the material to the probe as there are going in the opposite direction 
from the probe to the material, so the net current will be zero.
 On the other hand, if a positive bias is applied to the probe with respect to the 
material, as shown in Figure 3.20, an electron tunneling from the material to the probe 
will see a lower potential barrier than one tunneling from the probe to the material. 
Consequently, there will be a net current from the probe to the material and this 
current will depend very sensitively on the separation a of the probe from the surface, 
by virtue of Equation 3.45.
 Because the tunneling current is extremely sensitive to the width of the potential 
barrier, the tunneling current is essentially dominated by electrons tunneling to the 
probe atom nearest to the surface. Thus, the probe tip has an atomic dimension. By 
scanning the surface of the material with the probe and recording the tunneling cur-
rent the user can map out the surface topology of the material with a resolution 

Probability of 

tunneling 

through

Reflection 

coefficient
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E < Vo 
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V(x)

Metal
Second metal

Vacuum

Material
surface
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x

Itunnel

Image of surface
(schematic sketch)

(a) The wavefunction decays exponentially

as we move away from the surface because

the PE outside  the metal is Vo and the energy

of the electron, E < Vo.

(b) If we bring a second metal close to the first metal,

then the wavefunction can penetrate into the second

metal. The electron can tunnel from the first metal to

the second.

(c) The principle of the scanning tunneling microscope. The tunneling current

depends on exp(–2αa) where a  is the distance of the probe from the surface 

of the specimen and α is a constant. 

Vo

Itunnel

ψ(x) ψ(x)

Figure 3.20

comparable to the atomic dimension. The probe motion along the surface, and also 
perpendicular to the surface, is controlled by piezoelectric transducers to provide 
sufficiently small and smooth displacements. Figure 3.21 shows an STM image of 
a graphite surface, on which the hexagonal carbon rings can be clearly seen. Notice 
that the scale is 0.2 nm (2 Å). The contours in the image actually represent electron 
concentrations within the surface since it is the electrons that tunnel from the graph-
ite surface to the probe tip. The astute reader will notice that not all the carbon atoms 
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in a hexagonal ring are at the same height; three are higher and three are lower. The 
reason is that the exact electron concentration on the surface is also influenced by 
the second layer of atoms underneath the top layer. The overall effect makes the 
electron concentration change (alternate) from one atomic site to a neighboring site 
within the hexagonal rings. STM was invented by Gerd Binning and Heinrich Rohrer 
at the IBM Research Laboratory in Zurich, for which they were awarded the 1986 
Nobel prize.13

Figure 3.21 Scanning tunneling  
microscope (STM) image of a graphite 
surface where contours represent 
electron concentrations within the  
surface, and carbon rings are clearly 
visible. The scale is in 2 Å.
 Courtesy of Bruker.

STM’s inventors Gerd Binning (right) and Heinrich Rohrer 
(left), at IBM Zurich Research Laboratory with one of their 
early devices. They won the 1986 Nobel prize for the STM.

 © Emilio Segre Visual Archibes/American Institute of 
Physics/Science Source.

An STM image of a Ni (110) surface.

 © Andrew Dunn/Alamy Stock Photo RF.

 13 The IBM Research Laboratory in Zurich, Switzerland, received both the 1986 and the 1987 Nobel prizes. The 
first was for the scanning tunneling microscope by Gerd Binning and Heinrich Rohrer. The second was awarded 
to Georg Bednorz and Alex Müller for the discovery of high-temperature superconductors which we will examine 
in Chapter 8.



 3 . 6  TUNNELING PHENOMENON: QUANTUM LEAK 253

TUNNELING CONDUCTION THROUGH METAL-TO-METAL CONTACTS Consider two cop-
per wires separated only by their surface oxide layer (CuO). Classically, since the oxide layer 
is an insulator, no current should be possible through the two copper wires. Suppose that for 
the conduction (“free”) electrons in copper, the surface oxide layer looks like a square poten-
tial energy barrier of height 10 eV. Consider an oxide layer thickness of 5 nm and evaluate 
the transmission coefficient for conduction electrons in copper, which have a kinetic energy 
of about 7 eV. What will be the transmission coefficient if the oxide barrier is 1 nm?

SOLUTION

We can calculate α from

  α = [2me(Vo − E)

ħ2 ]
1∕2

  = [2(9.1 × 10−31 kg)(10 eV − 7 eV)(1.6 × 10−19 J/eV)

(1.05 × 10−34 J s)2 ]
1∕2

  = 8.9 × 109 m−1

so that

 αa = (8.9 × 109 m−1)(5 × 10−9 m) = 44.50

Since this is greater than unity, we use the wide-barrier transmission coefficient in Equa-
tion 3.45.
 Now,

 To =
16E(Vo − E)

V2
o

=
16(7 eV)(10 eV − 7 eV)

(10 eV)2 = 3.36

Thus,

 T = To exp(−2αa)

 = 3.36 exp[−2(8.9 × 109 m−1)(5 × 10−9 m)] = 3.36 exp(−89)

 ≈ 7.4 × 10−39

an incredibly small number.
 With a = 1 nm,

 T = 3.36 exp[−2(8.9 × 109 m−1)(1 × 10−9 m)]

 = 3.36 exp(−17.8) ≈ 6.2 × 10−8

Notice that reducing the layer thickness by five times increases the transmission probability 
by 1031! Small changes in the barrier width lead to enormous changes in the transmission 
probability. We should note that when a voltage is applied across the two wires, the potential 
energy height is altered (PE = charge × voltage), which results in a large increase in the 
transmission probability and hence results in a current.

 EXAMPLE 3.14

SIGNIFICANCE OF A SMALL h Estimate the probability that a roller coaster carriage that 
weighs 100 kg released from point A in Figure 3.19a from a height at 10 m can reach point 
E over a hump that is 15 m high and 10 m wide. What will this probability be in a universe 
where ħ ≈ 10 kJ s?

 EXAMPLE 3.15
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SOLUTION

The total energy of the carriage at height A is

 E = PE = mg(height) = (100 kg)(10 m s−2)(10 m) = 104 J

 Suppose that as a first approximation, we can approximate the hump as a square hill of 
height 15 m and width 10 m. The PE required to reach the peak would be

 Vo = mg(height) = (100 kg)(10 m s−2)(15 m) = 1.5 × 104 J

From Equation 3.42,

 α2 =
2m(Vo − E)

ħ2 =
2(100 kg)(1.5 × 104 J − 104 J)

(1.05 × 10−34 J s)2 = 9.07 × 1073 m−2

and so
 α = 9.52 × 1036 m−1

 With a = 10 m, we have αa ≫ 1, so we can use the wide-barrier tunneling equation,

 T = To exp(−2αa)

where

 To =
16[E(Vo − E) ]

V2
o

= 3.56

Thus,
 T = 3.56 exp[−2(9.52 × 1036 m−1)(10 m)] = 3.56 exp(−1.9 × 1038)

which is a fantastically small number, indicating that it is impossible for the carriage to tun-
nel through the hump.
 Suppose that ħ ≈ 10 kJ s. Then

 α2 =
2m(Vo − E)

ħ2 =
2(100 kg)(1.5 × 104 J − 104 J)

(104 J s)2 = 0.01 m−2

so that α = 0.1 m−1. Clearly, αa = 1, so we must use

 T = [1 + D sinh2(αa)]−1

where

 D =
V2

o

[4E(Vo − E) ]
= 1.125

Thus,
 T = [1 + 1.125 sinh2(1)]−1 = 0.39

After three goes, the carriage would tunnel to the other side (giving the person standing at 
E the shock of his life).

3.7  POTENTIAL BOX: THREE QUANTUM NUMBERS

To examine the properties of a particle confined to a region of space, we take a 
three-dimensional space with a volume marked by a, b, c along the x, y, z axes. The 
PE is zero (V = 0) inside the space and is infinite on the outside, as illustrated in 
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Figure 3.22. This is a three-dimensional potential energy well. The electron essen-
tially lives in the “box.” What will the behavior of the electron be in this box? In this 
case we need to solve the three-dimensional version of the Schrödinger equation,14 
which is

 
∂2ψ

∂x2 +
∂2ψ

∂y2 +
∂2ψ

∂z2 +
2me

ħ2 (E − V)ψ = 0 [3.48]

with V = 0 in 0 < x < a, 0 < y < b, and 0 < z < c, and V infinite outside. We can 
try to solve this by separating the variables via ψ (x, y, z) = ψx(x) ψy(y) ψz(z). Sub-
stituting this back into Equation 3.48, we can obtain three ordinary differential equa-
tions, each just like the one for the one-dimensional potential well. Having found 
ψx(x), ψy(y), and ψz(z) we know that the total wavefunction is simply the product,

 ψ (x, y, z) = A sin(kxx) sin(kyy) sin(kzz) [3.49]

where kx, ky, kz, and A are constants to be determined. We can then apply the bound-
ary conditions at x = a, y = b, and z = c to determine the constants kx, ky, and kz 
in the same way we found k for the one-dimensional potential well. If ψ(x, y, z) = 0 
at x = a, then kx will be quantized via

 kxa = n1π

where n1 is a quantum number, n1 = 1, 2, 3, . . . . Similarly, if ψ (x, y, z) = 0 at 
y = b and z = c, then ky and kz will be quantized, so that, overall, we will have

 kx =
n1π

a
  ky =

n2π

b
  kz =

n3π

c
 [3.50]

where n1, n2, and n3 are quantum numbers, each of which can be any integer except zero.
 We notice immediately that in three dimensions, we have three quantum numbers 
n1, n2, and n3 associated with ψx(x), ψy(y), and ψz(z). The eigenfunctions of the elec-
tron, denoted by the quantum numbers n1, n2, and n3, are now given by

 ψn1n2n3
(x, y, z) = A sin(n1πx

a ) sin(n2πy

b ) sin(n3πz

c ) [3.51]

Schrödinger 

equation  

in three 

dimensions

Electron 

wavefunction 

in infinite PE 

well

 14 The term ∂ψ∕∂x simply means differentiating ψ (x, y, z) with respect to x while keeping y and z constant, just 
like dψ∕dx in one dimension.
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V = ∞

V = ∞

Figure 3.22 Electron confined in three  
dimensions by a three-dimensional infinite  
PE box.

Everywhere inside the box, V = 0, but outside, 
V = ∞. The electron cannot escape from  
the box.
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 Notice that these consist of the products of infinite one-dimensional PE well-
type wavefunctions, one for each dimension, and each has its own quantum number n. 
Each possible eigenfunction can be labeled a state for the electron. Thus, ψ111 and 
ψ121 are two possible states.
 To find the constant A in Equation 3.51, we need to use the normalization 
condition that ∣ψn1n2n3

(x, y, z)∣2 integrated over the volume of the box must be unity, 
since the electron is somewhere in the box. The result for a square box is 
A =  (2∕a)3∕2.
 We can find the energy of the electron by substituting the wavefunction in Equa-
tion 3.49 into the Schrödinger Equation 3.48. The energy as a function of kx, ky, 
kz is then found to be

 E = E(kx, ky, kz) =
ħ2

2me

(k2
x + k2

y + k2
z )

which is quantized by virtue of kx, ky, and kz being quantized. We can write this 
energy in terms of n2

1, n
2
2, and n2

3 by using Equation 3.50, as follows:

 En1n2n3
=

h2

8me
(n2

1

a2 +
n2

2

b2 +
n2

3

c2)
 For a square box for which a = b = c, the energy is

 En1n2n3
=

h2(n2
1 + n2

2 + n2
3)

8mea
2 =

h2N2

8mea
2  [3.52]

where N2 = (n2
1 + n2

2 + n2
3), which can only have certain integer values. It is appar-

ent that the energy now depends on three quantum numbers. Our conclusion is that 
in three dimensions, we have three quantum numbers, each one arising from bound-
ary conditions along one of the coordinates. They quantize the energy of the electron 
via Equation 3.52 and its momentum in a particular direction, such as, px = ±ħkx = 
±(hn1∕2a), though the average momentum is zero.
 The lowest energy for the electron is obviously equal to E111, not zero. The next 
energy level corresponds to E211, which is the same as E121 and E112, so there are 
three states (i.e., ψ211, ψ121, ψ112) for this energy. The number of states that have the 
same energy is termed the degeneracy of that energy level. The second energy level 
E211 is thus three-fold degenerate.

Electron 

energy in 

infinite  

PE box

NUMBER OF STATES WITH THE SAME ENERGY How many states (eigenfunctions) are 
there at energy level E443 for a square potential energy box?

SOLUTION

This energy level corresponds to n1 = 4, n2 = 4, and n3 = 3, but the energy depends on

 N2 = n2
1 + n2

2 + n2
3 = 42 + 42 + 32 = 41

via Equation 3.52. As long as N2 = 41 for any choice of (n1, n2, n3), not just (4, 4, 3), the 
energy will be the same.

 EXAMPLE 3.16
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 The value N2 = 41 can be obtained from (4, 4, 3), (4, 3, 4), and (3, 4, 4) as well as 
(6, 2, 1), (6, 1, 2), (2, 6, 1), (2, 1, 6), (1, 6, 2), and (1, 2, 6). There are thus three states from 
(4, 4, 3) combinations and six from (6, 2, 1) combinations, giving nine possible states, each 
with a distinct wavefunction, ψn1n2n3

. However, all these ψn1n2n3
 for the electron have the same 

energy E443.

3.8  HYDROGENIC ATOM

3.8.1 ELECTRON WAVEFUNCTIONS

Consider the behavior of the electron in a hydrogenic (hydrogen-like) atom, which 
has a nuclear charge of +Ze, as depicted in Figure 3.23. For the hydrogen atom, 
Z = 1, whereas for an ionized helium atom He+, Z = 2. For a doubly ionized lithium 
atom Li++, Z = 3, and so on. The electron is attracted by a positive nuclear charge 
and therefore has a Coulombic PE,

 V(r) =
−Ze2

4πεor
 [3.53]

Since force F = −dV∕dr, Equation 3.53 is simply a statement of Coulomb’s force 
between the positive charge +Ze of the nucleus and the negative charge −e of the 
electron. The task of finding ψ (x, y, z) and the energy E of the electron now involves 
putting V(r) from Equation 3.53 into the Schrödinger equation with r = √x2 + y2 + z2 
and solving it.
 Fortunately, the problem has a spherical symmetry, and we can solve the Schrödinger 
equation by transforming it into the r, θ, ϕ coordinates shown in Figure 3.23. Even 

Electron PE 

in hydrogenic 

atom

x

y

z

r
Nucleus

+Ze

r sin θ

P(r, θ, ϕ)

V(r)

r

–e

4πεor

–Ze2 
V(r) =

+Ze

ϕ

θ

Figure 3.23 The electron in the hydrogenic atom is  
attracted by a central force that is always directed toward 
the positive nucleus.

Spherical coordinates centered at the nucleus are used 
to describe the position of the electron. The PE of the 
electron depends only on r.
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then, obtaining a solution is not easy. We must then ensure that the solution for 
ψ (r, θ, ϕ) satisfies all the boundary conditions, as well as being single-valued and 
continuous with a continuous derivative. For example, when we go 2π around the ϕ 
coordinate, ψ(r, θ, ϕ) should come back to its original value, or ψ(r, θ, ϕ) = ψ(r, θ, 
ϕ + 2π), as is apparent from an examination of Figure 3.23. Along the radial coor-
dinate, we need ψ (r, θ, ϕ) → 0 as r → ∞; otherwise, the total probability will diverge 
when ∣ψ(r, θ, ϕ)∣2 is integrated over all space. In an analogy with the three-dimensional 
potential well, there should be three quantum numbers to characterize the wavefunc-
tion, energy, and momentum of the electron. The three quantum numbers are called 
the principal, orbital angular momentum, and magnetic quantum numbers and 
are, respectively, denoted by n, ℓ, and mℓ. Unlike the three-dimensional potential 
well, however, not all the quantum numbers run as independent positive integers.
 The solution to the Schrödinger equation ψ (r, θ, ϕ) depends on three variables, 
r, θ, ϕ. The wavefunction ψ (r, θ, ϕ) can be written as the product of two functions

 ψ (r, θ, ϕ) = R(r) Y(θ, ϕ)

where R(r) is a radial function depending only on r, and Y(θ, ϕ) is called the spheri-

cal harmonic, which expresses the angular dependence of the wavefunction. These 
functions are characterized by the quantum numbers n, ℓ, mℓ. The radial part R(r) 
depends on n and ℓ, whereas the spherical harmonic depends on ℓ and mℓ, so

 ψ (r, θ, ϕ) = ψn,ℓ,mℓ
(r, θ, ϕ) = Rn,ℓ(r) Yℓ,mℓ

(θ, ϕ)  [3.54]

By solving the Schrödinger equation, these functions have already been evaluated. 
It turns out that we can only assign certain values to the quantum numbers n, ℓ, and 
mℓ to obtain acceptable solutions, that is, ψn,ℓ,mℓ

(r, θ, ϕ)  that are well behaved: single-
valued and with ψ and the gradient of ψ continuous. Table 3.2 summarizes the 
allowed values of n, ℓ and mℓ. It is clear that while n behaves very much like previ-
ous quantum numbers we discovered, ℓ and mℓ do not, and have restrictions imposed 
on their values.
 The ℓ values carry a special notation inherited from spectroscopic terms. The 
first four ℓ values are designated by the first letters of the terms sharp, principal, 
diffuse, and fundamental, whereas the higher ℓ values follow from f onwards, as g, 
h, i, etc. For example, any state ψn,ℓ,mℓ

 that has ℓ = 0 is called an s state, whereas 
that which has ℓ = 1 is termed a p state. We can also use n as a prefix to ℓ to 
identify n. Thus, ψn,ℓ,mℓ

 with n = 2 and ℓ = 0 corresponds to the 2s state. The nota-
tion for identifying the ℓ value and labeling a state is summarized in Table 3.3.
 Table 3.4 summarizes the functional forms of Rn,ℓ(r) and Yℓ,mℓ

(θ, ϕ) . For ℓ = 0 
(the s states), the angular dependence of Y0,0(θ, ϕ) is constant, which means that 

Table 3.2 The quantum number n, ℓ, and mℓ

Principal quantum number n = 1, 2, 3, . . .
Orbital angular momentum quantum number ℓ = 0, 1, 2, . . . , (n − 1) < n
Magnetic quantum number mℓ = −ℓ, −(ℓ − 1), . . . , 0, . . . , (ℓ − 1), ℓ or ∣mℓ∣ ≤ ℓ
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ψ (r, θ, ϕ) is spherically symmetrical about the nucleus. For the ℓ = 1 and higher 
states, there is a strong directionality to the wavefunctions with respect to each other. 
The radial part Rn,ℓ(r) is sketched in Figure 3.24a for two choices of n and ℓ. Notice 
that Rn,ℓ(r) is largest at r = 0, when ℓ = 0. However, this does not mean that the 
electron will be mainly at r = 0, because the probability of finding the electron at 
a distance r actually depends on r2∣Rn,ℓ(r)∣2, which vanishes as r → 0.
 Let us examine the probability of finding the electron at a distance r within a thin 
spherical shell of radius r and thickness δr (assumed to be very small). The direc-
tional dependence of the probability will be determined by the function Yℓ,mℓ

(θ, ϕ).
We can average this over all directions (all angles θ and ϕ) to obtain Yℓ,mℓ

(θ, ϕ) , 
which turns out to be simply 1∕4π. The volume of the spherical shell is δV = 4πr2δr. 
The probability of finding the electron in this shell is then

 ∣(Yℓ,mℓ
(θ, ϕ) )(Rn,ℓ(r) )∣2 × (4πr 

2δr)

If δP(r) represents the probability that the electron is in this spherical shell of thick-
ness δr, then

 δP(r) = ∣Rn,ℓ(r)∣2r2δr [3.55]

Table 3.3 Labeling of various nℓ possibilities

 ℓ

n 0 1 2 3 4

1 1s

2 2s 2p

3 3s 3p 3d

4 4s 4p 4d 4f

5 5s 5p 5d 5f 5g

Table 3.4 The radial and spherical harmonic parts of the wavefunction in the hydrogen atom (ao = 0.0529 nm)

n ℓ R(r) mℓ Y(θ, ϕ)

1 0 ( 1
ao

)
3∕2

2 exp(−
r

ao
) 0 

1
2√π

2 0 ( 1
2ao

)
3∕2

(2 −
r

ao
) exp(−

r

2ao
) 0 

1
2√π

   0 
1
2√ 3

π
 cos θ

2 1 ( 1
2ao

)
3∕2

( r

√3ao
) exp(−

r

2ao
) 1 

1
2√ 3

2π
 sin θe jϕ ∝ sin θ cos ϕ 

Correspond to

   −1 
1
2√ 3

2π
 sin θe−jϕ ∝ sin θ sin ϕ 

mℓ = −1 and +1.
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 The radial probability density Pn,ℓ(r) is defined as the probability per unit 
radial distance, that is, dP∕dr which from Equation 3.55 is ∣Rn,ℓ(r)∣2r2. The latter 
vanishes at the nucleus and peaks at certain locations, as shown in Figure 3.24b. 
This behavior implies that the probability of finding the electron within a thin spher-
ical shell close to the nucleus also disappears. For n = 1, and ℓ = 0, for example, 
the maximum probability is at r = ao = 0.0529 nm, which is called the Bohr radius. 
Therefore, if the electron is in the 1s state, it spends most of its time at a distance ao. 
Notice that the probability distribution does not depend on mℓ, but only on n and ℓ.
 Table 3.4 summarizes the nature of the functions Rn,ℓ(r) and Yℓ,mℓ

(θ, ϕ)  for 
various n, ℓ, mℓ values. Each possible wavefunction ψn,ℓ,mℓ

(r, θ, ϕ)  with a particular 
choice of n, ℓ, mℓ constitutes a quantum state for the electron. The function 
ψn,ℓ,mℓ

(r, θ, ϕ)  basically describes the behavior of the electron in the atom in proba-
bilistic terms, as distinct from a well-defined line orbit for the electron, as one might 
expect from classical mechanics. For this reason, ψn,ℓ,mℓ

(r, θ, ϕ)  is often referred to 
as an orbital, in contrast to the classical theory, which assigns an orbit to the electron.
 Figure 3.25a shows the polar plots of Yℓ,mℓ

(θ, ϕ)  for s and p orbitals. The radial 
distance from the origin in the polar plot represents the magnitude of Yℓ,mℓ

(θ, ϕ) , 
which depends on the angles θ and ϕ. The polar plots of the probability distribution 
∣Yℓ,mℓ

(θ, ϕ)∣2 are shown in Figure 3.25b. Although for the s states, Y1,0(θ, ϕ) is spher-
ically symmetric, resulting in a spherically symmetrical probability distribution 
around the nucleus, this is not so for ℓ = 1 and higher states.
 For example, each of the p states has a distinctly directional character, as illus-
trated in the polar plots in Figure 3.25. The angular dependence of ∣ψ2,1,0(r, θ, ϕ)∣, 
for which mℓ = 0, is such that most of the probability is oriented along the z axis. 
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Figure 3.24 (a) Radial wavefunctions of the electron in a hydrogenic atom for various n and ℓ values. (b) r2∣R2
n,ℓ∣ gives 

the radial probability density. Vertical axis scales are linear in arbitrary units.
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This wavefunction is referred to as the 2pz orbital. The two wavefunctions for mℓ = ±1 
are often represented by ψ2px

(r, θ, ϕ)  and ψ2py
(r, θ, ϕ) , or more simply, 2px and 2py 

orbitals, which do not possess a specific mℓ individually, but together represent the 
two mℓ = ±1 wavefunctions. The angular dependence of 2px and 2py are essentially 
along the x and y directions. Thus, the three orbitals for mℓ = 0, ±1 are all oriented 
perpendicular to each other, as depicted in Figure 3.25.
 It should be noted that the probability distributions in Figures 3.24b and 3.25b 
do not depend on time. As previously mentioned, under steady-state conditions, the 
magnitude of the total wavefunction is

 ∣Ψ(r, θ, ϕ, t)∣ = ∣ψ(r, θ, ϕ) exp(−
jEt

ħ ) ∣ = ∣ψ(r, θ, ϕ)∣

which is independent of time.
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Figure 3.25 (a) The polar plots of Yn,ℓ(θ, ϕ) for 1s and 2p states. (b) The angular dependence of the probability distribution, 
which is proportional to ∣Yn,ℓ(θ, ϕ)∣2.

PROBABILITY DENSITY FUNCTION The quantity ∣Rn,ℓ(r)∣2r2 in Equation 3.55 is called the 
radial probability density function and is simply written as Pn,ℓ(r). Thus, dP(r) = Pn,ℓ(r) dr 
is the probability of finding the electron between r and r + dr. We can use Pn,ℓ(r) to conveniently 
calculate the probability of finding the electron within a certain region of the atom, or to find 
the mean distance of the electron from the nucleus, and so on. For example, the electron in the 
1s orbital has the wavefunction shown for n = 1, ℓ = 0 in Table 3.4, which decays exponentially,

 Rn,ℓ(r) = 2a−3∕2
o  exp(−

r

ao
)

 EXAMPLE 3.17



262 C H A P T E R  3  ∙ ELEMENTARY QUANTUM PHYSICS

The total probability of finding the electron inside the Bohr radius ao can be found by sum-
ming (integrating) Pn,ℓ dr from r = 0 to r = ao,

  Ptotal(r < ao) = ∫
ao

0

Pn,ℓ(r) dr = ∫
ao

0

∣Rn,ℓ(r)∣2r2 dr

  = ∫
ao

0

4a−3
o  exp(−

2r

ao
)r2 dr = 0.32  or  32 percent

The integration is not trivial but can nonetheless be done as indicated by the result 0.32 
above. Thirty-two percent of the time the electron is therefore closer to the nucleus than the 
Bohr radius.
 The mean distance r  of the electron, from the definition of the mean, becomes

 r = ∫
∞

0

rPn,ℓ(r) dr =
aon

2

Z [3
2

−
ℓ(ℓ + 1)

2n2 ] [3.56]

where we have simply inserted the result of the integration for various orbitals. (Again we 
take the mathematics as granted.) For the 1s orbital, in the hydrogen atom, Z = 1, n = 1, and 
ℓ = 0, so r = 3

2ao, further than the Bohr radius. Notice that the mean distance r  of the elec-
tron increases as n2.

3.8.2 QUANTIZED ELECTRON ENERGY

Once the wavefunctions ψn,ℓ,mℓ
(r, θ, ϕ)  have been found, they can be substituted into 

the Schrödinger equation to find the possible energies of the electron. These turn 
out to depend only on the principal quantum number n. The energy is given by

 En = −
mee

4
 Z 

2

8ε2
o 
h2n2  [3.57a]

or

 En = −
Z 

2EI

n2 = −
Z 

2(13.6 eV)
n2  [3.57b]

where

 EI =
mee

4

8ε2
o 
h2 = 2.18 × 10−18 J  or  13.6 eV [3.57c]

This corresponds to the energy required to remove the electron in the hydrogen 
atom (Z = 1) from the lowest energy level E1 (at n = 1) to infinity; hence, it rep-
resents the ionization energy. The energy En in Equation 3.57b is negative with 
respect to that for the electron completely isolated from the nucleus (at r = ∞, 
therefore V = 0). Thus, when the electron is in the vicinity of the nucleus, +Ze, it 
has a lower energy, which is a favorable situation (hence, formation of the hydro-
genic atom is energetically favorable). In general, the energy required to remove an 
electron from the nth shell to n = ∞ (where the electron is free) is called the 
ionization energy for the nth shell, which from Equation 3.57b is simply ∣En∣ or 
(13.6 eV)Z 2∕n2.
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 Since the energy is quantized, the lowest energy of the electron corresponds to 
n = 1, which is −13.6 eV. The next higher energy value it can have is E2 = −3.40 eV 
when n = 2, and so on, as sketched in Figure 3.26. Normally, the electron will 
take  up a state corresponding to n = 1, because this has the lowest energy, called 
the ground energy. Its wavefunction corresponds to ψ100(r, θ, ϕ), which has a  
probability peak at r = ao and no angular dependence, as indicated in Figures 3.24 
and 3.25.
 The electron can only become excited to the next energy level if it is supplied 
by the right amount of energy E2 − E1. A photon of energy hf = E2 − E1 can read-
ily supply this energy when it strikes the electron. The electron then gets excited 
to  the state with n = 2 by absorbing the photon, and its wavefunction changes to 
ψ210(r, θ, ϕ), which has the maximum probability at r = 4ao. The electron thus spends 
most of its time in this excited state, at r = 4ao. It can return from the excited state 
at E2 to the ground state at E1 by emitting a photon of energy hf = E2 − E1.
 By virtue of the quantization of energy, we see that the emission of light from 
excited atoms can only have certain wavelengths: those corresponding to transitions 
from higher quantum-number states to lower ones. In fact, in spectroscopic analysis, 
these wavelengths can be used to identify the elements, since each element has its 
unique set of emission and absorption wavelengths arising from a unique set of 
energy levels. Figure 3.27 illustrates the origin of the emission and absorption spec-
tra of atoms, which are a direct consequence of the quantization of the energy.
 The electrons in atoms can also be excited by other means, for example, through 
electron–atom or atom–atom collisions. For example, when a projectile electron in 
a gas discharge tube collides with an atom, it can excite an electron in the atom 
to a higher energy level. The atom becomes excited by a collision as shown in 
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Figure 3.26 The energy of the electron in the 
hydrogen atom (Z = 1).
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Figure 3.28. If the impinging electron has sufficient kinetic energy, it can impart just 
the right energy to excite the electron to a higher energy level. Since the total energy 
must be conserved, the incoming electron will lose some of its kinetic energy in the 
process. The excited electron can later return to its ground state by emitting a pho-
ton. Excitation by atomic collisions is the process by which we obtain light from an 
electric discharge in gases, a quantum phenomenon we experience every day as we 
read a neon sign. Indeed, this is exactly how the Ne atoms in the common laboratory 
HeNe laser are excited, via atomic collisions between Ne and He atoms as explained 
in Section 3.10.2.
 Since the principal quantum number determines the energy of the electron and 
also the position of maximum probability, as we noticed in Figure 3.24, various n 
values define electron shells, within which we can most likely find the electron. 
These shells are customarily labeled K, L, M, N, . . . , corresponding to n = 1, 2, 
3, . . . . For each n value, there are a number of ℓ values that determine the spatial 
distribution of the electron. For a given n, each ℓ value constitutes a subshell. For 
example, we often talk about 3s, 3p, 3d subshells within the M shell. From the radial 
dependence of the electron’s wavefunction ψn,ℓ,mℓ

(r, θ, ϕ) , shown in Figure 3.24a, we 
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Figure 3.27 The physical origin of spectra.
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Figure 3.28 If an energetic projectile electron has sufficient kinetic energy, it can excite an 
atom by collision. The excited atom can return back to its ground state (become de-excited) 
by emitting a photon.
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see that for higher values of n, which correspond to more energetic states, the mean 
distance of the electron from the nucleus increases. In fact, we observe from Figure 
3.24b that an orbital with ℓ = n − 1 (e.g., 1s, 2p) exhibits a single maximum in its 
radial probability distribution, and this maximum rapidly moves farther away from 
the nucleus as n increases. By examining the electron wavefunctions, we can show 
that the location of the maxima for these ℓ = n − 1 states are at

 rmax =
n2ao

Z
  for  ℓ = n − 1 [3.58]

where ao is the radius of the ground state (0.0529 nm). The maximum probability 
radius rmax in Equation 3.58 is the Bohr radius. Note that rmax in Equation 3.58 is 
for ℓ = n − 1 states only. For other ℓ values, there are multiple maxima, and we 
must think in terms of the average position of the electron from the nucleus. When 
we evaluate the average position from ψn,ℓ,mℓ

(r, θ, ϕ) , we see that it depends on both 
n and ℓ; strongly on n and weakly on ℓ.

Maximum 

probability 

for ℓ = n − 1

Ionization 

and effective 

nuclear 

charge

THE IONIZATION ENERGY OF He+ What is the energy required to further ionize He+ ions 
to He++?

SOLUTION

He+ is a hydrogenic atom with one electron attracted by a nucleus with a +2e charge. Thus 
Z = 2. The energy of the electron in a hydrogenic atom (in eV) is given by

 En(eV) = −
Z 

2 13.6
n2

Since Z = 2, the energy required to ionize He+ further is

 ∣E1∣ = ∣−(22)13.6∣ = 54.4 eV

 EXAMPLE 3.18

IONIZATION ENERGY AND EFFECTIVE Z The Li atom has a nucleus with a +3e positive 
charge, which is surrounded by a full 1s orbital with two electrons, and a single valence elec-
tron in the outer 2s orbital as shown in Figure 3.29a. Intuitively we expect the valence elec-
tron to see the nuclear +3e charge shielded by the two 1s electrons, that is, a net charge of 
+1e. It seems that we should be able to predict the ionization energy of the 2s electron by 
using the hydrogenic atom model and by taking Z = 1 and n = 2 as indicated in Figure 3.29b. 
However, according to quantum mechanics, the 2s electron has a probability distribution that 
has two peaks as shown in Figure 3.24b; a major peak outside the 1s orbital, and a small 
peak around the 1s orbital. Thus, although the 2s electron spends a substantial time outside 
the 1s orbital, it does nonetheless penetrate the 1s shell and get close to the nucleus. Instead 
of experiencing a net +1e of nuclear charge, it now experiences an effective nuclear charge 
that is greater than +1e, which we can represent as +Zeffectivee, where we have used an effec-

tive Z. Thus, the ionization energy from the nth shell from Equation 3.57b is

 EI,n =
Z2

effective(13.6 eV)

n2  [3.59]

The experimental ionization energy of Li is 5.39 eV which corresponds to creating a Li+ ion 
and an isolated electron. Calculate the effective nuclear charge seen by the 2s electron.

 EXAMPLE 3.19
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SOLUTION

The most outer electron in the Li atom is in the 2s orbital, which is the electron that is 
removed in the ionization process. For this 2s electron, n = 2, and hence from Equation 3.59

 5.39 eV =
Z 

2
effective(13.6 eV)

(2)2

Solving, we find Zeffective = 1.26. If we simply use Z = 1 in Equation 3.59, we would find 
EI,n = 3.4 eV, too small compared with the experimental value because, according to its prob-
ability distribution, the electron spends some time close to the nucleus, and hence increases 
its binding energy (stronger attraction). Variables Z and Zeffective should not be confused. Z is 
the integer number of protons in the nucleus of the simple hydrogenic atom that are attract-
ing the electron, as in H, He+, or Li++. Zeffective is a convenient way of describing what the 
outer electron experiences in an atom because we would like to continue to use the simple 
expression for EI,n, Equation 3.59, which was originally derived for a hydrogenic atom.

3.8.3 ORBITAL ANGULAR MOMENTUM AND SPACE QUANTIZATION

The electron in the atom has an orbital angular momentum L. The electron is attracted 
to the nucleus by a central force, just like the Earth is attracted by the central 
gravitational force of the sun and thus possesses an orbital angular momentum. It is 
well known that in classical mechanics, under the action of a central force, both the 
total energy (KE + PE) and the orbital angular momentum (L) of an orbiting object 
are conserved. In quantum mechanics, the orbital angular momentum of the electron, 
like its energy, is also quantized, but by the quantum number ℓ. The magnitude of 
L is given by
 L = ħ[ℓ(ℓ + 1)]1∕2 [3.60]

where ℓ = 0, 1, 2, . . . < n. Thus, for an electron in the ground state, n = 1 and 
ℓ = 0, the angular momentum is zero, which is surprising since we always think of 
the electron as orbiting the nucleus. In the ground state, the spherical harmonic is a 
constant, independent of the angles θ and ϕ, so the electron has a spherically sym-
metrical probability distribution that depends only on r.
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1s

Figure 3.29 (a) The Li atom has a nucleus with charge +3e; two electrons in the K shell, which is closed;  
and one electron in the 2s orbital. (b) A simple view of (a) would be one electron in the 2s orbital that sees a 
single positive charge, Z = 1.
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 The quantum numbers n and ℓ quantize the energy and the magnitude of the 
orbital angular momentum. What is the significance of mℓ? In the presence of an 
external magnetic field Bz, taken arbitrarily in the z direction, the component of the 
angular momentum along the z axis, Lz, is also quantized and is given by

 Lz = mℓħ [3.61]

 Therefore, the quantum number mℓ quantizes the component of the angular 
momentum along the direction of an external magnetic field Bz, which for reference 
purposes is taken along z, as illustrated in Figure 3.30. Therefore, mℓ, is appropriately 
called the magnetic quantum number. For any given ℓ, quantum mechanics requires 
that mℓ must have values in the range −ℓ, −(ℓ − 1), . . . , −1, 0, 1, . . . , (ℓ − 1), ℓ. 
We see that ∣mℓ∣ ≤ ℓ. Moreover, mℓ can be negative, since Lz can be negative or 
positive, depending on the orientation of the angular momentum vector L. Since  
∣mℓ∣ ≤ ℓ, L can never align with the magnetic field along z; instead, it makes an 
angle with Bz, an angle that is determined by ℓ and mℓ. We say that L is space 

quantized. Space quantization is illustrated in Figure 3.30 for ℓ = 2.
 Since the energy of the electron does not depend on either ℓ or mℓ we can have 
a number of possible states for a given energy. For example, when the energy is E2, 
then n = 2, which means that ℓ = 0 or 1. For ℓ = 1, we have mℓ = −1, 0, 1, so 
there are a total of three different orbitals for the electron.
 Since the electron has a quantized orbital angular momentum, when an electron 
interacts with a photon, the electron must obey the law of the conservation of angular 
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momentum, much as an ice skater does sudden fast spins by pulling in her arms. All 
experiments indicate that the photon has an intrinsic angular momentum with a 
constant magnitude given by ħ. Therefore, when a photon of energy hf = E2 − E1 
is absorbed, the angular momentum of the electron must change. This means that 
following photon absorption or emission, both the principal quantum number n and 
the orbital angular momentum quantum number ℓ must change.
 The rules that govern which transitions are allowed from one state to another as 
a consequence of photon absorption or emission are called selection rules. As a 
result of photon absorption or emission, we must have

 Δℓ = ±1  and  Δmℓ = 0, ±1 [3.62]

 As an example, consider the excitation of the electron in the hydrogen atom from 
the ground energy E1 to a higher energy level E2. The photon energy hf must be exactly 
E2 − E1. The wavefunction of the 1s ground state is ψ1,0,0, whereas there are four 
wavefunctions at E2: one 2s state, ψ2,0,0; and three 2p states, ψ2,1,−1, ψ2,1,0, and ψ2,1,1. The 
excited electron cannot jump into the 2s state, because Δℓ must be ±1, so it enters a 
2p state corresponding to one of the orbitals ψ2,1,−1, ψ2,1,0, or ψ2,1,1. Various allowed 
transitions for photon emission in the hydrogen atom are indicated in Figure 3.31.
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Figure 3.31 An illustration of the allowed  
photon emission processes.

Photon emission involves Δℓ = ±1.

EXCITATION BY ELECTRON–ATOM COLLISIONS IN A GAS DISCHARGE TUBE A projec-
tile electron with a velocity 2.1 × 106 m s−1 collides with a hydrogen atom in a gas discharge 
tube. Find the nth energy level to which the electron in the hydrogen atom gets excited. 
Calculate the possible wavelengths of radiation that will be emitted from the excited H atom 
as the electron returns to its ground state.

SOLUTION

The energy of the electron in the hydrogen atom is given by En(eV) = −13.6∕n2. The 
electron must be excited from its ground state E1 = −13.6 eV to a quantized energy level 

 EXAMPLE 3.20
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−(13.6∕n2) eV. The change in the energy is ΔE = (−13.6∕n2) − (−13.6) eV. This must be 
supplied by the incoming projectile electron, which has an energy of

  E =
1
2

 mev 
2 =

1
2

(9.1 × 10−31 kg)(2.1 × 106 m s−1)2

  = 2.01 × 10−18 J  or  12.5 eV

Therefore,

 12.5 eV = 13.6 eV − [ (13.6 eV)

n2 ]
 Solving this for n, we find

 n2 =
13.6

(13.6 − 12.5)
= 12.36

so n = 3.51. But n can only be an integer; thus, the electron gets excited to the level n = 3 
where its energy is E3 = −13.6∕32 = −1.51 eV.
 The energy of the incoming electron after the collision is less by

 (E3 − E1) = 13.6 − 1.51 = 12.09 eV

Since the initial energy of the incoming electron was 12.5 eV, it leaves the collision with a 
kinetic energy of 12.5 − 12.09 = 0.41 eV. From the E3 level, the electron can undergo a 
transition from n = 3 to n = 1,

 ΔE31 = −1.51 eV − (−13.6 eV) = 12.09 eV

 The emitted radiation will have a wavelength λ given by hc∕λ = ΔE, so that

  λ31 =
hc

ΔE31
=

(6.626 × 10−34 J s) (3 × 108 m s−1)

12.09 × 1.6 × 10−19 J
  = 1.026 × 10−7 m  or  102.6 nm  (in the ultraviolet region)

 Another possibility is the transition from n = 3 to n = 2, for which

 ΔE32 = −1.51 eV − (−3.40 eV) = 1.89 eV

This will give a wavelength

 λ32 =
hc

ΔE32
= 656 nm

which is in the red region of the visible spectrum. For the transition from n = 2 to n = 1,

 ΔE21 = −3.40 eV − (−13.6 eV) = 10.2 eV

which results in the emission of a photon of wavelength λ21 = hc∕ΔE21 = 121.5 nm. Note 
that each transition obeys Δℓ = ±1.

THE FRAUNHOFER LINES IN THE SUN’S SPECTRUM The light from the sun includes 
extremely sharp “dark lines” at certain wavelengths, superimposed on a bright continuum at 
all other wavelengths, as discovered by Josef von Fraunhofer in 1829. One of these dark lines 
occurs in the orange range and another in the blue. Fraunhofer measured their wavelengths 
to be 6563 Å and 4861 Å, respectively. With the aid of Figure 3.26, show that these are 
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spectral lines from the hydrogen atom spectrum. (They are called the Hα and Hβ Fraunhofer 
lines. Such lines provided us with the first clues to the chemical composition of the sun.)

SOLUTION

The energy of the electron in a hydrogenic atom is

 En = −
Z 

2EI

n2

where EI = me4∕(8ε2
0h

2). Photon emission resulting from a transition from quantum number 
n2 to n1 has an energy

 ΔE = En2
− En1

= −Z 
2EI( 1

n2
2

−
1
n2

1
)

From hf = hc∕λ = ΔE, we have

 
1
λ

= (EI

hc)Z 
2( 1

n2
1

−
1
n2

2
) = R∞Z 

2( 1
n2

1
−

1
n2

2
)

where R∞ = EI∕hc = 1.0974 × 107 m−1. The equation for λ is called the Balmer–Rydberg 

formula, and R∞ is called the Rydberg constant. We apply the Balmer–Rydberg formula 
with n1 = 2 and n2 = 3 to obtain

 
1
λ

= (1.0974 × 107 m−1) (12)( 1
22 −

1
32) = 1.524 × 106 m−1

to get λ = 6561 Å. We can also apply the Balmer–Rydberg formula with n1 = 2 and n2 = 4 
to get λ = 4860 Å.

Emitted 

wavelengths 

for transitions 

in hydrogenic 

atom

GIANT ATOMS IN SPACE Radiotelescopic studies by B. Höglund and P. G. Mezger (1965) 
detected a 5009 MHz electromagnetic radiation in space. Show that this radiation comes from 
excited hydrogen atoms as they undergo transitions from n = 110 to n = 109. What is the 
size of such an excited hydrogen atom?

SOLUTION

Since the energy of the electron is En = −(Z 2EI∕n2), the energy of the emitted photon in the 
transition from n2 to n1 is

 hf = En2
− En1

= Z 2EI(n−2
1 − n−2

2 )

With n2 = 110, n1 = 109, and Z = 1, the frequency is

  f =
Z 

2EI(n−2
1 − n−2

2 )
h

  =
[(1.6 × 10−19 × 13.6)][(109−2 − 110−2) ]

(6.626 × 10−34)

  = 5 × 109 s−1  or  5000 MHz

The size of the atom from Equation 3.58 is on the order of

 2rmax = 2n2ao = 2(1102)(52.918 × 10−12 m) = 1.28 × 10−6 m  or  1.28 μm

A giant atom!

 EXAMPLE 3.22



 3 . 8  HYDROGENIC ATOM 271

3.8.4 ELECTRON SPIN AND INTRINSIC ANGULAR MOMENTUM S

One aspect of electron behavior does not come from the simple Schrödinger equa-
tion. That is the spin of the electron about its own axis, which is analogous to the 
24-hour spin of Earth around its axis.15 Earth has an orbital angular momentum due 
to its motion around the sun, and an intrinsic or spin angular momentum due to its 
rotation about its own axis. Similarly, the electron has a spin or intrinsic angular 

momentum, denoted by S. In classical mechanics, in the absence of external torques, 
spin angular momentum is conserved. In quantum mechanics, this spin angular 
momentum is quantized, in a manner similar to that of orbital angular momentum. 
The magnitude of the spin has been found to be constant, with a quantized compo-
nent Sz in the z direction along a magnetic field:

 S = ħ[s(s + 1)]1∕2  s =
1
2

 [3.63]

 Sz = msħ  ms = ±
1
2

 [3.64]

where, in an analogy with ℓ and mℓ, we use the quantum numbers s and ms, which 
are called the spin and spin magnetic quantum numbers. Contrary to our past 
experience with quantum numbers, s and ms are not integers, but are 1

2 and ±1
2, 

respectively. The existence of electron spin was put forward by Goudsmit and Uhlenbeck 
in 1925 and derived by Dirac from relativistic quantum theory, which is beyond the 
scope of this book. Figure 3.32 illustrates the spin angular momentum of the electron 
and the two possibilities for Sz. When Sz = +1

2 ħ, using classical orbital motion as an 
analogy, we can label the spin of the electron as being in the clockwise direction, 
so Sz = −1

2 ħ can be labeled as a counterclockwise spin. However, no such true clock-
wise or counterclockwise spinning of the electron can in reality16 be identified. When 
Sz = +1

2 ħ, we could just as easily label the electron spin as “up,” and call it “down” 
when Sz = −1

2 ħ. This terminology is used henceforth in this book.
 Since the magnitude of the electron spin is constant, which is a remarkable fact, 
and is determined by s = 1

2, we need not mention it further. It can simply be regarded 
as a fundamental property of the electron, in much the same way as its mass and 
charge. We do, however, need to specify whether ms = +1

2 or −1
2, since each of these 

selections gives the electron a different behavior. We therefore need four quantum 
numbers to specify what the electron is doing. Each state of the electron needs the 
spin magnetic quantum number ms, in addition to n, ℓ, and mℓ. For each orbital 
ψn,ℓ,mℓ

(r, θ, ϕ) , we therefore have two possibilities: ms = ±1
2. The quantum numbers 

n, ℓ, and mℓ determine the spatial extent of the electron by specifying the form of 
ψn,ℓ,mℓ

(r, θ, ϕ) , whereas ms determines the “direction” of the electron’s spin. A full 
description of the behavior of the electron must therefore include all four quantum 
numbers n, ℓ, mℓ, and ms.

 15 Do not take the meaning of “spin” too literally, as in classical mechanics. Remember that the electron is 
assumed to have wave-like properties, which can have no classical spin.

 16 The explanation in terms of spin and its two possible orientational directions (“clockwise” and 
“counterclockwise”) serve as mental aids in visualizing a quantum mechanical phenomenon. One question, 
however, is, “If the electron is a wave, what is spinning?”

Electron spin

Spin along 

magnetic field
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 An electronic state is a wavefunction that defines both the spatial (ψn,ℓ,mℓ
)  and 

spin (ms) properties of an electron. Frequently, an electronic state is simply denoted 
ψn,ℓ,mℓ,ms

, which adds the spin quantum number to the orbital wavefunction.
 The quantum numbers are extremely important, because they quantize the vari-
ous properties of the electron: its total energy, orbital angular momentum, and the 
orbital and spin angular momenta along a magnetic field. Their significance is sum-
marized in Table 3.5.
 The spin angular momentum S, like the orbital angular momentum, is space 

quantized. Sz = ±(1
2 ħ)  is smaller than S = ħ√3∕2, which means that S can never 

line up with z, or a magnetic field, and the angle θ between S and the z axis 
can  only have two values corresponding to mℓ = +1

2  and −1
2 , which means that 

cos θ = Sz∕S = ±1∕√3. Classically, Sz of a spinning object, or the orientation 
of  S  to the z-axis, can be any value inasmuch as classical spin has no space 
quantization.

Spin down

Spin up

S

S

0

ms = – 1
2

ms = +1
2

Sz (along Bz)

/

h
3
2

/

h
3
2

/

+h/2

/–h/2

Figure 3.32 Spin angular momentum  
exhibits space quantization. Its magnitude 
along z is quantized, so the angle of S to the 
z axis is also quantized.

Table 3.5 The four quantum numbers for the hydrogenic atom

n Principal quantum number n = 1, 2, 3, . . . Quantizes the electron energy
ℓ Orbital angular momentum ℓ = 0, 1, 2, . . . (n − 1) Quantizes the magnitude of
  quantum number   orbital angular momentum L
mℓ Magnetic quantum number mℓ = 0, ±1, ±2, . . . , ±ℓ Quantizes the orbital angular
    momentum component along
    a magnetic field Bz

ms Spin magnetic quantum ms = ±
1
2

 Quantizes the spin angular
  number   momentum component
    along a magnetic field Bz
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3.8.5 MAGNETIC DIPOLE MOMENT OF THE ELECTRON

Consider the electron orbiting the nucleus with an angular frequency ω as illustrated 
in Figure 3.33a. The orbiting electron is equivalent to a current loop. The equivalent 
current I due to the orbital motion of the electron is given by the charge flowing per 
unit time, I = charge∕period = −e(ω∕2π). The negative sign indicates that current 
I flows in the opposite direction to the electron motion. The magnetic field around 
the current loop is similar to that of a permanent magnet as depicted in Figure 3.33a. 
The magnetic moment is defined as μ = IA, the product of the current and the area 
enclosed by the current loop. It is a vector normal to the surface A in a direction 
determined by the corkscrew rule applied to the circulation of the current I. If r is 
the radius of the orbit (current loop), then the magnetic moment is

 μ = IA = (−
eω

2π)(πr2) = −
eωr2

2

 Consider now the orbital angular momentum L, which is the linear momentum 
p multiplied by the radius r, or

 L = pr = mevr = meωr2

Using this, we can substitute for ωr2 in μ = −eωr2∕2 to obtain

 μ = −
e

2me

L

N

S
B

B

i

A ===

L –e
ω

μorbital(a)

S

S

N

=

μspin
Magnetic moment

Equivalent current

Spin direction
(b)

Figure 3.33 (a) The orbiting electron is equivalent to a current loop that behaves like a bar magnet. (b) The 
spinning electron can be imagined to be equivalent to a current loop as shown. This current loop behaves like a 
bar magnet, just as in the orbital case.
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 In vector notation, using the subscript “orbital” to identify the origin of the 
magnetic moment,

 μorbital = −
e

2me

 L [3.65]

This means that the orbital magnetic moment μorbital is in the opposite direction to 
that of the orbital angular momentum L and is related to it by a constant (e∕2me).
 Similarly, the spin angular momentum of the electron S leads to a spin magnetic 

moment μspin, which is in the opposite direction to S and given by

 μspin = −
e

me

 S [3.66]

which is shown in Figure 3.33b. Notice that there is no factor of 2 in the denomina-
tor. We see that, as a consequence of the orbital motion and also of spin, the electron 
has two distinct magnetic moments. These moments act on each other, just like two 
magnets interact with each other. The result is a coupling of the orbital and the spin 
angular momenta L and S and their precession about the total angular momentum 
J = L + S, which is discussed in Section 3.8.6.
 Since both L and S are quantized, so are the orbital and spin magnetic moments 
μorbital and μspin. In the presence of an external magnetic field B, the electron has an 
additional energy term that arises from the interaction of these magnetic moments 
with B. We know from electromagnetism that a magnetic dipole (equivalent to a 
magnet) placed in a magnetic field B will have a potential energy PE. (A free mag-
net will rotate to align with the magnetic field, as in a compass, and thereby reduce 
the PE.) The potential energy EBL due to μorbital and B interacting is given by

 EBL = −μorbitalB cos θ

where θ is the angle between μorbital and B. The potential energy EBL is minimum 
when μorbital (the magnet) and B are parallel, θ = 0. We know that, by definition, the 
z axis is always along an external field B, and Lz is the component of L along z 
(along B), and is quantized, so that Lz = L cos θ = mℓħ. We can substitute for μorbital 
to find

 EBL = ( e

2me
)LB cos θ = ( e

2me
)LzB = ( eħ

2me
)mℓ B

which depends on mℓ, and it is minimum for the smallest mℓ. Since mℓ = −ℓ, . . . , 
0, . . . , +ℓ, negative and positive values through zero, the electron’s energy splits 
into a number of levels determined by mℓ. Similarly, the spin magnetic moment μspin 
and B interact to give the electron a potential energy ESL,

 ESL = (eħ

me
)msB [3.67]

which depends on ms. Since ms = ±1
2, ESL has only two values, positive (ms = +1

2)  
and negative (ms = −1

2) , which add and subtract from the electron’s energy depending 
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on whether the spin is up or down. Thus, in an external magnetic field, the electron’s 
spin splits the energy level into two levels. The separation ΔESL of the split levels 
is (eħ∕me)B, which is 0.12 meV T−1, very small compared with the energy En in 
the absence of the field. It should also be apparent that a single wavelength emis-
sion λo corresponding to a particular transition from En′ to En will now be split into 
a number of closely spaced wavelengths around λo. Although the separation ΔESL 
is small, it is still more than sufficient even at moderate fields to be easily detected 
and used in various applications. As it turns out, spin splitting of the energy in a 
field can be fruitfully used to study the electronic structures of not only atoms and 
molecules, but also various defects in semiconductors in what is called electron 

spin resonance.

STERN–GERLACH EXPERIMENT AND SPIN The Stern–Gerlach experiment is quite famous 
for demonstrating the spin of the electron and its space quantization. A neutral silver atom 
has one outer valence electron in a 4s orbital and looks much like the hydrogenic atom. (We 
can simply ignore the inner filled subshells in the Ag atom.). The 4s electron has no orbital 
angular momentum. Because of the spin of this one outer 4s electron, the whole Ag atom 
has a spin magnetic moment μspin. When Otto Stern and Walther Gerlach (1921–1922) passed 
a beam of Ag atoms through a nonuniform magnetic field, they found that the narrow beam 
split into two distinct beams as depicted in Figure 3.34a. The interpretation of the experiment 
was that the Ag atom’s magnetic moment along the field direction can have only two values, 
hence the split beam. This observation agrees with the quantum mechanical fact that in a 
field along z, μspin,z = −(e∕me)msħ where ms = +1

2  or −1
2; that is, the electron’s spin can have 

only two values parallel to the field, or in other words, the electron spin is space quantized.
 In the Stern–Gerlach experiment, the nonuniform magnetic field is generated by using a 
big magnet with shaped poles as in Figure 3.34a. The N-pole is sharp and the S-pole is wide, 
so the magnetic field lines get closer toward the N-pole and hence the magnetic field increases 
towards the N-pole. (This is much like a sharp point having a large electric field.) Whenever 
a magnetic moment, which we take to be a simple bar magnet, is in a nonuniform field, its 
poles experience different forces, say Flarge and Fsmall, and hence the magnet, overall, experi-
ences a net force. The direction of the net force depends on the orientation of the magnet 
with respect to the z axis as illustrated in Figure 3.34b for two differently oriented magnets 
representing magnetic moments labeled as 1 and 2. The S-pole of magnet 1 is in the high 
field region and experiences a bigger pull (Flarge) from the big magnet’s N-pole than the small 
force (Fsmall) pulling the N-pole of 1 to the big magnet’s S-pole. Hence magnet 1 is pulled 
toward the N-pole and is deflected up. The overall force on a magnetic moment is the dif-
ference between Flarge and Fsmall, and its direction here is determined by the force on which-
ever pole is in the high field region. Magnet 2 on the other hand has its N-pole in the high 
field region, and hence is pushed away from the big magnet’s N-pole and is deflected down. 
If the magnet is at right angles to the z axis (θ = π∕2), it would experience no net force as 
both of its poles would be in the same field. This magnetic moment would pass through 
undeflected.
 When we pass a stream of classical magnetic moments through a nonuniform field, there 
will be all possible orientations of the magnetic moment, from −π to +π, with the field 
because there is no space quantization. Classically, the Ag atoms passing through a nonuni-
form field would be deflected through a distribution of angles and would not split into two 
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(e)
(d)

Flarge

Fsmall

Flarge

Fsmall

Figure 3.34 (a) Schematic illustration of the Stern–Gerlach experiment. A stream of Ag atoms passing through a nonuniform 
magnetic field splits into two. (b) Explanation of the Stern–Gerlach experiment. (c) Actual experimental result recorded on  
a photographic plate by Stern and Gerlach. When the field is turned off, there is only a single line on the photographic plate. 
Their experiment is somewhat different than the simple sketches in (a) and (b) as shown in (d). (d) Stern–Gerlach memorial 
plaque at the University of Frankfurt. The drawing shows the original Stern–Gerlach experiment in which the Ag atom beam 
is passed along the long-length of the external magnet to increase the time spent in the nonuniform field, and hence increase 
the splitting. (e) The photo on the lower right is Otto Stern (1888–1969), standing and enjoying a cigar while carrying out an 
experiment. Otto Stern won the Nobel prize in 1943 for development of the molecular beam technique.
 (c) Courtesy of the Niels Bohr Archive. (d) Courtesy of Horst Schmidt-Böcking from B. Friedrich and D. Herschbach, “Stern and Gerlach: How 

a Bad Cigar Helped Reorient Atomic Physics,” Physics Today, December 2003, pp. 53–59. (e) Courtesy of AIP Emilio Segrè Visual Archives, 
Segrè Collection.

distinct beams. The actual result of Stern and Gerlach’s experiment is shown in Figure 3.34c, 
which is their photographic recording of a flat line-beam of Ag atoms passing through a long 
nonuniform field. In the absence of the field, the image is a simple horizontal line, the cross 
section of the beam. With the field turned on, the line splits into two. The edges of the line 
do not experience splitting because the field is very weak in the edge region. In the actual 
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experiment, as shown in Figure 3.34c, an Ag atomic beam is passed along the long-length 
of the external magnet to increase the time spent in the nonuniform field, and hence increase 
the splitting. The physics remains the same.

3.8.6 TOTAL ANGULAR MOMENTUM J

The orbital angular momentum L and the spin angular momentum S add to give the 
electron a total angular momentum J = L + S, as illustrated in Figure 3.35. There 
are a number of possibilities for the total angular momentum J, based on the relative 
orientations of L and S. For example, for a given L, we can add S either in parallel 
or antiparallel, as depicted in Figure 3.35a and b, respectively.
 Since in classical physics the total angular momentum of a body (not experienc-
ing an external torque) must be conserved, we can expect J (the magnitude of J) to 
be quantized. This turns out to be true. The magnitude of J and its z component 
along an external magnetic field are quantized via

 J = ħ[ j( j + 1)]1∕2 [3.68]

 Jz = mjħ [3.69]

where both j and mj are quantum numbers17 like ℓ and mℓ, but j and mj can have 
fractional values. A rigorous theory of quantum mechanics shows that when ℓ > s, 
the quantum numbers for the total angular momentum are given by j = ℓ + s and 
ℓ  − s and mj = ± j, ±( j − 1). For example, for an electron in a p orbital, where 
ℓ = 1, we have j = 3

2 and 1
2, and mj = 3

2, 
1
2, −

1
2, and −3

2. However, when ℓ = 0 (as for 
all s orbitals), we have j = s = 1

2 and mj = ms = ±1
2, which are the only possibilities. 

We note from Equations 3.68 and 3.69 that ∣Jz∣ < J and both are quantized, which 
means that J is space quantized; its orientation (or angle) with respect to the z axis 
is determined by j and mj.
 The spinning electron actually experiences a magnetic field Bint due to its orbital 
motion around the nucleus. If we were sitting on the electron, then in our reference 
frame, the positively charged nucleus would be orbiting around us, which would be 
equivalent to a current loop. At the center of this current loop, there would be an 
“internal” magnetic field Bint, which would act on the magnetic moment of the 
spinning electron to produce a torque. Since L and S add to give J, and since the 
latter quantity is space quantized (or conserved), then as a result of the internal 
torque on the electron, we must have L and S synchronously precessing about J, 
as illustrated in Figure 3.36a. If there is an external magnetic field B taken to be 
along z, this torque will act on the net magnetic moment due to J to cause this 
quantity to precess about B, as depicted in Figure 3.36b. Remember that the com-
ponent along the z axis must be quantized and equal to mjħ, so the torque can only 
cause precession. To understand the precession of the electron’s angular momentum 
about the magnetic field B, think of a spinning top that precesses about the gravi-
tational field of Earth.

Total angular 

momentum

 17 The quantum number j as used here should not be confused with j for √−1.
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3.9  THE HELIUM ATOM AND THE PERIODIC TABLE

3.9.1 He ATOM AND PAULI EXCLUSION PRINCIPLE

In the He atom, there are two electrons in the presence of a nucleus of charge +2e, 
as depicted in Figure 3.37. (Obviously, in higher-atomic-number elements, there 
will be Z electrons around a nucleus of charge +Ze.) The PE of an electron in the 
He atom consists of two interactions. The first is due to the Coulombic attraction 
between itself and the positive nucleus; the second is due to the mutual repulsion 
between the two electrons. The PE function V of any one of the electrons, for 
example, that labeled as 1, therefore depends on both its distance from the nucleus 
r1 and the separation of the two electrons r12. The PE of electron 1 thus depends 

Figure 3.36 (a) The angular momentum vectors L and 
S precess around their resultant total angular momentum 
vector J. (b) The total angular momentum vector is space 
quantized. Vector J precesses about the z axis, along 
which its component must be mjħ.
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Figure 3.35 Orbital angular 
momentum vector L and spin 
angular momentum vector S 
can add either in parallel as in 
(a) or antiparallel, as in (b).

The total angular momentum 
vector J = L + S, has a  
magnitude J = √[ j( j + 1) ] , 
where in (a) j = ℓ + 1

2  and in  
(b) j = ℓ − 1

2 .
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on the locations of both the electrons, or

 V(r1, r12) = −
2e2

4πεor1
+

e2

4πεor12
 [3.70]

 When we use this PE in the Schrödinger equation for a single electron, we find 
the wavefunction and energy of one of the electrons in the He atom. We thus obtain 
the one-electron wavefunction and the energy of one electron within a many-
electron atom.
 One immediate and obvious result is that the energy of an electron now depends 
not only on n but also on ℓ, because the electron–electron potential energy term (the 
second term in Equation 3.70, which contains r12) depends on the relative orienta-
tions of the electron orbitals, which change r12. We therefore denote the electron 
energy by En,ℓ. The dependence on ℓ is weaker than on n, as shown in Figure 3.38. 
As n and ℓ increase, En,ℓ also increases. Notice, however, that the energy of a 4s 
state is lower than that of a 3d state, and the same pattern also occurs at 4s and 5s.
 One of the most important theorems in quantum physics is the Pauli exclusion 

principle, which is based on experimental observations. This principle states that no 

two electrons within a given system (e.g., an atom) may have all four identical 

quantum numbers, n, ℓ, mℓ, and ms. Each set of values for n, ℓ, mℓ, and ms represents 
a possible electronic state, that is, a wavefunction denoted by ψn,ℓ,mℓ,ms

, that the electron 

PE of one 

electron in  

He atom

+Ze

Nucleus

r1

r2

r12

Electron 1

Electron 2

–e

–e

Figure 3.37 A helium-like atom.

The nucleus has a charge of +Ze, where Z = 2 for He. If one 
electron is removed, we have the He+ ion, which is equivalent 
to the hydrogenic atom with Z = 2.

Left to right, Enrico Fermi, Werner Heisenberg, and 
Wolfgang Pauli at a physics conference in Como (Italy), 
September 1927.

 Photograph by Franco Rasetti, courtesy AIP Emilio Segre 
Visual Archives, Segre Collection.
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may acquire. For example, an electron with the quantum numbers given by 2, 1, 1, 
1
2 will have a definite wavefunction ψn,ℓ,mℓ,ms

= ψ2,1,1,1∕2, and it is said to be in the 
state 2p, mℓ = 1 and spin up. Its energy will be E2p. The Pauli exclusion principle 
requires that no other electron be in this same state.
 The orbital motion of an electron is determined by n, ℓ, and mℓ, whereas ms 
determines the spin direction (up or down). Suppose two electrons are in the same 
orbital state, with identical n, ℓ, mℓ. By the Pauli exclusion principle, they would 
have to spin in opposite directions, as shown in Figure 3.39. One would have to spin 
“up” and the other “down.” In this case we say that the electrons are spin paired. 
Two electrons can thus have the same orbitals (occupy the same region of space) if 
they pair their spins. However, the Pauli exclusion principle prevents a third electron 
from entering this orbital, since ms can only have two values.
 Using the Pauli exclusion principle, we can determine the electronic structure of 
many-electron atoms. For simplicity, we will use a box to represent an orbital state 
defined by a set of n, ℓ, mℓ values. Each box can take two electrons at most, with their 
spins paired. When we put an electron into a box, we are essentially assigning a wave-
function to that electron; that is, we are defining its orbital n, ℓ, mℓ. We use an arrow 
to show whether the electron is spinning up or down. As depicted in Figure 3.40, we 
arrange all the boxes to correspond to the electronic subshells. As an example, consider 
boron, which has five electrons. The first electron enters the 1s orbital at the lowest 
energy. The second also enters this orbital by spinning in the opposite direction. The 
third goes into the n = 2 orbital. The lowest energy there is in the s orbitals corre-
sponding to ℓ = 0 and mℓ = 0. The fourth electron can also enter the 2s orbital, pro-
vided that it spins in the opposite direction. Similarly, the fifth must go into another 
orbital, and the next nearest low-energy orbitals are those having ℓ = 1 (p states) and 
mℓ = −1, 0, +1. The final electronic structure of the B atom is shown in Figure 3.40.
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Figure 3.38 Energy of various one-electron states.

The energy depends on both n and ℓ.

Figure 3.39 Paired spins in an orbital.



 3 . 9  THE HELIUM ATOM AND THE PERIODIC TABLE 281

 We see that because the electron energy depends on n and ℓ, there are a number 
of states for a given energy En,ℓ. Each of these states corresponds to different sets 
of mℓ and ms. For example, the energy E2,1 (or E2p) corresponding to n = 2, ℓ = 1 
has six possible states, arising from mℓ = −1, 0, 1 and ms = +1

2, −
1
2. Each mℓ state 

can have an electron spinning up or down, ms = +1
2 or ms = −1

2, respectively.

Li Be B

K
(n=1)

L
(n=2)

s

p

1 = m
ℓ

0–1

H

s

He

Figure 3.40 Electronic configurations for the first five elements.

Each box represents an orbital ψ (n, ℓ, mℓ).

THE NUMBER OF STATES AT AN ENERGY LEVEL Enumerate and identify the states cor-
responding to the energy level E3d, or n = 3, ℓ = 2.

SOLUTION

When n = 3 and ℓ = 2, mℓ and ms can have these following values: mℓ = −2, −1, 0, 1, 2, 
and ms = +1

2, −
1
2 . This means there are 10 combinations. The possible wavefunctions (electron 

states) are

∙ ψ3,2,2,1∕2; ψ3,2,1,1∕2; ψ3,2,0,1∕2; ψ3,2,−1,1∕2; ψ3,2,−2,1∕2, all of which have spins up (ms = +1
2)

∙ ψ3,2,2,−1∕2; ψ3,2,1,−1∕2; ψ3,2,0,−1∕2; ψ3,2,−1,−1∕2; ψ3,2,−2,−1∕2, all of which have spins down 
(ms = −1

2)

3.9.2 HUND’S RULE

In the many-electron atom, the electrons take up the lowest-energy orbitals and obey 
the Pauli exclusion principle. However, the Pauli exclusion principle does not deter-
mine how any two electrons distribute themselves among the many states of a given 
n and ℓ. For example, there are six 2p states corresponding to mℓ = −1, 0, +1, with 
each mℓ having ms = ±1

2. The two electrons could pair their spins and enter a given 
mℓ state, or they could align their spins (same ms) and enter different mℓ states. An 
experimental fact deducted from spectroscopic studies shows that electrons in the same 

n, ℓ orbitals prefer their spins to be parallel (same ms). This is known as Hund’s rule.

 The origin of Hund’s rule can be readily understood. If electrons enter the same 
mℓ state by pairing their spins (different ms), their quantum numbers n, ℓ, mℓ will be 
the same and they will both occupy the same region of space (same ψn,ℓ,mℓ

 orbital). 
They will then experience a large Coulombic repulsion and will have a large Cou-
lombic potential energy. On the other hand, if they parallel their spins (same ms), 
they will each have a different mℓ and will therefore occupy different regions of space 
(different ψn,ℓ,mℓ

 orbitals), thereby reducing their Coulombic repulsion.

 EXAMPLE 3.24
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 The oxygen atom has eight electrons and its electronic structure is shown in 
Figure 3.41. The first two electrons enter the 1s box (orbital). The next two enter 
the 2s box. But p states can accommodate six electrons, so the remaining four elec-
trons have a choice. Hund’s rule forces three of the four electrons to enter the boxes 
corresponding to mℓ = −1, 0, +1, all with their spins parallel. The last electron can 
go into any of the 2p boxes, but it has no choice for spin. It must pair its spin with 
the electron already in the box. Thus, the oxygen atom has two unpaired electrons 
in half-occupied orbitals, as indicated in Figure 3.41. Since these two unpaired elec-
trons spin in the same direction, they give the O atom a net angular momentum. An 
angular momentum due to charge rotation (i.e., spin) gives rise to a magnetic moment 
μ. If there is an external magnetic field present, then μ experiences a force given 
by μ · dB∕dx. Oxygen atoms will therefore be deflected by a nonuniform magnetic 
field, as experimentally observed.
 Following the Pauli exclusion principle and Hund’s rule, it is not difficult to 
build the electronic structure of various elements in the Periodic Table. There are 
only a few instances of unusual behavior in the energy levels of the electronic states. 
The 4s state happens to be energetically lower than the 3d states, so the 4s state fills 
up first. Similarly, the 5s state is at a lower energy than the 4d states. These features 
are summarized in the energy diagram of Figure 3.38. There is a neat shorthand way 
of writing the electronic structure of any atom. To each nℓ state, we attach a super-
script to represent the number of electrons in those nℓ states. For example, for 
oxygen, we write 1s22s22p4, or simply [He]2s22p4, since 1s2 is a full (closed) shell 
corresponding to He.

s

s

p

K

L

C N O F Ne

Figure 3.41 Electronic configurations for C, N, O, F, and Ne atoms.

Notice that in C, N, and O, Hund’s rule forces electrons to align their spins. For the Ne atom, all the K and L orbitals 
are full.

HUND’S RULE The Fe atom has the electronic structure [Ar]3d 64s2. Show that the Fe atom 
has four unpaired electrons and therefore a net angular momentum and a magnetic moment 
due to spin.

SOLUTION

In a closed subshell, for example, 2p subshell with six states given by mℓ = −1, 0, +1 and 
ms = ±1

2 , all mℓ and ms values have been taken up by electrons, so each mℓ orbital is occupied 
and has paired electrons. Each positive mℓ (or ms) value assigned to an electron is canceled 
by the negative mℓ (or ms) value assigned to another electron in the subshell. Therefore, there 

 EXAMPLE 3.25
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is no net angular momentum from a closed subshell. Only unfilled subshells contribute to the 
overall angular momentum. Thus, only the six electrons in the 3d subshell need to be considered.
 There are five d orbitals, corresponding to mℓ = −2, −1, 0, 1, 2. Five of the six electrons 
obey Hund’s rule and align their spins, with each taking one of the mℓ values.

 mℓ = −2 −1 0 1 2
 ↑ ↑ ↑ ↑ ↑
 ↓

 The sixth must take the same mℓ as another electron. This is only possible if they pair 
their spins. Consequently, there are four electrons with unpaired spins in the Fe atom, which 
gives the Fe atom a net angular momentum. The Fe atom therefore possesses a magnetic 
moment as a result of four electrons having their charges spinning in the same direction.
 Many isolated atoms possess unpaired spins and hence also possess a magnetic moment. 
For example, the isolated Ag atom has one outer 5s electron with an unpaired spin and hence 
it is magnetic; it can be deflected in a magnetic field. The silver crystal, however, is non-
magnetic. In the crystal, the 5s electrons become detached to form the electron gas (metallic 
bonding) where they pair their spins, and the silver crystal has no net magnetic moment. The 
iron crystal is magnetic because the constituent Fe atoms retain at least two of the unpaired 
electron spins which then all align in the same direction to give the crystal an overall magnetic 
moment; iron is a magnetic metal.18

3.10  STIMULATED EMISSION AND LASERS

3.10.1 STIMULATED EMISSION AND PHOTON AMPLIFICATION

An electron can be excited from an energy level E1 to a higher energy level E2 by 
the absorption of a photon of energy hf = E2 − E1, as show in Figure 3.42a. When 
an electron at a higher energy level transits down in energy to an unoccupied energy 
level, it emits a photon. There are essentially two possibilities for the emission pro-
cess. The electron can spontaneously undergo the downward transition by itself, or 
it can be induced to do so by another photon.
 In spontaneous emission, the electron falls in energy from level E2 to E1 and 
emits a photon of energy hf = E2 − E1, as indicated in Figure 3.42b. The transition 
is only spontaneous if the state with energy E1 is not already occupied by another 
electron. In classical physics, when a charge accelerates and decelerates, as in an 
oscillatory motion, with a frequency f, it emits an electromagnetic radiation also of 
frequency f. The emission process during the transition of the electron from E2 to 
E1 appears as if the electron is oscillating with a frequency f.
 In stimulated emission,19 an incoming photon of energy hf = E2 − E1 stimulates 
the emission process by inducing the electron at E2 to transit down to E1. The emit-
ted photon is in phase with the incoming photon, it is going in the same direction, 

 18 This qualitative explanation is discussed in Chapter 8.

 19 Some authors use the term induced emission, but stimulated emission seems to be more common.
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and it has the same frequency, since it must also have the energy E2 − E1, as shown 
in Figure 3.42c. Put differently, the two photons are coherent, that is, they have 
exactly the same frequency, phase and are traveling in the same direction. To get a 
feel for what is happening during stimulated emission, imagine the electric field 
of  the incoming photon coupling to the electron and thereby driving it with the 
same frequency as the photon. The forced oscillation of the electron at a frequency 
f = (E2 − E1)∕h causes the electron to emit electromagnetic radiation, for which the 
electric field is totally in phase with that of the stimulating photon. When the incom-
ing photon leaves the site, the electron has been forced to return to E1, because it 
has emitted a photon of energy hf = E2 − E1.
 Stimulated emission is the basis for photon amplification, since one incoming 
photon results in two outgoing photons, which are in phase. It is possible to achieve 
a practical light amplifying device based on this phenomenon. From Figure 3.42c, 
we see that to obtain stimulated emission, the incoming photon should not be 
absorbed by another electron at E1. When we are considering using a collection of 
atoms to amplify light, we must therefore require that the majority of the atoms be at 
the energy level E2. If this were not the case, the incoming photons would be absorbed 
by the atoms at E1. When there are more atoms at E2 than at E1, we have what is 
called a population inversion. It should be apparent that with two energy levels, we 
can never achieve a population at E2 greater than that at E1, because, in the steady 
state, the incoming photon flux will cause as many upward excitations as downward 
stimulated emissions.
 Let us consider the three-energy-level system shown in Figure 3.43. Suppose an 
external excitation causes the atoms20 in this system to become excited to energy 
level E3. This is called the pump energy level, and the process of exciting the atoms 
to E3 is called pumping. In the present case, optical pumping is used, although this 
is not the only means of taking the atoms to E3. The atoms at E3 decay rapidly to 
the energy level E2 by emitting the excess energy (E3 − E2) as lattice vibrations. 
Suppose further that an atom in a state at E2 does not rapidly and spontaneously 
decay to a lower energy state. In other words, the state at E2 is a long-lived state.21 

 20 An atom is in an excited state when one (or more) of its electrons is excited from the ground energy to a 
higher energy level. The ground state of an atom has all the electrons in their lowest energy states consistent 
with the Pauli exclusion principle and Hund’s rule.

 21 We will not examine what causes certain states to be long lived; we will simply accept that these states do 
not decay rapidly and spontaneously to lower energy states.
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Figure 3.42 Absorption, spontaneous emission, and stimulated emission.
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Quite often, the long-lived states are referred to as metastable states. Since the 
atoms cannot decay rapidly from E2 to E1, they accumulate at this energy level, 
causing a population inversion between E2 and E1 as pumping takes more and more 
atoms to E3 and hence to E2.
 When one atom at E2 decays spontaneously, it emits a photon, which can go on 
to a neighboring atom and cause that to execute stimulated emission. The photons 
from the latter can then go on to the next atom at E2 and cause that atom to emit 
by stimulated emission, and so on. The result is an avalanche effect of stimulated 
emission processes with all the photons in phase, so the light output is a large col-
lection of coherent photons. This is the principle of the ruby laser in which the 
energy levels E1, E2, and E3 are those of the Cr3+ ion in the Al2O3 crystal. At the 
end of the avalanche of stimulated emission processes, the atoms at E2 will have 
returned to E1 and can be pumped again to repeat the stimulated emission cycle 
again. The emission from E2 to E1 is called the lasing emission.

 The system we have just described for photon amplification is a LASER, an 
acronym for light amplification by stimulated emission of radiation. In the ruby laser, 
pumping is achieved by using a xenon flashlight. The lasing atoms are chromium 
ions (Cr3+) in a crystal of alumina Al2O3 (sapphire), and the lasing emission from 

Figure 3.43 The principle of the LASER.  
(a) Atoms in the ground state are pumped up 
to energy level E3 by incoming photons of 
energy hf13 = E3 − E1. (b) Atoms at E3 rapidly 
decay to the metastable state at energy 
level E2 by emitting lattice vibrations.  
(c) Since the states at E2 are metastable, 
they quickly become populated, and there  
is a population inversion between E2 and E1.  
(d) An incoming photon of energy hf21 = E2 − E1 
can initiate stimulated emission. Photons 
from this stimulated emission can themselves 
further stimulate emissions, leading to an  
avalanche of stimulated emissions and  
coherent photons being emitted.
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E2 to E1 is at 694 nm (red). We can increase stimulated emissions by increasing the 
number of photons, that is, the radiation intensity within the crystal inasmuch as 
more photons cause more stimulated emissions. The ends of the ruby crystal, which 
is normally a rod, are silvered to reflect back and forward the stimulated radiation, 
that is, to form an optical cavity with mirrors at the ends, as shown in Figure 3.44a. 
As the stimulated photons are reflected back into the crystal, the radiation intensity 
builds up inside the crystal, in much the same way we build up voltage oscillations 
in an electrical oscillator circuit by feedback. The build-up of coherent radiation in 
the cavity encourages further stimulated emissions, until a large avalanche of stimu-
lated transitions occur and takes most of the ions at E2 down to E1. One of the 

Theodore Harold Maiman (1927–2007) was born in 1927  
in Los Angeles, son of an electrical engineer. He studied 
engineering physics at the University of Colorado, while 
repairing electrical appliances to pay for college, and 
then obtained a Ph.D. from Stanford. Theodore Maiman 
constructed this first laser in 1960 while working at 
Hughes Research Laboratories (T.H. Maiman, “Stimulated 
optical radiation in ruby lasers”, Nature, 187, 493, 1960). 
There is a vertical chromium ion–doped ruby rod in the 
center of a helical xenon flash tube. The ruby rod has 
mirrored ends. The xenon flash provides optical pumping 
of the chromium ions in the ruby rod. The output is a 
pulse of red laser light.

 Courtesy of HRL Laboratories, LLC, Malibu, California.
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Figure 3.44 (a) The laser action needs an optical cavity to reflect the stimulated radiation back and forth to build up 
the total radiation within the cavity, which encourages further stimulated emissions. One mirror is partially transmitting 
to allow the radiation within the cavity to escape. (b) A typical construction for a ruby laser, which uses an elliptical 
reflector, and has the ruby crystal at one focus and the pump light at the other focus.
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mirrors is partially silvered to allow some of this radiation to be tapped out. What 
comes out is a pulse of highly coherent radiation that has a high intensity as depicted 
in Figure 3.44b. Practical ruby lasers need efficient optical pumping, which can be 
obtained by using an elliptical reflector with the ruby crystal rod at one focus, and 
the pump light, a xenon flash, at the other focus as shown in Figure 3.44b. The early 
ruby lasers used a helical xenon flash tube surrounding the ruby rod. The lasing 
emission from the ruby laser is a light pulse, whose duration and intensity depend 
on the laser construction, and the xenon flash. Ruby lasers are frequently used in 
interferometry, holography, hair, and tattoo removal, among other applications.
 The coherency and the well-defined wavelength of the emitted radiation from a 
laser are attributes that make it distinctly different from a random stream of different 
wavelength photons emitted from a tungsten bulb, or randomly phased photons from 
an LED. The photon energy emitted from the laser system is less than the photon 
energy we used to pump it, that is, excite it; hf21 < hf13. However, we only needed 
incoherent radiation to pump the system, and we obtained a fully coherent radiation 
as output.

3.10.2 HELIUM–NEON LASER

With the helium–neon (HeNe) laser, the actual operation is not simple, since we 
need to know such things as the energy states of the whole atom. We will therefore 
only consider the lasing emission at 632.8 nm, which gives the well-known red color 
to the laser light. The actual stimulated emission occurs from the Ne atoms; He 
atoms are used to excite the Ne atoms by atomic collisions.
 Ne is an inert gas with a ground state (1s22s22p6), which is represented as (2p6) 
when the inner closed 1s and 2s subshells are ignored. If one of the electrons from 
the 2p orbital is excited to a 5s orbital, the excited configuration (2p55s1) is a state 
of the Ne atom that has higher energy. Similarly, He is an inert gas with the ground-
state configuration of (1s2). The state of He when one electron is excited to a 2s 
orbital can be represented as (1s12s1), which has higher energy.

Ali Javan and his associates William Bennett Jr. and Donald 
Herriott at Bell Labs were first to successfully demonstrate a 
continuous wave (cw) helium–neon laser operation (1960).

 © Nokia Corporation.
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 The HeNe laser consists of a gaseous mixture of He and Ne atoms in a gas discharge 
tube, as shown schematically in Figure 3.45. The ends of the tube are mirrored to 
reflect the stimulated radiation and to build up the radiation intensity within the cavity. 
If sufficient dc high voltage is used, electric discharge is obtained within the tube, 
causing the He atoms to become excited by collisions with the drifting electrons. Thus,

 He + e− → He* + e−

where He* is an excited He atom.
 The excitation of the He atom by an electron collision puts the second electron 
in He into a 2s state, so the excited He atom, He*, has the configuration (1s12s1). 
This atom is metastable (long lasting) with respect to the (1s2) state, as shown sche-
matically in Figure 3.46. He* cannot spontaneously emit a photon and decay down 
to the (1s2) ground state because Δℓ must be ±1. Thus, a large number of He* atoms 
build up during the electric discharge.
 When an excited He atom collides with a Ne atom, it transfers its energy to the 
Ne atom by resonance energy exchange. This happens because, by good fortune, Ne 
has an empty energy level, corresponding to the (2p55s1) configuration, which 
matches that of (1s12s1) of He*. The collision process excites the Ne atom and de-
excites He* down to its ground energy, that is,

 He* + Ne → He + Ne*

 With many He*–Ne collisions in the gaseous discharge, we end up with a large 
number of Ne* atoms and a population inversion between the (2p55s1) and (2p53p1) 
states of the Ne atom, as indicated in Figure 3.46. The spontaneous emission of a 
photon from one Ne* atom falling from 5s to 3p gives rise to an avalanche of 
stimulated emission processes, which leads to a lasing emission with a wavelength 
of 632.8 nm, in the red.
 There are a few interesting facts about the HeNe laser, some of which are quite 
subtle. First, the (2p55s1) and (2p53p1) electronic configurations of the Ne atom 

Current-regulated HV power supply

Flat mirror (reflectivity = 0.999) Concave mirror
(reflectivity = 0.985)

He–Ne gas mixture
Laser beam

Very thin tube

Figure 3.45 Schematic illustration of a HeNe laser.
A modern He–Ne laser with its power supply. This 
unit provides a linearly polarized TE00 output at  
633 nm (red) at a power of 10 mW. The beam 
diameter is 0.68 mm and the divergence is 1.2 mrd.

 Courtesy of Thorlabs.
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actually have a spread of energies. For example for Ne(2p55s1), there are four closely 
spaced energy levels. Similarly, for Ne(2p53p1), there are 10 closely separated ener-
gies. We can therefore achieve population inversion with respect to a number of 
energy levels. As a result, the lasing emissions from the HeNe laser contain a vari-
ety of wavelengths. The two lasing emissions in the visible spectrum, at 632.8 nm 
and 543 nm, can be used to build a red or green HeNe laser. Further, we should 
note that the energy of the Ne(2p54p1) state (not shown) is above that of Ne(2p53p1) 
but below that of Ne(2p55s1). Consequently, there will also be stimulated transitions 
from Ne(2p55s1) to Ne(2p54p1), and hence a lasing emission at a wavelength of 
∼3.39 μm in the infrared. To suppress lasing emissions at the unwanted wavelengths 
(e.g., the infrared) and to obtain lasing only at the wavelength of interest, we can 
make the reflecting mirrors wavelength selective. This way the optical cavity builds 
up optical oscillations at the selected wavelength.
 From (2p53p1) energy levels, the Ne atoms decay rapidly to the (2p53s1) energy 
levels by spontaneous emission. Most of the Ne atoms with the (2p53s1) configuration, 
however, cannot simply return to the ground state 2p6, because the return of the elec-
tron in 3s requires that its spin be flipped to close the 2p subshell. An electromagnetic 
radiation cannot change the electron spin. Thus, the Ne(2p53s1) energy levels are meta-
stable. The only possible means of returning to the ground state (and for the next 
repumping act) is collisions with the walls of the laser tube. Therefore, we cannot 
increase the power obtainable from a HeNe laser simply by increasing the laser tube 
diameter, because that will accumulate more Ne atoms at the metastable (2p53s1) states.
 A typical HeNe laser, illustrated in Figure 3.45, consists of a narrow glass tube 
that contains the He and Ne gas mixture (typically, the He to Ne ratio is 10:1). The 
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Figure 3.46 The principle of operation of the HeNe laser. Important HeNe laser energy  
levels (for 632.8 nm emission).
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lasing emission intensity increases with tube length, since more Ne atoms are then 
used in stimulated emission. The intensity decreases with increasing tube diameter, 
since Ne atoms in the (2p53s1) states can only return to the ground state by collisions 
with the walls of the tube. The ends of the tube are generally sealed with a flat 
mirror (99.9 percent reflecting) at one end and, for easy alignment, a concave mirror 
(98.5 percent reflecting) at the other end, to obtain an optical cavity within the tube. 
The outer surface of the concave mirror is ground to behave like a convergent lens, 
to compensate for the divergence in the beam arising from reflections from the 
concave mirror. The output radiation from the tube is typically a beam of diameter 
0.5–1 mm and a divergence of 1 milliradians at a power of a few milliwatts. In high-
power HeNe lasers, the mirrors are external to the tube. In addition, Brewster win-
dows are fused at the ends of the laser tube, to allow only polarized light to be 
transmitted and amplified within the cavity, so that the output radiation is polarized 
(that is, has electric field oscillations in one plane).

EFFICIENCY OF THE HeNe LASER A typical low-power 2.5 mW HeNe laser tube operates 
at a dc voltage of 2 kV and carries a current of 5 mA. What is the efficiency of the laser?

SOLUTION

From the definition of efficiency,

  Efficiency =
Output power
Input power

  =
(2.5 × 10−3 W)

(5 × 10−3 A)(2000 V)
= 0.00025  or  0.025 percent

3.10.3 LASER OUTPUT SPECTRUM

The output radiation from a laser is not actually at one single well-defined wavelength 
corresponding to the lasing transition. Instead, the output covers a spectrum of wave-
lengths with a central peak. This is not a simple consequence of the Heisenberg uncer-
tainty principle (which does broaden the output). Predominantly, it is a result of the 
broadening of the emitted spectrum by the Doppler effect. We recall from the kinetic 
molecular theory that gas atoms are in random motion, with an average translational 
kinetic energy of 3

2 kT . Suppose that these gas atoms emit radiation of frequency fo 
which we label as the source frequency. Then, due to the Doppler effect, when a gas 
atom moves toward an observer, the latter detects a higher frequency f2, given by

 f2 = fo(1 +
vx

c )
where vx is the relative velocity of the atom with respect to the observer and c is 
the speed of light. When the atom moves away, the observer detects a smaller 
frequency, which corresponds to

 f1 = fo(1 −
vx

c )

 EXAMPLE 3.26
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 Since the atoms are in random motion, the observer will detect a range of fre-
quencies, due to this Doppler effect as shown in  Figure 3.47a. As a result, the  
frequency or wavelength of the output radiation from a gas laser will have a “linewidth” 
of Δ f = f2 − f1, called a Doppler-broadened linewidth of a laser radiation. Other 
mechanisms also broaden the output spectrum, but we will ignore these at present.
 The reflections from the laser end mirrors give rise to traveling waves in oppo-
site directions within the cavity. Since the oppositely traveling waves have the same 
frequency, they interfere to set up a standing wave—in other words, stationary elec-
tromagnetic oscillations in the tube. Some of the energy in this wave is tapped by the 
99 percent reflecting mirror to get an output, in much the same way that we tap the 
energy from an oscillating field in an LC circuit by attaching an antenna to it.
 Only standing waves with certain wavelengths can be maintained within the 
optical cavity, just as only certain acoustic wavelengths can be obtained from musi-
cal instruments. Any standing wave in the cavity must have a half-wavelength λ∕2 
that fits into the cavity length L, or

 m(λ
2) = L [3.71]

where m is an integer called the mode number of the standing wave. Each possible 
standing wave within the laser tube (cavity) satisfying Equation 3.71 is called a 
cavity mode. The allowed cavity modes are shown in Figure 3.47b. The laser out-
put thus has a broad spectrum with peaks at certain wavelengths corresponding to 
various cavity modes existing within the Doppler-broadened emission curve. Figure 
3.47c shows the expected output from a typical gas laser. At wavelengths satisfying 
Equation 3.71, that is, representing certain cavity modes, we have intensity spikes 
in the output. The net envelope of the output radiation is a Gaussian distribution, 
which is essentially due to Doppler broadening.
 Even though we can try to get as parallel a beam as possible by lining the mir-
rors up perfectly, we will still be faced with diffraction effects at the output. When 
the output laser beam hits the end of the laser tube, it becomes diffracted, so the 
emerging beam is necessarily divergent. Simple diffraction theory can readily predict 
the divergence angle.

Laser cavity 

modes

Emission intensity

λ λλ

Relative
intensity

λ
o

m(λ/2) = L

Allowed cavity
oscillations (modes)

Doppler
broadening

λ
o

(a) (b) (c)

Figure 3.47 (a) Doppler-broadened emission versus wavelength characteristics of the lasing medium. (b) Allowed 
oscillations and their wavelengths within the optical cavity. (c) The output spectrum is determined by satisfying  
(a) and (b).
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DOPPLER-BROADENED LINEWIDTH Calculate the Doppler-broadened linewidths Δf and 
Δλ for the HeNe laser transition λ = 632.8 nm, if the gas discharge temperature is about 
127 °C. The atomic mass of Ne is 20.2 g mol−1.

SOLUTION

Due to the Doppler effect, the laser radiation from gas lasers is broadened around a central 
frequency fo, which corresponds to the source frequency. Higher frequencies detected will be 
due to radiations emitted from atoms moving toward the observer, and lower frequencies 
detected will be the result of emissions from atoms moving away from the observer. There-
fore, the width of the observed frequencies will be approximately

 Δf = fo(1 +
vx

c ) − fo(1 −
vx

c ) =
2 fovx

c

 From λ = c∕f, we obtain the following by differentiation:

 
dλ
df

= −
c

f 
2 = −

λ
f

= −
λ2

c

 We need to know vx, which is given by kinetic theory as v 2
x = kT∕M, where M is the 

mass of the Ne atom from which the lasing emission occurs, so

 M =
20.2 × 10−3 kg mol−1

6.023 × 1023 mol−1 = 3.35 × 10−26 kg

Thus

 vx = [ (1.38 × 10−23 J K−1) (127 + 273 K)

(3.35 × 10−26 kg) ]
1∕2

= 406 m s−1

The central frequency is

 fo =
c

λo

=
3 × 108 m s−1

632.8 × 10−9 m
= 4.74 × 1014 s−1

The frequency linewidth is

 Δf =
(2 fovx)

c
=

2(4.74 × 1014 s−1) (406 m s−1)

3 × 108 m s−1 = 1.283 GHz

To get Δλ, we use dλ∕df = −λ∕f, so that

  Δλ = Δ  f ∣ −
λo

fo
∣ =

(1.283 × 109 Hz)(632.8 × 10−9 m)

4.74 × 1014 s−1

  = 1.71 × 10−12 m  or  0.0017 nm

ADDITIONAL TOPICS

3.11  OPTICAL FIBER AMPLIFIERS

A light signal that is traveling along an optical fiber communications link over a long 
distance suffers marked attenuation. It becomes necessary to regenerate the light signal 
at certain intervals for long-haul communications over several thousand kilometers. 

 EXAMPLE 3.27
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width
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Instead of regenerating the optical signal by photodetection, conversion to an electri-
cal signal, amplification, and then conversion back from electrical to light energy by 
a laser diode, it becomes practical to amplify the signal directly by using an optical 
amplifier. The photons in an optical signal have a wavelength of 1550 nm, and opti-
cal amplifiers have to amplify signal photons at this wavelength.
 One practical optical amplifier is based on the erbium (Er3+ ion) doped fiber 

amplifier (EDFA). The core region of an optical fiber is doped with Er3+ ions. The 
host fiber core material is a glass based on SiO3–GeO2 and perhaps some other 
glass-forming oxides such as Al2O3. It is easily fused to a long-distance optical fiber 
by a technique called splicing.
 When the Er3+ ion is implanted in the host glass material, it has the energy 
levels indicated in Figure 3.48 where E1 corresponds to the lowest energy possible 
consistent with the Pauli exclusion principle and Hund’s rule. One of the convenient 
energy levels for optically pumping the Er3+ ion is at E3, approximately 1.27 eV 
above the ground energy level. The Er3+ ions are optically pumped, usually from a 
laser diode, to excite them to E3. The wavelength for this pumping is about 980 nm. 
The Er3+ ions decay rapidly from E3 to a long-lived energy level at E2 which has a 
long lifetime of ∼10 ms (very long on the atomic scale). The decay from E3 to E2 
involves energy losses by radiationless transitions (generation of lattice vibrations22) 
and are very rapid. Thus, more and more Er3+ ions accumulate at E2 which is 0.80 
eV above the ground energy. The accumulation of Er3+ ions at E2 leads to a popula-
tion inversion between E2 and E1. Signal photons at 1550 nm have an energy of 0.80 
eV, or E2 − E1, and give rise to stimulated transitions of Er3+ ions from E2 to E1. 
Any Er3+ ions left at E1, however, will absorb the incoming 1550 nm photons to 
reach E2. To achieve light amplification we must therefore have stimulated emission 
exceeding absorption. This is only possible if there are more Er3+ ions at the E2 level 
than at the E1 level, that is, if we have population inversion. With sufficient optical 
pumping, population inversion is readily achieved.

E2

E1

E3

1550 nm
1550 nm

In

Nonradiative decay

Pump

0

0.80 eV

1.27 eV

Pump
photon

Out

Energy of the Er3+ ion
in the glass fiber

980 nm Figure 3.48 Energy diagram  
for the Er3+ ion in the glass fiber 
medium and light amplification by 
stimulated emission from E2 to E1.

Dashed arrows indicate  
radiationless transitions (energy 
emission by lattice vibrations).

 22 Lattice vibrations refer to the coupled vibrations of atoms in the crystal. (Atoms are coupled to each other 
through spring-like bonds.)



294 C H A P T E R  3  ∙ ELEMENTARY QUANTUM PHYSICS

 In practice the erbium-doped fiber is inserted into the fiber communications line 
by splicing as shown in the simplified schematic diagram in Figure 3.49 and it is 
pumped from a laser diode through a coupling fiber arrangement which allows only 
the pumping wavelength to be coupled.

Signal out

Pump laser diode
λ = 980 nm

SpliceSpliceSignal in

λ = 1550 nm

Er3+-doped
fiber (10–20 m)

λ = 1550 nmEDFA

Wavelength
selective
coupler

Figure 3.49 A simplified schematic illustration of an EDFA (optical amplifier).

The erbium-ion doped fiber is pumped by feeding the light from a laser pump diode, through a 
coupler, into the erbium-ion doped fiber.

DEFINING TERMS

Compton effect is the scattering of a high-energy 
photon by a “free” electron. The effect is experimen-
tally observed when an X-ray beam is scattered from a 
target that contains many conduction (“free”) elec-
trons, such as a metal or graphite.

De Broglie relationship relates the wave-like proper-
ties (e.g., wavelength λ) of matter to its particle-like 
properties (e.g., momentum p) via λ = h∕p.

Diffraction is the bending of waves as a result of the 
interaction of the waves with an object of size compa-
rable to the wavelength. If the object has a regular pat-
tern, periodicity, an incident beam of waves can be 
bent (diffracted) in certain well-defined directions that 
depend on the periodicity, which is used in the X-ray 
diffraction study of crystals.

Doppler effect is the change in the measured fre-
quency of a wave due to the motion of the source rela-
tive to the observer. In the case of electromagnetic 
radiation, if v is the relative velocity of the source ob-
ject toward the observer and fo is the source frequency, 

Angular momentum L about a point O is defined as 
L = p × r, where p is the linear momentum and r is 
the position vector of the body from O. For a circular 
orbit around O, the angular momentum is orbital and 
L = pr = mvr.

Bragg diffraction law describes the diffraction of an 
X-ray beam by a crystal in which the interplanar sepa-
ration d of a given set of atomic planes causing the X-
ray diffraction is related to the diffraction angle 2θ and 
the wavelength λ of the X-rays through 2d sin θ = nλ 
where n is an integer, usually unity.

Complementarity principle suggests that the wave 
model and the particle model are complementary mod-
els in that one model alone cannot be used to explain 
all the observations in nature. For example, the elec-
tron diffraction phenomenon is best explained by the 
wave model, whereas in the Compton experiment, the 
electron is treated as a particle; that is, it is deflected by 
an impinging photon that imparts an additional mo-
mentum to the electron.
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(vis-à-vis an incoherent stream of photons from a tung-
sten light bulb). Furthermore, the output beam has very 
little divergence.

Luminous flux or power Φv is a measure of flow of 
“visual energy” per unit time that takes into account 
the wavelength dependence of the efficiency of the hu-
man eye, that is, whether the energy that is flowing is 
perceptible to the human eye. It is a measure of “bright-
ness.” One lumen of luminous flux is obtained from a 
1.58 mW light source emitting a single wavelength of 
555 nm (green).

Magnetic quantum number  mℓ specifies the compo-
nent of the orbital angular momentum Lz in the direc-
tion of a magnetic field along z so that Lz = ±ħmℓ, 
where mℓ can be a negative or positive integer from 
−ℓ to +ℓ including 0, that is, −ℓ, −(ℓ − 1), . . . , 0, . . . , 
(ℓ − 1), ℓ. The orbital ψ of the electron depends on mℓ, 
as well as on n and ℓ. The mℓ, however, generally deter-
mines the angular variation of ψ.

Orbital is a region of space in an atom or molecule 
where an electron with a given energy may be found. 
Two electrons with opposite spins can occupy the same 
orbital. An orbit is a well-defined path for an electron, 
but it cannot be used to describe the whereabouts of the 
electron in an atom or molecule, because the electron 
has a probability distribution. The wavefunction 
ψnℓmℓ

(r, θ, ϕ)  is often referred to as an orbital that rep-
resents the spatial distribution of the electron, since 
∣ψnℓmℓ

(r, θ, ϕ)∣2 is the probability of finding the elec-
tron per unit volume at (r, θ, ϕ).

Orbital (angular momentum) quantum number  
specifies the magnitude of the orbital angular momen-
tum of the electron via L = ħ√[ℓ(ℓ + 1)] , where ℓ is 
the orbital quantum number with values 0, 1, 2, 3, . . . , 
n − 1. The ℓ values 0, 1, 2, 3 are labeled the s, p, d, f 
states.

Orbital wavefunction describes the spatial depen-
dence of the electron, not its spin. It is ψ (r, θ, ϕ), which 
depends on n, ℓ, and mℓ, with the spin dependence 
ms excluded. Generally, ψ (r, θ, ϕ) is simply called an 
orbital.

Pauli exclusion principle requires that no two elec-
trons in a given system may have the same set of quan-
tum numbers, n, ℓ, mℓ, ms. In other words, no two 

then the measured electromagnetic wave frequency is 
f = fo[1 + (v∕c)] for (v∕c) ≪ 1.

Energy density ρE is the amount of energy per unit 
volume. In a region where the electric field is E, the 
energy stored per unit volume is 1

2 ε0E
2.

Flux density is a term used to describe the rate of 
flow through a unit area. If ΔN is the number of par-
ticles flowing through an area A in time Δt, then par-
ticle flux Γ is defined as Γ = ΔN∕(AΔt). If an amount 
of energy ΔE flows through an area A in time Δt, en-
ergy flux is ΓE = ΔE∕(AΔt), which defines the inten-
sity (I ) of an electromagnetic wave.

Flux in radiometry is the flow of radiation (electro-
magnetic wave) energy per unit time in watts. It is sim-
ply the radiation power that is flowing. In contrast, the 
photon or particle flux refers to the number of photons 
or particles flowing per unit time per unit area. Radiant 

flux emitted by a source refers to the radiation power 
in watts that is emitted. Flux in radiometry normally 
has either radiant or luminous as an adjective, e.g., 
radiant flux, luminous flux.

Ground state is the state of the electron with the low-
est energy.

Heisenberg’s uncertainty principle states that the 
uncertainty Δx in the position of a particle and the un-
certainty Δpx in its momentum in the x direction obey 
(Δx)(Δpx) ≳ ħ. This is a consequence of the wave na-
ture of matter and has nothing to do with the precision 
of measurement. If ΔE is the uncertainty in the energy 
of a particle during a time Δt, then according to the 
uncertainty principle, (ΔE)(Δt) ≳ ħ. To measure the 
energy of a particle without any uncertainty means that 
we would need an infinitely long time Δt → ∞.

Hund’s rule states that electrons in a given subshell 
nℓ try to occupy separate orbitals (different mℓ) and 
keep their spins parallel (same ms). In doing so, they 
achieve a lower energy than pairing their spins (differ-
ent ms) and occupying the same orbital (same mℓ).

Intensity (I ) is the flow of energy per unit area per 
unit time. It is equal to an energy flux.

LASER (light amplification by stimulated emission 

of radiation) is a device within which photon multi-
plication by stimulated emission produces an output 
radiation that is nearly monochromatic and coherent 
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Radiant power is radiation energy flowing, or emit-
ted from a source, per unit time, which is also known as 
optical power even if the wavelength is not within the 
visible spectrum. Radiant flux signifies radiant power 
flow in radiometry, measured in watts.

Radiation normally signifies a traveling electromag-
netic wave that is carrying energy. Due to the particle-
like behavior of waves, radiation can also mean a 
stream of photons.

Schrödinger equation is a fundamental equation in 
nature, the solution of which describes the wave-like 
behavior of a particle. The equation cannot be derived 
from a more fundamental law. Its validity is based on 
its ability to predict any known physical phenomena. 
The solution requires as input the potential energy 
function V(x, y, z, t) of the particle and the boundary 
and initial conditions. The PE function V(x, y, z, t) 
describes the interaction of the particle with its envi-
ronment. The time-independent Schrödinger equation 
describes the wave behavior of a particle under 
steady-state conditions, that is, when the PE is time-
independent V(x, y, z). If E is the total energy and 
∇2 = (∂2∕∂x2 + ∂2∕∂y2 + ∂2∕∂z2), then

∇2ψ + (2m

ħ2 )[E − V(x, y, z)]ψ = 0

The solution of the time-independent Schrödinger 
equation gives the wavefunction ψ (x, y, z) of the 
electron and its energy E. The interpretation of the 
wavefunction ψ (x, y, z) is that ∣ψ (x, y, z)∣2 is the prob-
ability of finding the electron per unit volume at 
point x, y, z.

Selection rules determine what values of ℓ and mℓ are 
allowed for an electron transition involving the emis-
sion and absorption of electromagnetic radiation, that 
is, a photon. In summary, Δℓ = ±1 and Δmℓ = 0, ±1. 
The spin number ms of the electron remains unchanged. 
Within an atom, the transition of the electron from one 
state ψ (n, ℓ, mℓ, ms) to another ψ (n′, ℓ′, m′ℓ, m′s), due 
to collisions with other atoms or electrons, does not 
necessarily obey the selection rules.

Spin of an electron S is its intrinsic angular momen-
tum (analogous to the spin of Earth around its own 
axis), which is space quantized to have two possibili-
ties. The magnitude of the electron’s spin is a constant, 

electrons can occupy a given state ψ (n, ℓ, mℓ, ms). 
Equivalently, up to two electrons with opposite spins 
can occupy a given orbital ψ (n, ℓ, mℓ).

Photoelectric effect is the emission of electrons from 
a metal upon illumination with a frequency of light 
above a critical value which depends on the material. 
The kinetic energy of the emitted electron is indepen-
dent of the light intensity and dependent on the light 
frequency f, via KE = hf − Φ where h is Planck’s con-
stant and Φ is a material-related constant called the 
work function.

Photon is a quantum of energy hf (where h is Planck’s 
constant and f is the frequency) associated with elec-
tromagnetic radiation. A photon has a zero rest mass 
and a momentum p given by the de Broglie relation-
ship p = h∕λ, where λ the wavelength. A photon does 
have a “moving mass” of hf∕c2, so it experiences grav-
itational attraction from other masses. For example, 
light from a star gets deflected as it passes by the sun.

Population inversion is the phenomenon of having 
more atoms occupy an excited energy level E2, higher 
than a lower energy level, E1, which means that the 
normal equilibrium distribution is reversed; that is,  
N(E2) > N(E1). Population inversion occurs temporar-
ily as a result of the excitation of a medium (pumping). 
If left on its own, the medium will eventually return to 
its equilibrium population distribution, with more atoms 
at E1 than at E2. For gas atoms, this means N(E2)∕ 
N(E1) ≈ exp[−(E2 − E1)∕kT].

Principal quantum number n is an integer quantum 
number with values 1, 2, 3, . . . that characterizes the 
total energy of an electron in an atom. The energy in-
creases with n. With the other quantum numbers ℓ and 
mℓ, n determines the orbital of the electron in an atom, 
or ψnℓmℓ

(r, θ, ϕ) . The values n = 1, 2, 3, 4, . . . are 
labeled the K, L, M, N, . . . shells, within each of which 
there may be subshells based on ℓ = 0, 1, 2, . . . (n − 1) 
and corresponding to the s, p, d, . . . states.

Pumping means exciting atoms from their ground 
states to higher energy states.

Radiant is a common adjective used to imply the in-
volvement of radiation, that is, electromagnetic waves, 
in the noun that it qualifies; e.g., radiant energy is the 
energy transmitted by radiation.
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energy is transferred from one location to another by 
the oscillations. For example, Ey(x, t) = Eo sin(kx − ωt) 
is a traveling wave in the x direction, where k = 2π∕λ 
and ω = 2πf. The electric field in the y direction varies 
periodically along x, with a period λ called the wave-
length. The field also varies with time, with a period 
1∕f, where f is the frequency. The wave propagates 
along the x direction with a velocity of propagation c. 
Electromagnetic waves are transverse waves in which 
the electric and magnetic fields Ey(x, t) and Bz(x, t) are 
at right angles to each other, as well as to the direction 
of propagation x. A traveling wave in the electric field 
must be accompanied by a similar traveling wave in the 
associated magnetic field Bz(x, t) = Bzo sin(kx − ωt). 
Typical wave-like properties are interference and  
diffraction.

Wave equation is a general partial differential equa-
tion in classical physics, of the form

v 2∂2u

∂x2 −
∂2u

∂t2 = 0

the solution of which describes the space and time de-
pendence of the displacement u(x, t) from equilibrium 
or zero, given the boundary conditions. The parameter 
v in the wave equation is the propagation velocity of 
the wave. In the case of electromagnetic waves in a 
vacuum, the wave equation describes the variation of 
the electric (or magnetic) field E(x, t) with space and 
time, (c2∂2E∕∂x2) − (∂2E∕∂t2) = 0, where c is the speed 
of light.

Wavefunction Ψ(x, y, z, t) is a probability-based func-
tion used to describe the wave-like properties of a par-
ticle. It is obtained by solving the Schrödinger equation, 
which in turn requires a knowledge of the PE of the 
particle and the boundary and initial conditions. The 
term ∣Ψ(x, y, z, t)∣2 is the probability per unit volume of 
finding the electron at (x, y, z) at time t. In other words, 
∣Ψ(x, y, z, t)∣2 dx dy dz is the probability of finding the 
electron in the small volume dx dy dz at (x, y, z) at time t. 
Under steady-state conditions, the wavefunction can be 
separated into a space-dependent component and a 
time-dependent component, i.e., Ψ(x, y, z, t) = ψ(x, y, z) 
exp(−jEt∕ħ), where E is the energy of the particle and 
ħ = h∕2π. The spatial component ψ(x, y, z) satisfies the 
time-independent Schrödinger equation.

ħ√3∕2, but its component along a magnetic field in 
the z direction is msħ, where ms is the spin magnetic 

quantum number, which is +1
2  or −1

2 .

Spontaneous emission is the phenomenon in which a 
photon is emitted when an electron in a high energy state 
ψ(n, ℓ, mℓ, ms) with energy E2 spontaneously falls down 
to a lower, unoccupied energy state ψ (n′, ℓ′, m′ℓ, m′s) 
with energy E1. The photon energy is hf = (E2 − E1). 
Since the emitted photon has an angular momentum, 
the orbital quantum number ℓ of the electron must 
change, that is Δℓ = ℓ′ − ℓ = ±1.

State is a possible wavefunction for the electron that 
defines its spatial (orbital) and spin properties. For ex-
ample, ψ (n, ℓ, mℓ, ms) is a state of the electron. From 
the Schrödinger equation, each state corresponds to a 
certain electron energy E. We use the terms state of 
energy E, or energy state. There is generally more than 
one state ψ with the same energy E.

Stimulated emission is the phenomenon in which an 
incoming photon of energy hf = E2 − E1 interacts with 
an electron in a high-energy state ψ (n, ℓ, mℓ, ms) at E2, 
and induces that electron to oscillate down to a lower, 
unoccupied energy state, ψ (n′, ℓ′, m′ℓ, m′s) at E1. The 
photon emitted by stimulation has the same energy and 
phase as the incoming photon, and it moves in the same 
direction. Consequently, stimulated emission results in 
two coherent photons, with the same energy, traveling 
in the same direction. The stimulated emission process 
must obey the selection rule Δℓ = ℓ′ − ℓ = ±1, just as 
spontaneous emission must.

Tunneling is the penetration of an electron through a 
potential energy barrier by virtue of the electron’s 
wave-like behavior. In classical mechanics, if the en-
ergy E of the electron is less than the PE barrier Vo, the 
electron cannot cross the barrier. In quantum mechan-
ics, there is a distinct probability that the electron will 
“tunnel” through the barrier to appear on the other 
side. The probability of tunneling depends very strongly 
on the height and width of the PE barrier.

Wave is a periodically occurring disturbance, such as 
the displacement of atoms from their equilibrium posi-
tions in a solid carrying sound waves, or a periodic 
variation in a measurable quantity, such as the electric 
field E(x, t) in a medium or space. In a traveling wave, 
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X-rays are electromagnetic waves of wavelength typi-
cally in the range 10 pm–1 nm, which is shorter than 
ultraviolet light wavelengths. X-rays can be diffracted 
by crystals due to their wave-like properties.

Wavenumber (or wavevector) k is the number of 
waves per 2π of length, that is, k = 2π∕λ.

Work function is the minimum energy required to re-
move an electron from inside a metal to vacuum.

QUESTIONS AND PROBLEMS

3.1 Photon energies in the visible and UV ranges

a. The human eye can typically see light in the wavelength range from around 400 nm (violet) to 
roughly 700 nm (red). What is the range of photon energies (in eV)?

b. The UV (ultraviolet) spectrum typically ranges from 100 nm to 400 nm. What is the photon 
energy range?

c. UVA, UVB, and UVC correspond to wavelengths 100–280 nm, 280–315 nm, and 315–400 nm, 
respectively. What are the corresponding photon energy ranges?

3.2 Photons and photon flux

a. Consider a 1 kW AM radio transmitter at 700 kHz. Calculate the number of photons emitted 
from the antenna per second.

b. The average intensity of sunlight on Earth’s surface is about 1 kW m−2. The maximum intensity 
is at a wavelength around 800 nm. Assuming that all the photons have an 800 nm wavelength, 
calculate the number of photons arriving on Earth’s surface per unit time per unit area. What is 
the magnitude of the electric field in the sunlight?

c. Suppose that a solar cell device can convert each sunlight photon into an electron, which can 
then give rise to an external current. What is the maximum current that can be supplied per unit 
area (m2) of this solar cell device?

3.3 Photons from an industrial CO2 laser CO2 lasers are used in metal cutting. The laser beam output 
has a wavelength of 10.6 μm. The laser generates repetitive pulses of radiation in which the radiation 
is on for a time ton and off for a time toff and the pulses are repeated at a repetition rate of f s−1. The 
duty cycle for this operation is defined as ton∕(ton + toff). A typical CO2 laser used in metal cutting 
has an average power of 1 kW and a duty cycle of 60 percent. The repetition frequency is 1 kHz. 
The beam diameter is 10 mm. What is the photon energy? What is the photon flux density as photons 
s−1 cm−2? What is the electric field in the radiation? Typical bulk concentration nbulk of atoms in a 
metal is of the order of 1023 cm−3 (for example, in Al, nbulk = 6.0 × 1022 cm−3). The surface concen-
tration nsurface of atoms is on the order of nbulk

2∕3. (See Example 1.17 or Question 1.4.) What is the 
rate at which each surface meal atom is bombarded by photons during ton? What is the time between 
two consecutive photons bombarding a given atom? What is your conclusion?

3.4 Yellow, cyan, magenta, and white Three primary colors, red, green, and blue (RGB), can be added 
together in various proportions to generate any color on various displays and light emitting devices 
in what is known as the additive theory of color. For example, yellow can be generated from adding 
red and green, cyan from blue and green, and magenta from red and blue.
a. A device engineer wants to use three light emitting diodes (LEDs) to generate various colors in an 

LED-based color display that is still in the research stage. His three LEDs have wavelengths of 
660 nm for red, 563 nm for green, and 450 nm for blue. He simply wishes to generate the yellow 
and cyan by mixing equal optical powers from these LEDs; optical power, or radiant power, is defined 
as the radiation energy emitted per unit time. What are the numbers of red and blue photons needed 
(to the nearest integer) to generate yellow and cyan, respectively, for every 100 green photons?

b. An equi-energy white light is generated by mixing red, green, and blue light in equal optical 
powers. Suppose that the wavelengths are 700 nm for red, 546 nm for green, and 436 nm for 
blue (which is one set of possible standard primary colors). Suppose that the optical power in 
each primary color is 0.1 W. Calculate the total photon flux (photons per second) needed from 
each primary color.
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c. There are bright white LEDs on the market that generate the white light by mixing yellow (a 
combination of red and green) with blue emissions. The inexpensive types use a single blue LED 
to generate a strong blue radiation, some of which is absorbed by a phosphor in front of the LED 
which then emits yellow light. The yellow and the blue passing through the phosphor mix and 
make up the white light. In one type of white LED, the blue and yellow wavelengths are 450 nm 
and 564 nm, respectively. White light can be generated by setting the optical (radiative) power 
ratio of yellow to blue light emerging from the LED to be about 1.74. What is the ratio of the 
number of blue to yellow photons needed? (Sometimes the mix is not perfect and the white LED 
light tends to have a noticeable slight blue tint.) If the total optical power output from the white 
LED is 100 mW, calculate the blue and yellow total photon fluxes (photons per second).

3.5 Brightness of laser pointers The brightness of a light source depends not only on the radiation 
(optical) power emitted by the source but also on its wavelength because the human eye perceives 
each wavelength with a different efficiency. The visual “brightness” of a source as observed by an 
average daylight-adapted eye is proportional to the radiation power emitted, called the radiant flux 
Φe, and the efficiency of the eye to detect the spectrum of the emitted radiation. While the eye can 
see a red color source, it cannot see an infrared source and the brightness of the infrared source would 
be zero. The luminous flux Φv is a measure of brightness, in lumens (l m), and is defined by

 Φv = Φe × (683 1m W−1) × ηeye [3.72]

 where Φe is the radiant flux or the radiation power emitted (in watts) and ηeye = ηeye(λ) is the relative 

luminous efficiency (or the relative sensitivity) of an average light-adapted eye which depends on the 
wavelength; ηeye is a Gaussian looking function with a peak of unity at 555 nm. (See Figure 3.50 for 
ηeye vs. λ.) One lumen of luminous flux, or brightness, is obtained from a 1.46 mW light source 
emitting at a single wavelength of 555 nm (green). A typical 60 W incandescent lamp provides roughly 
900 lm. When we buy a light bulb, we are buying lumens. Consider one 5 mW red 650 nm laser 
pointer, and another weaker 2 mW green 532 nm laser: ηeye(650 nm) = 0.11 and ηeye(532 nm) = 0.86. 
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Figure 3.50 (a) The retina in the eye has photoreceptors (cones and rods) that can sense the incident  
photons on them and hence provide necessary visual perception signals. It has been estimated that for  
minimum visual perception there must be roughly 90 photons falling on the cornea of the eye. (b) The  
wavelength dependence of the relative efficiency ηeye(λ) of the eye is different for daylight vision, or photopic 
vision (involves mainly cones), and for vision under dimmed light, or scotopic vision, which represents the 
dark-adapted eye, and involves rods.
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Find the luminous flux (brightness) of each laser pointer. Which is brighter? Calculate the number 
of photons emitted per unit time, the total photon flux, by each laser.

3.6 Human eye Photons passing through the pupil are focused by the lens onto the retina of the eye 
and are detected by two types of photosensitive cells, called rods and cones, as visualized in Figure 3.50. 
Rods are highly sensitive photoreceptors with a peak response at a wavelength of about 507 nm 
(green-cyan). They do not register color and are responsible for our vision under dimmed light condi-
tions, termed scotopic vision. Cones are responsible for our color perception and daytime vision, 
called photopic vision. These three types of cone photoreceptors are sensitive to blue, green, and red 
at wavelengths, respectively, of 430 nm, 535 nm, and 575 nm. All three cones have an overall peak 
response at 555 nm (green), which represents the peak response of an average daylight-adapted eye 
or in our photopic vision.
a. Calculate the photon energy (in eV) for the peak responsivity for each of the photoreceptors in 

the eye (one rod and three cones).
b. Various experiments (the most well known being by Hecht et al., J. Opt. Soc. America, 38, 196, 

1942) have tested the threshold sensitivity of the dark-adapted eye and have estimated that visual 
perception requires a minimum of roughly 90 photons to be incident onto the cornea in front of 
the eye’s pupil and within 1∕10 second. Taking 90 incident photons every 100 ms as the thresh-

old sensitivity, calculate the total photon flux (photons per second), total energy in eV (within 

100 ms), and the optical power that is needed for threshold visual perception.

c. Not all photons incident on the eye make it to the actual photoreceptors in the retina. It has been 

estimated that only 1 in 10 photons arriving at the eye’s cornea actually make it to rod photo-

receptors, due to various reflections and absorptions in the eye and other loss mechanisms. Thus, 

only nine photons make it to photoreceptors on the retina.23 It is estimated that the nine test 

photons fall randomly onto a circular area of about 0.0025 mm2. What is the estimated threshold 

intensity for visual perception? If there are 150,000 rods mm−2 in this area of the eye, estimate 
the number of rods in this test spot. If there are a large number of rods, more than 100 in this 
spot, then it is likely that no single rod receives more than one photon since the nine photons 
arrive randomly. Thus, a rod must be able to sense a single photon, but it takes nine excited 
rods, somehow summed up by the visual system, to generate the visual sensation. Do you agree 
with the latter conclusion?

d. It is estimated that at least 200,000 photons per second must be incident on the eye to generate 
a color sensation by exciting the cones. Assuming that this occurs at the peak sensitivity at 555 nm, 
and that as in part (b) only about 10 percent of the photons make it to the retina, estimate the 
threshold optical power stimulating the cones in the retina.

3.7 X-ray photons In chest radiology, a patient’s chest is exposed to X-rays, and the X-rays passing 
through the patient are recorded on a photographic film to generate an X-ray image of the chest for 
medical diagnosis. The average wavelength of X-rays in chest radiology is about 0.2 Å (0.02 nm). 
Numerous measurements indicate that the patient, on average, is exposed to a total radiation energy 
per unit area of roughly 0.1 μJ cm−2 for one chest X-ray image. Find the photon energy used in chest 

radiology, and the average number of photons incident on the patient per unit area (per cm2).

*3.8 X-rays, exposure, and roentgens X-rays are widely used in many applications such as medical 

imaging, security scans, X-ray diffraction studies of crystals, and for examining defects such as cracks 

in objects and structures. X-rays are highly energetic photons that can easily penetrate and pass 

through various objects. Different materials attenuate X-rays differently, so when X-rays are passed 

through an object, the emerging X-rays can be recorded on a photographic film, or be captured by a 

modern flat panel X-ray image detector, to generate an X-ray image of the interior of the object; this 

is called radiography. X-rays also cause ionization in a medium and hence are known as ionization 

radiation. The amount of exposure (denoted by X) to X-rays, ionizing radiation, is measured in terms 

 23 Sometimes one comes across a statement that the eye can detect a single photon. While a rod photoreceptor 
can indeed sense a single photon (or, put differently, a photon can activate a single rod), the overall human 
visual perception needs roughly nine photons at around 507 nm to consciously register a visual sensation.
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of the ionizing effects of the X-ray photons. One roentgen (1 R) is defined as an X-ray exposure that 
ionizes 1 cm3 of air to generate 0.33 nC of charge in this volume at standard temperature and pressure 
(STP). When a body is exposed to X-rays, it will receive a certain amount of radiation energy per 
unit area, called energy fluence ΨE, that is, so many joules per cm2, that depends on the exposure 

X. If X in roentgens is the exposure, then the energy fluence is given by

 ΨE = [8.73 × 10−6

μen, air∕ρair
]X J cm−2 [3.73]

 where ΨE is in J cm−2, and μen,air∕ρair is the mass energy absorption coefficient of air in cm2 g−1 
at the photon energy Eph of interest; the μen,air∕ρair values are listed in radiological tables. For exam-
ple, for 1 R of exposure, X = 1, Eph = 20 keV, and μen,air∕ρair = 0.539 cm2 g−1. Equation 3.73 gives 
ΨE = 1.62 × 10−5 J cm−2 incident on the object.

a. In mammography (X-ray imaging of the breasts for breast cancer), the average photon energy is 

about 20 keV, and the X-ray mean exposure is 12 mR. At Eph = 20 keV, μen,air∕ρair = 0.539 cm2 g−1. 
Find the mean energy incident per unit area in μJ cm−2, and the mean number of X-ray photons 

incident per unit area (photons cm−2), called photon fluence Φ.
b. In chest radiography, the average photon energy is about 60 keV, and the X-ray mean exposure 

is 300 μR. At Eph = 60 keV, μen,air∕ρair = 0.0304 cm2 g−1. Find the mean energy incident per 
unit area in μJ cm−2, and the mean number of X-ray photons incident per unit area.

c. A modern flat panel X-ray image detector is a large area image sensor that has numerous 

arrays of tiny pixels (millions) all tiled together to make one large continuous image sensor. 

Each pixel is an independent X-ray detector and converts the X-rays it receives to an electrical 

signal. Each tiny detector is responsible for capturing a small pixel of the whole image. (Typi-

cally, the image resolution is determined by the detector pixel size.) Each pixel in a particular 

X-ray image of an American one-cent coin captured using 
an X-ray a-Se HARP camera. The first image at the top  
left is obtained under extremely low exposure, and the 
subsequent images are obtained with increasing exposure 
of approximately one order of magnitude between each 
image. The slight attenuation of the X-ray photons by 
Lincoln provides the image. The image sequence clearly 
shows the discrete nature of X-rays, and hence their 
description in terms of photons.

 Brian J. M. Lui, D. C. Hunt, A. Reznik, K. Tanioka, and J. A. 
Rowlands, “X-ray imaging with amorphous selenium: Pulse 
height measurements of avalanche gain fluctuations”, 
Medical Physics, 33, 3183-3192 (2006); Figure 3.

Fluence and 

roentgens
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experimental chest radiology X-ray sensor is 150 μm × 150 μm. If the mean exposure is 300 μR, 

what is the number of photons received by each pixel detector? If each pixel is required to 

have at least 10 photons for an acceptable signal-to-noise ratio, what is the minimum exposure 

required in μR?

*3.9 Compton effect Figure 3.9 shows the Compton effect in which a photon interacts with an electron 

as if it were a particle. The photon frequency f and wavelength λ before the interaction become f ′ 

and λ′ after the incoming photon has been deflected by an electron, which recoils away. There are 

two fundamental principles we can apply: conservation of linear momentum (along the x direction 

and along the y direction) and conservation of energy. Referring to Figure 3.9, we see that we must 

eliminate the unmeasurable angle ϕ. Let pe be the momentum of the electron after the collision along 

a direction at an angle ϕ to the original X-ray. Along the y direction

 pfinal = pe sin ϕ + (h∕λ′) sin θ = pinitial = 0 [3.74]

 Along the x direction

 pfinal = pe cos ϕ + (h∕λ′) cos θ = pinitial = h∕λ [3.75]

 From the conservation of energy, the electron’s kinetic energy after the collision is the change in the 

X-ray photon energy
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 and that
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λ′) − 2 cos θ = 2 

mec

h
(λ′ − λ)  [3.78]

 But λ′ is only slightly greater than λ so that λ∕λ′ is slightly smaller than unity and λ′∕λ is slightly 

larger than unity. We might as well take the sum on the left of Equation 3.78 as approximately 2. 

Show that

 (λ′ − λ) =
h

mec
 (1 − cos θ)  [3.79a]

 i.e.,

 Δλ = λC(1 − cos θ) [3.79b]

 where Δλ = λ′ − λ is the change in the wavelength and the quantity λC = h∕mec = 0.00243 nm, is 

known as the Compton wavelength of the scattering particle. Δλ in the wavelength does not depend 

on the original wavelength but only on the scattering angle and the mass of the scattering particle, 

i.e., the electron.

  Compton’s original experiment in 1923 is schematically shown in Figure 3.51a. The X-ray gen-

erated from an X-ray tube with a characteristic wavelength 0.0709 nm impinged on a carbon target. 

The wavelength of the scattered X-rays was measured using a rotating crystal X-ray spectrometer. The 

spectrometer is based on the fact that incident X-rays with only certain wavelengths and at certain 

angles satisfying the Bragg diffraction condition can be diffracted, that is, the scattered X-ray wave-

length λ′ must satisfy 2d sin α = λ′, where d is the separation between the atomic planes involved 

in diffraction, and α is the angle between the planes and the incident X-rays. If we use a crystal with 

a known structure, and that is known separation d between the atomic planes, then by rotating the 

crystal we can bring the required angle α into diffraction and measure the wavelength λ′. Typical 

results on the X-ray intensity versus wavelength are shown in Figure 3.51b. Table 3.6 summarizes 

the experimental results on X-ray scattering from a graphite target in terms of λ′, Δλ, and θ. What 
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can you do with these results? What is your conclusion? (Hint, consider plotting the data to follow 
Equation 3.79b and find h).

3.10 Photoelectric effect A photoelectric experiment indicates that violet light of wavelength 420 nm is 
the longest wavelength radiation that can cause the photoemission of electrons from a particular 
multi-alkali photocathode surface.
a. What is the work function of the photocathode surface, in eV?
b. If a UV radiation of wavelength 300 nm is incident upon the photocathode surface, what will 

be the maximum kinetic energy of the photoemitted electrons, in eV?
c. Given that the UV light of wavelength 300 nm has an intensity of 20 mW cm−2, if the emitted 

electrons are collected by applying a positive bias to the opposite electrode, what will be the 
photoelectric current density in mA cm−2?

3.11 Photoelectric effect and quantum efficiency Cesium metal is to be used as the photocathode 
material in a photoemissive electron tube because electrons are relatively easily removed from a 
cesium surface. The work function of a clean cesium surface is 1.9 eV.
a. What is the longest wavelength of radiation which can result in photoemission?
b. If blue radiation of wavelength 450 nm is incident onto the Cs photocathode, what will be the 

kinetic energy of the photoemitted electrons in eV? What should be the voltage required on the 
opposite electrode to extinguish the external photocurrent?

c. Quantum efficiency (QE) of a photocathode is defined by,

 Quantum efficiency =
Number of photoemitted electrons

Number of incident photons
 [3.80]

θ = 90°
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Figure 3.51 (a) A schematic diagram of Compton’s experiment. (b) Typical set of data for a given angle 
θ = 90°. The spectrometer is able to identify the X-ray intensity peak at λ′ = 0.0731 nm for θ = 90°.

Table 3.6 Compton experiments

θ 0° 45° 90° 135°

λ′ (nm) 0.0709 0.0715 0.0731 0.0749

Δλ (nm) 0 0.0006 0.0022 0.004
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 QE is 100 percent if each incident photon ejects one electron. Suppose that blue light of wavelength 
450 nm with an intensity of 30 mW cm−2 is incident on a Cs photocathode that is a circular disk of 
diameter 6 mm. If the emitted electrons are collected by applying a positive bias voltage to the anode, 
and the photocathode has a QE of 25 percent, what will be the photoelectric current?

3.12 Photoelectric effect A multi-alkali metal alloy is to be used as the photocathode material in a 
photoemissive electron tube. The work function of the metal is 1.6 eV, and the photocathode area is 
0.5 cm2. Suppose that blue light of wavelength 420 nm with an intensity of 50 mW cm−2 is incident 
on the photocathode.
a. If the photoemitted electrons are collected by applying a positive bias to the anode, what will be 

the photoelectric current density assuming that the quantum efficiency η is 15 percent? Quantum 

efficiency as a percentage is the number of photoemitted electrons per 100 absorbed photons and 
is defined in Equation 3.80. What is the kinetic energy of a photoemitted electron at 420 nm?

b. What should be the voltage and its polarity to extinguish the current?
c. What should be the intensity of an incident red light beam of wavelength 600 nm that would 

give the same photocurrent if the quantum efficiency is 5 percent at this wavelength? (Normally 
the quantum efficiency depends on the wavelength.)

*3.13 Planck’s law and photon energy distribution of radiation Planck’s law, stated in Equation 3.9, 
provides the spectral distribution of the black body radiation intensity in terms of wavelength through 
Iλ, intensity per unit wavelength. Suppose that we wish to find the distribution in terms of frequency f 
or photon energy hf. Frequency f = c∕λ and the wavelength range λ to λ + dλ corresponds to a 
frequency range f to f + df (dλ and df have opposite signs since f increases as λ decreases.) The 
intensity Iλ dλ in λ to λ + dλ must be the same as the intensity in f to f + df, which we can write 
as If  df where If is the radiation intensity per unit frequency. Thus,

 If = Iλ ∣ d λ
df ∣

 The magnitude sign is needed because λ = c∕f results in a negative dλ∕df, and If must be positive 
by definition. We can simply substitute λ = c∕f for λ in Iλ and obtain Iλ as a function of f, and then 
find ∣dλ∕df ∣ to find If from the preceding expression.
a. Show that

 If =
2π(hf )3

c2h2[exp(hf∕kT) − 1]
 [3.81]

 Equation 3.81 is written to highlight that it is a function of the photon energy hf, which is in 
joules in Equation 3.81 but can be converted to eV by dividing by 1.6 × 10−19 J eV−1.

b. If we integrate If over all photon energies (numerically on a calculator or a computer from 0 to 
say 6 eV), we would obtain the total intensity at a temperature T. Find the total intensity IT 
emitted at T = 2700 K (a typical incandescent light bulb filament temperature) and at 6000 K 
(roughly representing the sun’s spectrum). If x is photon energy in eV, then ex = hf and edx = hdf 
must be used in the integration of Equation 3.81. Plot y = If∕IT versus the photon energy in eV. 
What are the photon energies for the peaks in the distributions? Calculate the corresponding 
wavelength for each using λ = c∕f and then compare these wavelengths with those predicted by 
Wien’s law, λmaxT ≈ 2.89 × 10−3 m K.

3.14 Wien’s law The maximum in the intensity distribution of black body radiation depends on the 
temperature. Substitute x = λkT∕(hc) in Planck’s law in Equation 3.9 and plot Iλ versus x and find 
λmax which corresponds to the peak of the distribution, and hence derive Wien’s law. Find the peak 
intensity wavelength λmax for a 40 W light bulb given that its filament operates at roughly 2400 °C.

3.15 Stefan’s law Consider a 40 W, 120 V incandescent light bulb. The tungsten filament is 0.381 m 
long and has a diameter of 33 μm. Its resistivity at room temperature is 5.51 × 10−8 Ω m. Given that 
the resistivity of the tungsten varies at ρ ∝ T 1.24 and the typical emissivity of a tungsten surface is 
0.35, estimate the temperature of the filament when it is operated at the rated voltage, that is, when 
it is lit directly from a power outlet.

Black body 

photon energy 

distribution
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3.16 Electron diffraction and the sample thickness When an energetic electron enters a medium, it is 
slowed down by its interactions with the host atoms. The electron dissipates its energy and, if the 
medium is sufficiently thick, the electron is eventually stopped within the medium. For example, the 
maximum range of a 500 keV electron in an Al sample is roughly 0.44 cm, whereas it is 0.11 mm 
at 50 keV and 0.94 μm at 5 keV electron energy. What should be the sample thickness in typical 
electron diffraction experiments in which the anode voltage is 10 kV? (Consider a power law depen-
dence.) Consider electron diffraction experiments with the anode voltage at 10 kV. The Al foil to 
screen distance is 18.2 cm. The first four diffraction rings (Figure 3.14b) have the diameters 19.6 
mm, 23.0 mm, 32.4 mm, and 38.0 mm on the screen and correspond to the set of planes (111), (200), 
(220), and (311), respectively. Al is an FCC crystal with a lattice parameter a = 0.4049 nm. The 
diffraction angle is 2θ. (See Appendix A.) Plot sin θ against (h2 + k2 + l2)1∕2. (Note that (hkl) repre-
sent the Miller indices of planes in a crystal as explained in Chapter 1.) Find the best line and its 
slope. Use the slope of this line to find the wavelength of the electron and compare it with that from 
the de Broglie relationship.

*3.17 Electron microscope Diffraction of light by an object becomes important when the wavelength of 
light is comparable to the object we wish to see. The resolution of an optical microscope cannot 
therefore be better than the wavelength of visible light, on the order of 500 nm. An electron micro-
scope uses an electron beam (just like light) to “see” small objects because we can make the wave-
length of an electron beam very short by adjusting the accelerating voltage. The transmission electron 
microscope (TEM) is an equipment that allows examining thin slices (or films) of materials under 
very large magnifications, for example 100,000× or more. As depicted in Figure 3.52, the image 
formation is exactly the same as that in the optical microscope except that electromagnetic coils act-
ing as electron lenses are used to bend the electron ray. Electrons emitted by the hot cathode are 
accelerated by the anode, which has typically a large voltage such as 100 kV applied to it with respect 
to the cathode. After passing through the anode, the electrons are collimated into a parallel beam by 
the condenser lens to be transmitted through the thin sample. An objective lens focuses the transmitted 

Figure 3.52 Transmission electron microscope. (a) A schematic diagram of a transmission electron microscope. 
The angles of the electron trajectories with the optical axis are highly exaggerated; they are typically much less 
than 1°. (b) A Hitachi transmission electron microscope (HF3300) with an accelerating voltage of 330 kV, maximum 
magnification of 1.5 × 106 and capable of resolving 0.13 nm.
 (b) Courtesy of Hitachi High Technologies America, Inc.
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beam onto an intermediate image, which is then projected on to a fluorescent screen by the projector 
lens. The whole apparatus operates under vacuum to avoid collisions of electrons with air molecules. 
The samples are typically less than 100 nm thick.
a. Do you need the wave properties of the electron to explain the operation of the electron micro-

scope? (Explain your answer and consider whether you need interference and diffraction of waves 
to explain the optical microscope.)

b. If the operating voltage of a transmission electron microscope is 100 kV, what is velocity of the 
electrons and their wavelength? (Neglect relativistic effects.)

c. Diffraction effects are negligible when the size of the object d is much greater than the wave-
length λ of the wave. For example, the Bragg diffraction condition has no solutions when 2d > λ. 
Resolution is therefore comparable in magnitude to the wavelength λ. What is the theoretical 
resolution, in order of magnitude, of the electron microscope operating at 100 kV and 300 kV? 
What do you think limits the resolution in practice?

3.18 Heisenberg’s uncertainty principle Show that if the uncertainty in the position of a particle is on 
the order of its de Broglie wavelength, then the uncertainty in its momentum is about the same as 
the momentum value itself.

3.19 Heisenberg’s uncertainty principle An excited electron in an Na atom emits radiation at a wave-
length 589 nm and returns to the ground state. If the mean time for the transition is about 20 ns, 
calculate the inherent width in the emission line. What is the length of the photon emitted?

3.20 Infinite and finite potential energy well First consider an infinite one-dimensional PE well of 
width 1 nm. Calculate the energies of the first three levels. Consider a finite PE well with the same 
width (1 nm). The height of the barrier is 2.0 eV. There are only three energy levels E1 = 0.23 eV, 
E2 = 0.89 eV, and E3 = 1.81 eV. Are the finite PE well levels higher or lower than the correspond-
ing infinite well levels? Find the electron penetration depth into the barrier for each of the three energy 
levels. What is your conclusion?

*3.21 Finite potential energy well Figure 3.17b shows the allowed wavefunctions ψ1(x), ψ2(x), and ψ3(x) for 
the finite potential well. We know that there is a center of symmetry at x = a∕2. Thus, ψ(x) must reflect 
this symmetry and are either even or odd functions. Therefore, in region II in Figure 3.17a, we have two 
types of possible solutions corresponding to cosine and sine functions about the center of symmetry

 ψ II(x) = A cos k(x −
1
2

a)  or  ψ II(x) = B sin k(x −
1
2

a)
 where A and B are constants. Both satisfy the Schrödinger equation in II. Further, in region III, the 

wavefunction decays with distance and we can write it as ψ III(x) = C2exp(−αx) = C3exp[−α(x–a)], 
where C3 is a new constant. Use the boundary condition that at x = a (a) ψ II(a) = ψ III(a) and 
(b) dψII∕dx = dψIII∕dx to show that k and α are related by

 α = k tan(1
2

 ka)  or  α = −k cot(1
2

 ka)
 What would happen if you were to use the boundary conditions at x = 0? Since α and k are related 

to the energy E, we can solve the above to find the energy of the electron. To solve α = k tan(1
2  ka), 

we need to plot α and k tan(1
2  ka)  as a function of energy and find the intersection points of the two 

curves; and similarly for the case α = −k cot(1
2  ka) . Using a graphical solution find the energy levels 

in a finite potential energy well of height 0.4 eV and width 4 nm. What is your conclusion?

3.22 Tunneling

a. Consider the phenomenon of tunneling through a potential energy barrier of height Vo and 
width a, as shown in Figure 3.19. What is the probability that the electron will be reflected? 
Given the transmission coefficient T, can you find the reflection coefficient R? What happens 
to R as a or Vo or both become very large?

b. For a wide barrier (αa ≫ 1), show that To can at most be 4 and that To = 4 when E = 1
2  Vo.
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*3.23 Three-dimensional quantum well Consider the energy of an electron in a 3D cubic PE well in 
which the electron energy is given by Equation 3.52. If we measure the energy ε normalized to the 
E111 level, then

 ε =
E

E111
= n2

1 + n2
2 + n2

3 = N2

 corresponding to the wavefunction in Equation 3.51 with a = b = c.
a. Consider the case n1 = 5, n2 = 2, n3 = 1, or N2 = 30. How many wavefunctions are there? What 

is the degeneracy of this energy level?
b. Suppose that we wish to find the total number, that is, the sum S, of all wavefunctions with 

energies less than some critical energy ε′. We need all n1, n2, n3 combinations that would give 
ε = n1

2 + n2
2 + n3

2 < ε′. Consider “n-space” in which n1, n2, n3 are variables corresponding to 
x, y, z, and we take n1 along x, n2 along y, and n3 along z. N′2 = n′1

2 + n′2
2 + n′3

2 = ε′ represents 
those n1, n2, n3 values that give ε′. What is x2 + y2 + z2 = ε′ in this n-space space? What does 
the volume of space in this sphere located so that x, y, and z are all positive represent? This 
volume is 1∕8th of the volume of the sphere with radius ε′, that is, S = (1∕8)(4π∕3)ε′3∕2. What 
does this represent? If we differentiate this with respect to energy, dS∕dε′, what would we get? 
Can we use it to represent a density of states in energy?

3.24 Electron impact excitation

a. A projectile electron of kinetic energy 12.2 eV collides with a hydrogen atom in a gas discharge 
tube. Find the nth energy level to which the electron in the hydrogen atom gets excited.

b. Calculate the possible wavelengths of radiation (in nm) that will be emitted from the excited H 
atom in part (a) as the electron returns to its ground state. Which one of these wavelengths will 
be in the visible spectrum?

c. In neon street lighting tubes, gaseous discharge in the Ne tube involves electrons accelerated by 
the electric field impacting Ne atoms and exciting some of them to the 2p53p1 states, as shown 
in Figure 3.46. What is the wavelength of emission? Can the Ne atom fall from the 2p53p1 state 
to the ground state by spontaneous emission?

3.25 Line spectra of hydrogenic atoms Spectra of hydrogen-like atoms are classified in terms of elec-
tron transitions to a common lower energy level.
a. All transitions from energy levels n = 2, 3, . . . to n = 1 (the K shell) are labeled K lines and 

constitute the Lyman series. The spectral line corresponding to the smallest energy difference 
(n = 2 to n = 1) is labeled the Kα line, next is labeled Kβ, and so on. The transition from n = ∞ 
to n = 1 has the largest energy difference and defines the greatest photon energy (shortest 
wavelength) in the K series; hence it is called the absorption edge Kαe. What is the range of 
wavelengths for the K lines? What is Kαe? Where are these lines with respect to the visible 
spectrum?

b. All transitions from energy levels n = 3, 4, . . . to n = 2 (L shell) are labeled L lines and con-
stitute the Balmer series. What is the range of wavelengths for the L lines (i.e., Lα and Lαe)? 
Are these in the visible range?

c. All transitions from energy levels n = 4, 5, . . . to n = 3 (M shell) are labeled M lines and 
constitute the Paschen series. What is the range of wavelengths for the M lines? Are these in 
the visible range?

d. How would you expect the spectral lines to depend on the atomic number Z?

3.26 Ionization energy and effective Z

a. Consider the singly ionized Li ion, Li+, which has lost its outer 2s electron. If the energy required 
to ionize one of the 1s electrons in Li+ is 75.6 eV, calculate the effective nuclear charge seen 
by a 1s electron in Li+, that is, Zeffective in the hydrogenic atom ionization energy expression, 
EI,n = (Zeffective∕n)2 (13.6 eV) in Equation 3.59. The third ionization energy represents removing 
an electron from Li2+ to form Li3+. This energy is 122.5 eV. What is Zeffective in Li2+? What is 
your conclusion?
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b. Consider Group IA elements Li, Na, K, Rb, and Cs, whose first ionization energies are listed in 
Table 3.7. For each, calculate Zeffective and explain the trend in Zeffective down the group.

Average 

distance of 

electron from 

nucleus

Table 3.8 Kα line data for various elements

 Material

 Mg Al S Ca Cr Fe Cu Rb W

Z 12 13 16 20 24 26 29 37 74
Kα line (nm) 0.987 0.834 0.537 0.335 0.229 0.194 0.154 0.093 0.021

Moseley relation

a. If f is the frequency of emission, plot f 1∕2 against the atomic number Z of the element.

b. H. G. Moseley, while still a graduate student of E. Rutherford in 1913, found the empirical 

relationship

 f 1∕2 = B(Z − C)

 where B and C are constants. What are B and C from the plot? Can you give a simple explana-
tion as to why Kα absorption should follow this relationship?

3.29 The He atom Suppose that for the He atom, zero energy is taken to be the two electrons stationary 
at infinity (and infinitely apart) from the nucleus (He++). Estimate the energy (in eV) of the electrons 
in the He atom by neglecting the electron–electron repulsion, that is, neglecting the potential energy 

Table 3.7 The alkali earth atoms

Element Li Na K Rb Cs
Outer orbital 2s1 3s1 4s1 5s1 6s1

EI (eV) 5.39 5.14 4.34 4.18 3.89

3.27 Average distance from the nucleus and atomic radius The maximum in the radial probability 
distribution of an electron in a hydrogen-like atom is given by Equation 3.58, that is, rmax = (n2ao)∕Z, 

for l = n − 1. The average distance r  of an electron from the nucleus can be calculated by using the 
definition of an average and the probability distribution function Pn,l(r), that is

 r = ∫
∞

0

rPn,l(r)dr =
a0n

2

Zeffective[
3
2

−
l(l + 1)

2n2 ]
 in which the right-hand side represents the result of the integration (which has been done by physicists). 

Consider the two inert gases Ne and Ar that have outer electronic configurations 2p6 and 3p6. The 
ionization energy of Ne is 21.6 eV whereas for Ar it is 15.8 eV. Use the ionization energy to calculate 
an Zeffective for each atom, and then use this Zeffective to estimate the average radius of the atom. Viscosity 
measurements on these gases interpreted by assuming a hard sphere model for atoms indicate 0.14 nm 
for Ne and 0.17 nm for Ar (from Y. Zhang and Z. Xu, American Mineralogist, 80, 670, 1995.)

*3.28 X-rays and the Moseley relation X-rays are photons with wavelengths in the range 0.01–10 nm, 
with typical energies in the range 100 eV to 100 keV. When an electron transition occurs in an atom 
from the L to the K shell, the emitted radiation is generally in the X-ray spectrum. For all atoms with 
atomic number Z > 2, the K shell is full. Suppose that one of the electrons in the K shell has been 
knocked out by an energetic projectile electron impacting the atom (the projectile electron would have 
been accelerated by a large voltage difference). The resulting vacancy in the K shell can then be filled 
by an electron in the L shell transiting down and emitting a photon. The emission resulting from the 
L to K shell transition is labeled the Kα line. The Table 3.8 shows the Kα line data obtained for 
various materials.
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Spin magnetic 

moment

Electron spin in 

a magnetic field

due to the mutual Coulombic repulsion between the electrons. How does this compare with the 
experimental value of −79 eV? How strong is the electron–electron repulsion energy?

3.30 Excitation energy of He In the HeNe laser, an energetic electron is accelerated by the applied field 
impacts and excites the He from its ground state, 1s2, to an excited state He*, 1s12s1, which has one 
of the electrons in the 2s orbital. The ground energy of the He atom is −79 eV with respect to both 
electrons isolated at infinity, which defines the zero energy. Consider the 1s12s1 state. If we neglect 
the electron–electron interactions, we can calculate the energy of the 1s and 2s electrons using the 
energy for a hydrogenic atom, En = −(Z2∕n2)(13.6 eV). We can then add the electron–electron inter-
action energy by assuming that the 1s and 2s electrons are effectively separated by 3ao, which is the 
difference, 4ao − 1ao, between the 1s and 2s Bohr radii. Calculate the overall energy of He* and hence 
the excitation energy from He to He*. The experimental value is about 20.6 eV.

3.31 Electron affinity The fluorine atom has the electronic configuration [He]2s2p5. The F atom can 
actually capture an electron to become a F− ion, and release energy, which is listed as its electron 

affinity, 328 kJ mol−1. We will assume that the two 1s electrons in the closed K shell (very close to 
the nucleus) and the two electrons in the 2s orbitals will shield four positive charges and thereby 
expose +9e − 4e = +5e for the 2p orbital. Suppose that we try to calculate the energy of the F− ion 
by simply assuming that the additional electron is attracted by an effective positive charge, +e(5 − 
Z2p) or +eZeffective, where Z2p is the overall shielding effect of the five electrons in the 2p orbital, so 
that the tenth electron we have added sees an effective charge of +eZeffective. Calculate Z2p and Zeffective. 
The F atom does not enjoy losing an electron. The ionization energy of the F atom is 1681 kJ mol−1. 
What is the Zeffective that is experienced by a 2p electron? (Note: 1 kJ mol−1 = 0.01036 eV∕atom.)

*3.32 Electron spin resonance (ESR) It is customary to write the spin magnetic moment of an electron as

 μspin = −
ge

2me

 S

 where S is the spin angular momentum, and g is a numerical factor, called the g factor, which is 2 
for a free electron. Consider the interaction of an electron’s spin with an external magnetic field. 
Show that the additional potential energy EBS is given by

 EBS = βgmsB

 where β = eħ∕2me is called the Bohr magneton. Frequently electron spin resonance is used to 
examine various defects and impurities in semiconductors. A defect such as a dangling bond, for 
example, will have a single unpaired electron in an orbital and thus will possess a spin magnetic 
moment. A strong magnetic field is applied to the specimen to split the energy level E1 of the unpaired 
spin to two levels E1 − EBS and E1 + EBS, separated by ΔEBS. The electron occupies the lower level 
E1 − EBS. Electromagnetic waves (usually in the microwave range) of known frequency f, and hence 
of known photon energy hf, are passed through the specimen. The magnetic field B is varied until 
the EM waves are absorbed by the specimen, which corresponds to the excitation of the electron at 
each defect from E1 − EBS to E1 + EBS, that is, hf = ΔEBS at a certain field B. This maximum absorp-
tion condition is called electron spin resonance, as the electron’s spin is made to resonate with the 
EM wave. If B = 2 T, calculate the frequency of the EM waves needed for ESR, taking g = 2. Note: 
For many molecules, and impurities and defects in crystals, g is not exactly 2, because the electron 
is in a different environment in each case. The experimentally measured value of g can be used to 
characterize molecules, impurities, and defects.

3.33 Spin–orbit coupling An electron in an atom will experience an internal magnetic field Bint because, 
from the electron’s reference frame, it is the positive nucleus that is orbiting the electron. The electron 
will “see” the nucleus, take as charge +e, circling around it, which is equivalent to a current I = +ef 
where f is the electron’s frequency of rotation around the nucleus. The current I generates the internal 
magnetic field Bint at the electron. From electromagnetism texts, Bint is given by

 Bint =
μoI

2r
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ℓFigure 3.53 Some possible 

states of the carbon atom, 
not in any particular order.
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 where r is the radius of the electron’s orbit and μo is the absolute permeability. Show that

 Bint =
μoe

4πmer
3  L

 Consider the hydrogen atom with Z = 1, 2p orbital, n = 2, ℓ = 1, and take r ≈ n2ao. Calculate Bint.
  The electron’s spin magnetic moment μspin will couple with this internal field, which means that 

the electron will now possess a magnetic potential energy ESL that is due to the coupling of the spin 
with the orbital motion, called spin-orbit coupling. ESL will be either negative or positive, with only 
two values, depending on whether the electron’s spin magnetic moment is along or opposite Bint, Take 
z along Bint so that ESL = −Bintμspin,z, where μspin,z is μspin along z, and then show that the energy E2 
of the 2p orbital splits into two closely separated levels whose separation is

 ΔESL = (eħ

me
)Bint

 Calculate ΔESL in eV and compare it with E2(n = 2) and the separation ΔE = E2 − E1. (The exact 
calculation of ESL is much more complicated, but the calculated value here is sufficiently close to be 
useful.) What is the effect of ESL on the observed emission spectrum from the H-atom transition from 
2p to 1s? What is the separation of the two wavelengths? The observation is called fine structure 

splitting.

3.34 Hund’s rule For each of the following isolated atoms and ions, sketch the electronic structure, using 
a box for an orbital wavefunction, and an arrow (up or down for the spin) for an electron.
a. Aluminum, [Ne]3s2p1 f. Titanium, [Ar]3d24s2

b. Silicon, [Ne]3s2p2 g. Vanadium, [Ar]3d34s2

c. Phosphorus, [Ne]3s2p3 h. Manganese, [Ar]3d54s2

d. Sulfur, [Ne]3s2p4 i. Fe2+, [Ar]3d64s0

e. Chlorine, [Ne]3s2p5 j. Cu2+, [Ar]3d94s0

3.35 Hund’s rule The carbon atom has the electronic structure 2s22p2 in its ground state. The ground 
state and various possible excited states of C are shown in Figure 3.53. The following energies are 
known for the states a to e in Figure 3.53, not in any particular order: 0, 7.3 eV, 4.1 eV, 7.9 eV, and 
1.2 eV. Using reasonable arguments match these energies to the states a to e. Use Hund’s rule to 
establish the ground state with 0 eV. If you have to flip a spin to go from the ground to another 
configuration, that would cost energy. If you have to move an electron from a lower s to p or from 
p to a higher s, that would cost a lot of energy. Two electrons in the same orbital (obviously with 
paired electrons) would have substantial Coulombic repulsion energy.

3.36 The HeNe laser A particular HeNe laser operating at 632.8 nm has a tube that is 40 cm long. The 
operating gas temperature is about 130 °C.
a. Calculate the Doppler-broadened linewidth Δλ in the output spectrum.
b. What are the mode number m values that satisfy the resonant cavity condition? How many modes 

are therefore allowed?
c. Calculate the frequency separation and the wavelength separation of the laser modes. How do 

these change as the tube warms up during operation? Taking the linear expansion coefficient to 
be 10−6 K−1, estimate the change in the mode frequency separation.
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Wolfgang Pauli (1900–1958) won the Nobel prize in 1945  
for his contributions to quantum mechanics. His exclusion 
principle was announced in 1925. “I don’t mind your thinking 
slowly; I mind you’re publishing faster than you think.” 
(Translation from German. Attributed to Pauli by H. Coblaus. 
From A. L. Mackay, A Dictionary of Scientific Quotations,  
IOP Publishing, Bristol, 1991, p. 191.)

  AIP Emilio Segrè Visual Archives, Goudsmit Collection.

Arthur Holly Compton (1892–1962) at the University 
of Chicago won the Nobel prize in physics in 1927  
for his discovery of the Compton effect with C. T. R. 
Wilson in 1923. The January 13, 1936 issue of the 
Time magazine featured Arthur Compton holding a 
cosmic ray detector.

  © Imagno/Hulton Archive/Getty Images.

3.37 Er3+-doped fiber amplifier Er3+-doped fiber amplifier (EDFA) was first reported in 1987 by E. 
Desurvire, J. R. Simpson, and P. C. Becker and, within a short period, AT&T began deploying EDFA 
repeaters in long-haul fiber communications in 1994. They are now routinely used in optical ampli-
fication at 1550 nm. When the Er3+ ion in an EDFA is pumped with 980 nm of radiation, the Er3+ 
ions absorb energy from the pump signal and become excited to E3 (Figure 3.48). Later the Er3+ ions 
at E2 are stimulated to add energy (coherent photons) to the signal at 1550 nm. What is the wasted 
energy (in eV) from the pump to the signal at each photon amplification step? (This energy is lost 
as heat in the glass medium.) The Er3+ ions at E2 on average take 10 ms to spontaneously decay from 
E2 down to E1. This is called the spontaneous emission time τsp. An Er-doped fiber amplifier is  
10 m long, and the radius of the core is 5 μm. The Er3+ concentration in the core is 1019 cm−3. The 

nominal power gain of the amplifier is 100 (or 20 dB). The pump wavelength is 980 nm, and the signal 

wavelength is 1550 nm. If the output power from the amplifier is 100 mW and assuming the signal 

and pump are confined to the core, what is the minimum intensity of the pump signal? How much 

power is wasted in this EDFA? (The pump must provide enough photons to pump the Er3+ ions needed 

to generate the additional output photons over that of input photons. Further, the pump must provide 

sufficient photon flux to be able to excite Er3+ ions from E1 to E3 and hence to E2 within a time 

scale much less than τsp; otherwise we cannot achieve population inversion.



Right: This modern scanning electron microscope (SEM) uses a field induced electron 
emission in its electron gun to get sharper images.
Left: Cold cathode field emission (FE) tip used in the right SEM.

 Courtesy of Hitachi High Technologies America, Inc.

Photomultiplier tubes rely on the photoelectric effect and secondary emission.

 Courtesy of Hamamatsu.
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4

Modern Theory of Solids

One of the great successes of modern physics has been the application of quantum 
mechanics or the Schrödinger equation to the behavior of molecules and solids. For 
example, quantum mechanics explains the nature of the bond between atoms, and its 
consequences. How can carbon bond with four other carbon atoms? What determines 
the direction and strength of a bond? An intuitively obvious outcome from quantum 
mechanics is that the energy of the electron is still quantized in the molecule. In 
addition, the application of quantum mechanics to many atoms, as in a solid, leads 
to energy bands within which the electron energy levels are almost continuous. The 
electron energy falls within possible values in a band of energies. It is nearly impos-
sible to comprehend the principles of operation of modern solid-state electronic 
devices without a good grasp of the band theory of solids. Since we are dealing with 
a large number of electrons in the solid, we must consider a statistical way of describ-
ing their behavior, just as we use the Maxwell distribution of velocities to explain 
the behavior of gas atoms. An equally important question, therefore, is “What is the 
probability that an electron is in a state with energy E within an energy band?”

4.1   HYDROGEN MOLECULE: MOLECULAR ORBITAL 

THEORY OF BONDING

Consider what happens when two hydrogen atoms approach each other to form the 
hydrogen molecule. This is the H–H (or H2) system. Let us examine the energy 
levels of the H–H system as a function of the interatomic distance R. When the 
atoms are infinitely separated, each atom has its own set of energy levels, labeled 
1s, 2s, 2p, etc. The electron energy in each atom is −13.6 eV with respect to the 
“free” state (electron infinitely separated from the parent nucleus). The energy of 
the two isolated hydrogen atoms is twice −13.6 eV.
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 As the atoms approach closer, the electrons interact both with each other and 
with the other nuclei. To obtain the wavefunctions and the new energy of the elec-
trons, we need to find the new potential energy function PE for the electrons in this 
new environment and then solve the Schrödinger equation with this new PE function. 
The new energy is actually lower than twice −13.6 eV, which means that the H2 
formation is energetically favorable.
 The bond formation between two H atoms can be easily explained by describing 
the behavior of the electron within the molecule. We use a molecular orbital ψ, 
which depends on the interaction of individual atomic wavefunctions and is regarded 
as an electron wavefunction within the molecule.
 In the H2 molecule, we cannot have two sets of identical atomic ψ1s orbitals, for 
two reasons. First, this would violate the Pauli exclusion principle, which requires 
that, in a given system of electrons (those within the H2 molecule), we cannot have 
two sets of identical quantum numbers. When the atoms were separated, we did not 
have this problem, because we had two isolated systems.
 Second, as the two atoms approach each other, as shown in Figure 4.1, the 
atomic ψ1s wavefunctions overlap. This overlap produces two new wavefunctions 
with different energies and hence different quantum numbers. When the two atomic 
wavefunctions interfere, they can overlap either in phase (both positive or both negative) 

H

r

r

a

A B

H
rA

e–

r

rB
e–

R = ∞

Two hydrogen atoms
approaching each other.

ψ1s(rA) ψ1s(rB)

ψσ = ψ1s(rA) + ψ1s(rB)

ψσ* = ψ1s(rA) – ψ1s(rB)

Bonding molecular orbital

Antibonding molecular orbital

Figure 4.1 Formation of molecular orbitals, bonding, and antibonding (ψσ and ψσ*) 
when two H atoms approach each other.

The two electrons pair their spins and occupy the bonding orbital ψσ.



or out of phase (one positive and the other negative), as a result of which two 
molecular orbitals are formed. These are conventionally labeled ψσ and ψσ* as illus-
trated in Figure 4.1. Thus, two of the molecular orbitals in the H–H system are

 ψσ = ψ1s(rA) + ψ1s(rB) [4.1]

 ψσ* = ψ1s(rA) − ψ1s(rB) [4.2]

where the two hydrogen atoms are labeled A and B, and rA and rB are the respective 
distances of the electrons from their parent nucleus. In generating two separate 
molecular orbitals ψσ and ψσ* from a linear combination of two identical atomic orbit-
als ψ1s, we have used the linear combination of atomic orbitals (LCAO) method.
 The first molecular orbital ψσ is symmetric and has considerable magnitude 
between the nuclei, whereas the second ψσ*, is antisymmetric and has a node between 
the nuclei. The resulting electron probability distributions ∣ψσ∣

2 and ∣ψσ*∣
2 are shown 

in Figure 4.2.
 In an analogy to hydrogenic wavefunctions, since ψσ* has a node, we would 
expect it to have a higher energy than the ψσ orbital and therefore a different energy 
quantum number, which means that the Pauli exclusion principle is no longer vio-
lated. We can also expect that because ∣ψσ∣

2 has an appreciable electron concentration 
between the two nuclei, the electrostatic PE, and hence the total energy for the 
wavefunction ψσ, will be lower than that for ψσ*, as well as those for the individual 
atomic wavefunctions.
 Of course, the true wavefunctions of the electrons in the H2 system must be deter-
mined by solving the Schrödinger equation, but an intelligent guess is that these must 
look like ψσ and ψσ*. We can therefore use ψσ and ψσ* in the Schrödinger equation, 
with the correct form of the PE term V, to evaluate the energies Eσ and Eσ* of ψσ and 
ψσ*, respectively, as a function of R. The PE function V in the H–H system has posi-
tive PE contributions arising from electron–electron repulsions and proton–proton 
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H H H H

(a) Electron probability distributions for bonding and antibonding orbitals, ψσ and ψσ*.

(b) Lines representing contours of constant probability (darker lines represent

 greater relative probability).

∣ψσ*∣
2∣ψσ∣

2

Figure 4.2
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repulsions, but negative PE contributions arising from the attractions of the two 
electrons to the two protons.
 The two energies, Eσ and Eσ*, are widely different, with Eσ below E1s and Eσ* 
above E1s, as shown schematically in Figure 4.3a. As R decreases and the two 
H atoms get closer, the energy of the ψσ orbital state passes through a minimum at 
R = a. Each orbital state can hold two electrons with spins paired, and within the 
two hydrogen atoms, we have two electrons. If these enter the ψσ orbital and pair 
their spins, then this new configuration is energetically more favorable than two 
isolated H atoms. It corresponds to the hydrogen molecule H2. The energy difference 
between that of the two isolated H atoms and the Eσ minimum energy at R = a is 
the bonding energy, as illustrated in Figure 4.3a. When the two electrons in the H2 
molecule occupy the ψσ orbital, their probability distribution (and hence, the negative 
charge distribution) is such that the negative PE, arising from the attractions of these 
two electrons to the two protons, is stronger in magnitude than the positive PE, aris-
ing from electron–electron repulsions and proton–proton repulsions and the kinetic 
energy of the two electrons. Therefore, the H2 molecule is energetically stable.
 The wavefunction ψσ corresponding to the lowest electron energy is called the 
bonding orbital, and ψσ* is the antibonding orbital. When two atoms are brought 
together, the two identical atomic wavefunctions combine in two ways to generate 
two different molecular orbitals, each with a different energy. Effectively, then, an 

(b) Schematic diagram showing

the changes in the electron energy

as two isolated H atoms, far left

and far right, come together to

form a hydrogen molecule.
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(a) Energy of ψσ and ψσ* vs.

the interatomic separation R. 

Figure 4.3 Electron energy in the system comprising two hydrogen atoms.
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atomic energy level, such as E1s, splits into two, Eσ and Eσ*. The splitting is due to 
the interaction (or overlap) between the atomic orbitals. Figure 4.3b schematically 
illustrates the changes in the electron energy levels as two isolated H atoms are 
brought together to form the H2 molecule.
 The splitting of a one-atom energy level when a molecule is formed is analogous 
to the splitting of the resonant frequency in an RLC circuit when two such circuits 
are brought together and coupled. Consider the RLC circuit shown in Figure 4.4a. 
The circuit is excited by an ac voltage source. The current peaks at the resonant 
frequency ω0, as indicated in Figure 4.4a. When two such identical RLC circuits are 
coupled together and driven by an ac voltage source, the current develops two peaks, 
at frequencies ω1 and ω2, below and above ω0, as illustrated in Figure 4.4b. The two 
peaks at ω1 and ω2 are due to the mutual inductance that couples the two circuits, 
allowing them to interact. From this analogy, we can intuitively accept the energy 
splitting observed in Figure 4.3a.
 Consider what happens when two He atoms come together. Recall that the 1s 
orbital has paired electrons and is full. The 1s atomic energy level will again split 
into two levels, Eσ and Eσ*, associated with the molecular orbitals ψσ and ψσ*, as 
illustrated in Figure 4.5. However, in the He–He system, there are four electrons, so 
two occupy the ψσ orbital state and two go to the ψσ* orbital state. Consequently, the 
system energy is not lowered by bringing the two He atoms closer. Furthermore, 
quantum mechanical calculations show that the antibonding energy level Eσ* shifts 
higher than the bonding level Eσ shifts lower. By the same token, although we could 
put an additional electron at Eσ* in H2 to make H2

−, we could not make H2
2− by plac-

ing two electrons at Eσ*.
 From the He–He example, we can conclude that, as a general rule, the overlap 
of full atomic orbital states does not lead to bonding. In fact, full orbitals repel each 
other, because any overlap results in an increase in the system energy. To form a 
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(a) There is one resonant frequency,

ω0, in an isolated RLC circuit.

(b) There are two resonant frequencies

in two coupled RLC circuits: one below

and the other above ω0.

Figure 4.4
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bond between two atoms, we essentially need an overlap of half-occupied orbitals, 
as in the H2 molecule.

He-atom He-atomHe–He

system

Eσ*

Eσ

E1s E1s
Figure 4.5 Two He atoms have four  
electrons. When He atoms come together, 
two of the electrons enter the Eσ level and 
two the Eσ* level, so the overall energy is 
greater than two isolated He atoms.

HYDROGEN HALIDE MOLECULE (HF) We already know that H has a half-occupied 1s 
orbital, which can take part in bonding. Since the F atom has the electronic structure 1s22s2p5, 
two of the p orbitals are full and one p orbital, px, is half full. This means that only the px 
orbital can participate in bonding. Figure 4.6 shows the electron orbitals in both H and F. 
When the H atom and the F atom approach each other to form an HF molecule, the ψ1s 
orbital of H overlaps the px orbital of F. There are two possibilities for the overlap. First, 
ψ1s and px can overlap in phase (both positive or both negative), to give a ψσ orbital that 
does not have a node between H and F, as shown in Figure 4.6. Second, they can overlap 
out of phase (one positive and the other negative), so that the overlap orbital ψσ* has a node 
(similar to ψσ* in Figure 4.1). We know from hydrogen atomic wavefunctions in Chapter 3 
that orbitals with more nodes have higher energies. The molecular orbital ψσ therefore cor-
responds to a bonding orbital with a lower energy than the ψσ* orbital. The two electrons, 
one from ψls and the other from px, enter the ψσ orbital with spins paired, thereby forming 
a bond between H and F.

 EXAMPLE 4.1

Half-full px 

px px 

pz 

pz 

py py 

Full pz 

Full py 

px 

FH

Half-full ψ1s 

H–F

px

Bonding orbital, ψσ

ψ1s

ψ1s

Figure 4.6 H has one half-empty ψ1s orbital.

F has one half-empty px orbital but full py and pz orbitals. The overlap between ψ1s and px produces a 
bonding orbital and an antibonding orbital. The two electrons fill the bonding orbital and thereby form a 
covalent bond between H and F.



 4 . 2  BAND THEORY OF SOLIDS 319

4.2  BAND THEORY OF SOLIDS

4.2.1 ENERGY BAND FORMATION

When we bring three hydrogen atoms (labeled A, B, and C) together, we generate 
three separate molecular orbital states, ψa, ψb, and ψc, from three ψ1s atomic states. 
Again, this occurs in three different ways, as illustrated in Figure 4.7a. As in the 
case of the H2 molecule, each molecular orbital must be either symmetric or antisym-

metric with respect to center atom B. The reason is that the molecule A–B–C in 
which A, B, and C are identical atoms, is symmetric with respect to B. Thus, each 
wavefunction must be either symmetric or antisymmetric, that it must have even or 
odd parity.1 The orbitals that satisfy even and odd requirements are

 ψa = ψ1s(A) + ψ1s(B) + ψ1s(C) [4.3a]

 ψb = ψ1s(A) − ψ1s(C) [4.3b]

 ψc = ψ1s(A) − ψ1s(B) + ψ1s(C) [4.3c]

where ψ1s(A), ψ1s(B), and ψ1s(C) are the 1s atomic wavefunctions centered around 
the atoms A, B, and C, respectively, as shown in Figure 4.7a. For example, the 
wavefunction ψ1s(A) represents ψ1s(rA), which is centered around A and has the form 
exp(−rA∕ao), where rA is the distance from the nucleus of A, and ao is the Bohr 
radius. Notice that ψ1s(B) is missing in Equation 4.3b, so ψb is antisymmetric.
 The energies Ea, Eb, and Ec of ψa, ψb, and ψc can be calculated from the 
Schrödinger equation by using the PE function of this system (the PE also includes 
proton–proton repulsions). It is clear that since ψa, ψb, and ψc are different, their 
energies Ea, Eb, and Ec are also different. Consequently, the 1s energy level splits 
into three separate levels, corresponding to the energies of ψa, ψb, and ψc, as depicted 
by Figure 4.7b. By analogy with the electron wavefunctions in the hydrogen atom, 
we can argue that if the molecular wavefunction has more nodes, its energy is higher. 
Thus, ψa has the lowest energy Ea, ψb has the next higher energy Eb, and ψc has the 
highest energy Ec, as shown in Figure 4.7b. There are three electrons in the three-
hydrogen system. The first two pair their spins and enter orbital ψa at energy Ea, and 
the third enters orbital ψb at energy Eb. Comparing Figures 4.7 and 4.3, we notice 
that although H2 and H3 both have two electrons in the lowest energy level, H3 also 
has an extra electron at the higher energy level (Eb), which tends to increase the net 
energy of the atom. Thus, the H3 molecule is much less stable than the H2 molecule.2

 Now consider the formation of a solid. Take N Li (lithium) atoms from infinity 
and bring them together to form the Li metal. Lithium has the electronic configura-
tion 1s22s1, which is somewhat like the hydrogen atom, since the K shell is closed 
and the third electron is alone in the 2s orbital.
 Based on our previous discussions, we assume that the atomic energy levels will 
split into N separate energy levels. Since the 1s subshell is full and is close to the 

 1 We saw in Chapter 3 that the wavefunctions of an electron in a 1D PE well were either symmetric or antisymmetric. 
Whenever the potential energy V in the Schrödinger equation has a point of symmetry, the wavefunctions are 
symmetric or antisymmetric with respect to this point.

 2 See G. Pimentel and R. Spratley, Understanding Chemistry, San Francisco: Holden-Day, Inc., 1972, pp. 682–687 
for an excellent discussion.
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nucleus, it will not be affected much by the interatomic interactions; consequently, 
the energy of this state will experience only negligible splitting, if any. Since the 1s 
electrons will stay close to their parent nuclei, we will not consider them during 
formation of the solid.
 In the system of N isolated Li atoms, we have N electrons in N ψ2s orbitals at 
the energy E2s, as illustrated in Figure 4.8 (at infinite interatomic separation). Let us 
assume that N is large (typically, ∼1023). As N atoms are brought together to form 
the solid, the energy level at E2s splits into N finely separated energy levels. The 
maximum width of the energy splitting depends on the closest interatomic distance 
a in the solid, as apparent in Figure 4.3a. The atoms separated by a distance greater 
than R = a give rise to a lesser amount of energy splitting. The interatomic interac-
tions between N ψ2s orbitals thus spread the N energy levels between the bottom and 
top levels, EB and ET, respectively, which are determined by the closest interatomic 
distance a. Put differently, EB and ET are determined by the distance between near-
est neighbors. It is obvious that with N very large, the energy separation between 
two consecutive energy levels is very small; indeed, it is almost infinitesimal and 
not as exaggerated as in Figure 4.8.
 Remember that each energy level Ei in the Li metal of Figure 4.8 is the energy 
of an electron wavefunction ψsolid(i) in the solid, where ψsolid(i) is one particular 
combination of the N atomic wavefunctions ψ2s. There are N different ways to com-
bine N atomic wavefunctions ψ2s, since each can be added in phase or out of phase, 
as is apparent in Equations 4.3a to c (see also Figure 4.7a and b). For example, when 
all N ψ2s are summed in phase, the resulting wavefunction ψsolid(1) is like ψa in Equa-
tion 4.3a, and it has the lowest energy. On the other hand, when N ψ2s are summed 
with alternating phases, + − + . . . , the resulting wavefunction ψsolid(N) is like ψc, 
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and it has the highest energy. Other combinations of ψ2s give rise to different energy 
values between EB and ET.
 The single 2s energy level E2s therefore splits into N (∼1023) finely separated 
energy levels, forming an energy band, as illustrated in Figure 4.8. Consequently, 
there are N separate energy levels, each of which can take two electrons with oppo-
site spins. The N electrons fill all the levels up to and including the level at N∕2. 
Therefore, the band is half full. We do not mean literally that the band is full to the 
half-energy point. The levels are not spread equally over the band from EB to ET, 
which means that the band cannot be full to the half-energy point. Half filled simply 
means half the states in the band are filled from the bottom up.
 We have generated a half-filled band from a half-filled isolated 2s energy level. The 
energy band resulting from the splitting of the atomic 2s energy level is loosely termed 
the 2s band. By the same token, the atomic 1s levels are full, so any 1s band that 
forms from these 1s states will also be full. We can get an idea of the separation of 
energy levels in the 2s band by noting that the maximum separation, ET − EB, between 
the top and bottom of the band is on the order of 10 eV, but there are some 1023 
atoms, giving rise to 1023 energy levels between EB and ET. Thus, the energy levels 
are finely separated, forming, for all practical purposes, a continuum of energy levels.
 The 2p energy level, as well as the higher levels at 3s and so on, also split into 
finely separated energy levels, as shown in Figure 4.9. In fact, some of these energy 
levels overlap the 2s band; hence, they provide further energy levels and “extend” 
the 2s band into higher energy levels, as indicated in Figure 4.10, which shows how 
energy bands in metals are often represented. The vertical axis is the electron energy. 
The top of the 2s band, which is half full, overlaps the bottom of the 2p band, which 
itself is overlapped near the top by the 3s band. We therefore have a band of energies 
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Figure 4.8 The formation of a 2s energy band from the 2s orbitals when N Li atoms 
come together to form the Li solid.

There are N 2s electrons, but 2N states in the band. The 2s band is therefore only half full. 
The atomic 1s orbital is close to the Li nucleus and remains undisturbed in the solid. Thus, 
each Li atom has a closed K shell (full 1s orbital).
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that stretches from the bottom of the 2s band all the way to the vacuum level, as 
depicted in Figure 4.11. The reader may wonder what happened to the 3d, 4s, etc., 
bands. The energies of these bands (including the top portion of the 3s band) are 
normally above the vacuum level. However, this does not mean that an electron 
within the bulk of the crystal cannot be given an energy higher than the vacuum 
level, as discussed later in this section.
 At a temperature of absolute zero, or nearly so, the thermal energy is insufficient 
to excite the electrons to higher energy levels, so all the electrons pair their spins 
and fill each energy level from EB up to an energy level EFO that we call the Fermi 
level at 0 K, as shown in Figure 4.11. The energy value for the Fermi level depends 
on where we take the reference energy. For example, if we take the vacuum level as 
the zero reference, then for the Li metal, EFO is at –2.5 eV. The Fermi level is nor-
mally measured with respect to the bottom of the band, in which case, it is simply 
termed the Fermi energy and denoted EFO. For the Li metal, EFO is 4.7 eV, which is 
with respect to the bottom of the band. The Fermi level has considerable signifi-
cance, as we will discover later in this chapter.

Interatomic
separation (R)

E3s

E2p

E2s

E1s

Isolated atomsThe solid

E = 0 (vacuum level)
Free electron

El
ec

tro
n 

en
er

gy

Fu
ll

Em
pt

y

R = ∞R = a

Figure 4.9 As Li atoms are brought together 
from infinity, the atomic orbitals overlap and 
give rise to bands (Schematic only.)

Outer orbitals overlap first. The 3s orbitals 
give rise to the 3s band, 2p orbitals to the 
2p band, and so on. The various bands 
overlap to produce a single band in which 
the energy is nearly continuous.

E
El

ec
tro

n 
en

er
gy

E = 0

Overlapping energy bands
Free electron

Vacuum
level

Electrons

3s

2p

2s

1s

3p
3s

2p

2s

1s
AtomSolid

Figure 4.10 In a metal, the various energy bands 
overlap to give a single energy band that is only 
partially full of electrons.

There are states with energies up to the vacuum 
level, where the electron is free.



 4 . 2  BAND THEORY OF SOLIDS 323

 At absolute zero, all the energy levels up to the Fermi level are full. The energy 
required to excite an electron from the Fermi level to the vacuum level, that is, to 
liberate the electron from the metal, is called the work function Φ of the metal. As 
the temperature increases, some of the electrons get excited to higher energy levels. 
To determine the probability of finding an electron at an energy level E, we must 
consider what is called “particle statistics,” a topic that is key to understanding the 
behavior of electronic devices. Clearly, the probability of finding an electron at 0 K 
at some energy E < EFO is unity, and at E > EFO, the probability is zero. Table 4.1 
summarizes the Fermi energy and work function of a few selected metals.
 The electrons in the energy band of a metal are loosely bound valence electrons 
which become free in the crystal and thereby form a kind of electron gas.3 It is this 
electron gas that holds the metal ions together in the crystal structure and constitutes 
the metallic bond. This intuitive interpretation is shown in Figure 4.9. When solid 
Li is formed from N atoms, the N electrons fill all the lower energy levels up to 
N∕2. The energy of the system of N Li atoms, according to Figure 4.9, is therefore 
much less than that of N isolated Li atoms by virtue of the N electrons taking up 
lower energy levels. It must be emphasized that the electrons within a band do not 
belong to any specific atom but to the whole solid. We cannot identify a given 

 3 The energy band in a metal is only partially full, and the electrons in the band are those valence electrons 
donated by each metal atom. Some authors therefore call this band a valence band. But, these valence electrons 
are those very electrons that contribute to electrical conduction, so the band is called a conduction band. One 
convenient view is to simply consider the band as a partially filled conduction band.
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Figure 4.11 Typical electron energy 
band diagram for a metal.
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the solid (PE = 0).

Table 4.1 Fermi energy and work function of selected metals (polycrystalline)

 Metal

 Ag Al Au Cs Cu Li Mg Na

Φ (eV) 4.26  4.28 5.1 2.14 4.65 2.9 3.66 2.75
EFO (eV) 5.5 11.7 5.5 1.58 7.0 4.7 7.1 3.2
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electron in the band with a certain Li atom. All the 2s electrons essentially form an 
electron gas and have energies that fall within the energy band. These electrons are 
constantly moving around in the metal which in terms of quantum mechanics means 
that their wavefunctions must be of the traveling wave type and not the type that 
localizes the electron around a given atom (e.g., ψn,ℓ,mℓ

 in the hydrogen atom). We 
can represent each electron with a wavevector k so that its momentum p is ħk.
 The energy band diagram in Figure 4.11 is widely used in explaining the electri-
cal properties of metals. However, it gives the impression that any electron inside the 
metal that has an energy EFO + Φ can escape the metal; that is, an electron cannot 
have an energy more than EFO + Φ inside the metal. This is not true. An electron 
inside the bulk of the metal crystal is far away from the surface, and even if we impart 
an energy greater than EFO + Φ, it is unlikely to find the surface of the metal and 
escape. An electron inside the metal that has an energy EFO + Φ or more, can only 
escape the metal into vacuum if it happens to be moving towards the surface, and 
reaches the surface before it is scattered away. A better representation of the energy 
band of a metal is to indicate the vacuum level on the surface only and allow the band 
of energies inside the metal to extend to higher energies as in Figure 4.12. If you 
examine Figure 4.9 for R = a, and ignore the vacuum level line, it is quite apparent 
that the energy levels extend to higher and higher levels; these are the energies that 
would be available to an electron inside the bulk of the crystal away from the surface.
 When a photon of energy hf  > Φ is incident on a metal crystal, it can be absorbed 
by an electron at or near EF, which will be excited to a higher energy. If the electron 
is moving towards the crystal surface, and it is not scattered by other electrons, 
thermal vibrations of the crystal, impurities or defects, before it reaches the surface 
it can be emitted out from the metal into vacuum. This light induced electron emis-
sion process is called photoemission. The electron labeled 1 in Figure 4.12 is able 
to reach the surface but electron 2 cannot because it is traveling in the wrong direc-
tion, away from the surface. Electron 2 loses its excess energy (energy above EFO) 
through interactions with other electrons, collisions with vibrating metal ions, impu-
rities and crystal defects, and eventually returns back to EFO.
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Suppose that we illuminate the metal with photons 
and the photon energy hf > Φ. When an electron 
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towards and 2 away from the surface. Electron 1 is 
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and has sufficient energy to escape the metal into 
vacuum. Electron 2 however is scattered by other 
electrons, lattice vibrations, impurities, and crystal 
defects; loses its excess energy and returns back 
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4.2.2 PROPERTIES OF ELECTRONS IN A BAND

Since the electrons inside the metal crystal are considered to be “free,” their energy 
is KE. These electrons occupy all the energy levels up to EFO as shown in the band 
diagram of Figure 4.13a. The energy E of an electron in a metal increases with its 
momentum p as p2∕2me. Figure 4.13b shows the energy versus momentum behavior 
of the electrons in a hypothetical one-dimensional (1D) crystal. The energy increases 
with momentum whether the electron is moving toward the left or right. Electrons 
take on all available momentum values until their energy reaches EFO. For every 
electron that is moving right (such as a), there is another (such as b) with the same 
energy but moving left with the same magnitude of momentum. Thus, the average 
momentum is zero and there is no net current.
 Consider what happens when an electric field Ex is applied in the −x direction. 
The electron a at the Fermi level and moving along in the +x direction experiences 
a force eEx along the same direction. It therefore accelerates and gains momentum 
and hence has energy as shown in Figure 4.13c. (The actual energy gained from the 
field is very small compared with EFO, so Figure 4.13c is highly exaggerated.) The 
electron a at EFO can move to higher energy levels because these adjacent higher 
levels are empty. The momentum state vacated by a is filled by the electron imme-
diately below which now gains energy and moves up, and so on. An electron that is 
moving in the −x direction, however, is decelerated (its momentum decreases) and 
hence loses energy as indicated by b moving to b′ in Figure 4.13c. The electrons 
that are moving in the +x direction gain energy, and those that are moving in the 
−x direction, lose energy. The whole electron momentum distribution therefore shifts 
in the +x direction as in Figure 4.13c. Eventually the electron a, now at a′, is scat-
tered by a lattice vibration. Typically lattice vibrations have small energies but sub-
stantial momentum. The scattered electron must find an unoccupied momentum state 
with roughly the same energy, and it must change its momentum substantially. The 
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electron at a′ is therefore scattered to an empty state around EFO but with a momen-
tum in the opposite direction. Its momentum is flipped as shown in Figure 4.13c. 
The average momentum of the electrons is no longer zero but finite in the +x direc-
tion. Consequently there is a current flow in the −x direction, along the field, as 
determined by this average momentum pav. Notice that a moves up to a′ and b falls 
down to b′. Under steady-state conduction, lattice scattering simply replenishes the 
electrons at b′ from a′. Notice that for energies below b′, for every electron moving 
right there is another moving left with the same momentum magnitude that cancels 
it. Thus, electrons below the b′ energy level do not contribute to conduction and are 
excluded from further consideration. Notice that electrons above the b′ level are only 
moving right and their momenta are not canceled. Thus, the conductivity is deter-
mined by the electrons in the energy range ΔE from b′ to a′ about the Fermi level 
as shown in Figure 4.13c. Further, as the energy change from a to a′ is orders of 
magnitude smaller than EFO, we can summarize that conduction occurs by the drift 
of electrons at the Fermi level.4 (If we were to calculate ΔE for a typical metal for 
typical currents, it would be ∼10−6 eV whereas EFO is 1–10 eV. The shift in the 
distribution in Figure 4.13c is very small indeed; a′ and b′, for all practical purposes, 
are at the Fermi level.)
 Conduction can be explained very simply and intuitively in terms of a band 
diagram as shown in Figure 4.14. Notice that the application of the electric field 
bends the energy band, because the electrostatic PE of the electron is −eV(x) where 
V(x) is the voltage at position x. However, V(x) changes linearly from 0 to V, by 
virtue of dV∕dx = −Ex. Since E = −eV(x) adds to the energy of the electron, the 
energy band must bend to account for the additional electrostatic energy. Since only 
the electrons near EFO contribute to electrical conduction, we can represent this by 
drifting the electrons at EFO down the potential hill. Although these electrons possess 
a very high mean velocity (∼106 ms−1), as determined by the Fermi energy, they 
drift very slowly (10−2−10−1 ms−1) with a velocity that is drift mobility × field.
 When a metal is illuminated, provided the wavelength of the radiation is correct, 
it will cause the emission of electrons from the metal as in the photoelectric effect. 
Since Φ is the “minimum energy” required to excite an electron into the vacuum 
level (out from the metal), the longest wavelength radiation required is hc∕λ = Φ.
 The addition of heat to a metal can excite some of the electrons in the band to 
higher energy levels. Thus heat can also be absorbed by the conduction electrons of 
a metal. We also know that the addition of heat increases the amplitude of atomic 
vibrations. We can therefore guess that the heat capacity of a metal has two terms 
which are due to energy absorption by the lattice vibrations and energy absorption 
by conduction electrons. It turns out that at room temperature the energy absorption 
by lattice vibrations dominates the heat capacity whereas at the lowest temperatures 
(typically a few Kelvins) the electronic contribution is important.

 4 In some books (including the first edition of this textbook) it is stated that the electrons at EFO can gain  
energy from the field and contribute to conduction but not those deep in the band (below b′). This is a simplified 
statement of the fact that at a level below EFO there is one electron moving along in the +x direction and gaining 
energy and another one at the same energy but moving along in the −x direction and losing energy so that an 
average electron at this level does not gain energy.
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METALLIC LIQUID HYDROGEN IN JUPITER AND ITS MAGNETIC FIELD The surface of 
Jupiter, as visualized schematically in Figure 4.15, mainly consists of a mixture of molecular 
hydrogen and He gases. Deep in the planet, however, the pressure is so tremendous that the 
hydrogen molecular bond breaks, leaving a dense ocean of hydrogen atoms. Hydrogen has 
only one electron in the 1s energy level. When atoms are densely packed, the 1s energy level 
forms an energy band, which is then only half filled. This is just like the Li metal, which 
means we can treat liquid hydrogen as a liquid metal, with electrical properties reminiscent 
of liquid mercury. Liquid hydrogen can sustain electric currents, which in turn can give rise 
to the magnetic fields on Jupiter. The origin of the electric currents are not known with 
certainty. We do know, however, that the core of the planet is hot and emanates heat, which 
causes convection currents. Temperature differences can readily give rise to electric currents, 
by virtue of thermoelectric effects, as discussed in Section 4.8.2.

 EXAMPLE 4.2
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WHAT MAKES A METAL? The Be atom has an electronic structure of 1s22s2. Although the 
Be atom has a full 2s energy level, solid Be is a metal. Why?

SOLUTION

We will neglect the K shell (1s state), which is full and very close to the nucleus, and consider 
only the higher energy states. In the solid, the 2s energy level splits into N levels, forming a 
2s band. With 2N electrons, each level is occupied by spin-paired electrons. The 2s band is 
therefore full. However, the empty 2p band, from the empty 2p energy levels, overlaps the 
2s band, thereby providing empty energy levels to these 2N electrons. Thus, the conduction 
electrons are in an energy band that is only partially filled; they can gain energy from the 
field to contribute to electrical conduction. Solid Be is therefore a metal.

 EXAMPLE 4.3

FERMI SPEED OF CONDUCTION ELECTRONS IN A METAL In copper, the Fermi energy 
of conduction electrons is 7.0 eV. What is the speed of the conduction electrons around this 
energy?

SOLUTION

Since the conduction electrons are not bound to any one atom, their PE must be zero within 
the solid (but large outside), so all their energy is kinetic. For conduction electrons around 
the Fermi energy EFO with a speed vF, we have

 
1
2

mv2
F = EFO

so that

 vF = √ 2EFO

me

= √ 2(1.6 × 10−19 J/eV)(7.0 eV)

(9.1 × 10−31 kg)
= 1.6 × 106 m s−1

 Although the Fermi energy depends on the properties of the energy band, to a good 
approximation it is only weakly temperature dependent, so vF will be relatively temperature 
insensitive, as we will show later in Section 4.7.

 EXAMPLE 4.4

4.3  SEMICONDUCTORS

The Si atom has 14 electrons, which distribute themselves in the various atomic 
energy levels as shown in Figure 4.16. The inner shells (n = 1 and n = 2) are full 
and therefore “closed.” Since these shells are near the nucleus, when Si atoms come 
together to form the solid, they are not much affected and they stay around the par-
ent Si atoms. They can therefore be excluded from further discussion. The 3s and 
3p subshells are farther away from the nucleus. When two Si atoms approach, these 
electrons strongly interact with each other. Therefore, in studying the formation of 
bands in the Si solid, we will only consider the 3s and 3p levels.
 The first task is to examine why Si actually bonds with four neighbors, since 
the 3s orbital is full and there are only two electrons in the 3p orbitals. The full 3s 
orbital should not overlap a neighbor and become involved in bonding. Since only 
two 3p orbitals are half full, bonds should be formed with two neighboring Si atoms. 
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In reality, the 3s and 3p energy levels are quite close, and when five Si atoms approach 
each other, the interaction results in the four orbitals ψ(3s), ψ(3px), ψ(3py), and ψ(3pz) 
mixing together to form four new hybrid orbitals, which are directed in tetrahedral 
directions; that is, each one is aimed as far away from the others as possible as 
illustrated in Figure 4.17. We call this process sp3 hybridization, since one s orbital 
and three p orbitals are mixed. (The superscript 3 on p has nothing to do with the 
number of electrons; it refers to the number of p orbitals used in the hybridization.)
 The four sp3 hybrid orbitals, ψhyb, each have one electron, so they are half occu-
pied. This means that four Si atoms can have their orbitals ψhyb overlap to form bonds 
with one Si atom, which is what actually happens; thus, one Si atom bonds with 
four other Si atoms in tetrahedral directions.
 In the same way, one Si atom bonds with four H atoms to form the important 
gas SiH4, known as silane, which is widely used in the semiconductor technology 
to fabricate Si devices. In SiH4, four hybridized orbitals of the Si atom overlap with 
the 1s orbitals of four H atoms. In exactly the same way, one carbon atom bonds 
with four hydrogen atoms to form methane, CH4.
 There are two ways in which the hybrid orbital ψhyb can overlap with that of the 
neighboring Si atom to form two molecular orbitals. They can add in phase (both 
positive or both negative) or out of phase (one positive and the other negative) to 
produce a bonding or an antibonding molecular orbital ψB and ψA, respectively, with 
energies EB and EA as shown in Figure 4.18a to c. Each Si–Si bond thus corresponds 
to two paired electrons in a bonding molecular orbital ψB. In the solid, there are 
N(∼5 × 1022 cm−3) Si atoms, and there are nearly as many such ψB bonds. The interac-
tions between the ψB orbitals (i.e., the Si–Si bonds) lead to the splitting of the EB energy 
level to N levels, thereby forming an energy band labeled the valence band (VB) by 
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Figure 4.16 The  
electronic structure  
of Si.
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(a) Isolated Si (b) Si just before bonding
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Figure 4.17 (a) Si is in Group IV in the Periodic Table. An isolated Si atom has two 
electrons in the 3s and two electrons in the 3p orbitals. (b) When Si is about to bond, 
the one 3s orbital and the three 3p orbitals become perturbed and mixed to form four 
hybridized orbitals, ψhyb, called sp3 orbitals, which are directed toward the corners of 
a tetrahedron. The ψhyb orbital has a large major lobe and a small back lobe. Each ψhyb 
orbital takes one of the four valence electrons.
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virtue of the valence electrons it contains. Since the energy level EB is full, so is the 
valence band. Figure 4.18c and d illustrate the formation of the VB from EB.
 In the solid, the interactions between the N number of ψA orbitals result in the 
splitting of the energy level EA to N levels and the formation of an energy band 
that is completely empty and separated from the full valence band by a definite 
energy gap Eg. In this energy region, there are no states; therefore, the electron can-
not have energy with a value within Eg. The energy band formed from NψA orbitals 
is a conduction band (CB), as also indicated in Figure 4.18c and d.
 The electronic states in the VB (and also in the CB) extend throughout the whole 
solid, because they result from NψB orbitals interfering and overlapping each other. 
As before NψB, orbitals can overlap in N different ways to produce N distinct wave-
functions ψvb that extend throughout the solid. We cannot relate a particular electron 
to a particular bond or site because the wavefunctions ψvb corresponding to the VB 
energies are not concentrated at a single location. The electrical properties of solids 
are based on the fact that in solids, such as semiconductors and insulators, there are 
certain bands of allowed energies for the electrons, and these bands are separated by 
energy gaps, that is, bandgaps. The valence and conduction bands for the ideal Si 
crystal shown in Figure 4.18d are separated by an energy gap, or a bandgap, Eg, 
in which there are no allowed electron energy levels.

Si atom

Conduction band

Valence band

Energy gap, Eg

(a) (b) (c) (d)

3p

3s

Si crystal

ψB

ψB

ψA

ψA
ψhyb

ψhyb

Figure 4.18 (a) Formation of energy bands in the Si crystal first involves hybridization 
of 3s and 3p orbitals to four identical ψhyb orbitals, which are at 109.5° to each other 
as shown in (b). (c) ψhyb orbitals on two neighboring Si atoms can overlap to form  
ψB or ψA. The first is bonding orbital (full) and the second is an antibonding orbital 
(empty). In the crystal, ψB overlap to give the valence band (full) and ψA overlap to 
give the conduction band (empty) (d).
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 We can generalize the energy band diagram of a semiconductor as shown in 
Figure 4.19. At absolute zero of temperature the VB will be full of electrons and 
the CB will be empty. The conductivity of this ideal semiconductor would be zero 
as there are no free carriers to drift. It is possible to excite an electron from the VB 
to the CB if a photon of energy hf  equal or greater than the bandgap is incident on 
this semiconductor. The photon can be absorbed by an electron in the VB, which 
becomes photoexcited into the CB5. An electron in the CB is essentially in an empty 
band. We can consider this electron in the CB as a free carrier with a certain effec-
tive mass me*. If there is an electric field Ex along x then this photoexcited electron 
will be acted on by a force, F = −eEx, and it will try to move in the −x direction. 
For it to do so, there must be empty higher energy levels, so that as the electron 
accelerates and gains energy, it moves up in the band. When an electron collides 
with a lattice vibration, it loses the energy acquired from the field and drops down 
within the CB. Again, it should be emphasized that states in an energy band are 
extended; that is, the electron is not localized to any one atom.
 Note also that the photogeneration of an electron from the VB to the CB leaves 
behind a VB state with a missing electron. This unoccupied electron state has an 
apparent positive charge, because this crystal region was neutral prior to the removal 
of the electron. The VB state with the missing electron is called a hole and is denoted 
h+. The hole can “move” in the direction of the field by exchanging places with a 
neighboring valence electron hence it contributes to conduction, as will be discussed 
in Chapter 5.
 At temperatures above absolute zero, the atoms in a solid vibrate due to their 
thermal energy. Some of the atoms can acquire a sufficiently high energy from 
thermal fluctuations to strain and rupture their bonds. Physically, there is a possibil-
ity that the atomic vibration will impart sufficient energy to the electron for it to 
surmount the bonding energy and leave the bond. The electron must then enter a 
higher energy state. In the case of Si, this means entering a state in the CB, as shown 
in Figure 4.19. The excitation of electrons from the VB to the CB by lattice vibra-
tions is called thermal generation, and results in the generation of electrons in the 
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Figure 4.19 A simplified energy band  
diagram of a semiconductor. CB is the 
conduction band and VB is the valence 
band. At 0 K, the VB is full of electrons 
and the CB is empty. If a photon of energy 
hf  > Eg is incident on the semiconductor, it 
can be absorbed by an electron in the VB, 
which becomes photoexcited into the CB. 
Some electrons in the VB can be  
excited into the CB by thermal excitation, 
that is, occasional rupturing of Si-Si bonds 
by energetic lattice vibrations. Thermal 
generation creates electron and hole pairs.

 5 In pure intuitive terms, the incident photon has sufficient energy to be able to rupture a Si–Si bond and 
release a free electron. An electron is free only in the CB, so this process implies the photoexcitation of an 
electron from the VB to the CB.
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CB and holes in the VB as shown in Figure 4.19. The electrons in the CB and holes 
in the VB can contribute to conduction, and semiconductors above absolute zero of 
temperature have a finite conductivity.

ELECTRON AFFINITY AND PHOTOMULTIPLIER TUBES Photomultiplier tubes are used in 
various high gain photodetection applications that involve detecting low light intensities. A 
simplified structure of a photomultiplier tube is shown in Figure 4.20. The tube is evacuated 
and has a photocathode for receiving photons as signal. An incoming photon causes photo-
emission of an electron from the photocathode material. The photocathode can be metal, 
in which case the photoemission will be as in Figure 4.12. Usually, the photocathode is a 
semiconductor, or a metal that has its surface coated with a semiconductor. The photoemission 
in this case is shown in Figure 4.21a. The vacuum level is at an energy χ above the conduc-
tion band edge Ec. The energy χ needed to remove an electron from Ec to the vacuum is 
called the electron affinity of the semiconductor. Thus, only those photons with an energy 
hf  > Eg + χ can cause photoemission, because the electron has to be excited from the valence 
band (VB) to energies in the CB that are above χ as shown in Figure 4.21a. The photoemitted 
electron is then accelerated by a positive voltage applied to an electrode called a dynode as 
in Figure 4.20. When the accelerated projectile electron strikes the dynode material, it causes 
the emission of electrons from the dynode surface. Electron bombardment induced electron 
emission from a material is called secondary electron emission. When the accelerated elec-
tron strikes the dynode D1 it can release several electrons. All these electrons, the original 
and the secondary electrons, are then accelerated by the more positive voltage applied to the 
dynode D2. On impact with D2, further electrons are released by secondary emission. The 
secondary emission process continues at each dynode stage until the final electrode, called 
the anode, is reached whereupon all the electrons are collected which results in a signal. 
Typical applications for photomultiplier tubes are in X-ray and nuclear medical instruments 
(X-ray CT scanner, positron CT scanner, gamma camera, etc.), radiation measuring instru-
ments (e.g., radon counter), X-ray diffractometers and radiation measurement in high energy 
physics research.
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Figure 4.20 The photomultiplier tube.

Photomultiplier tubes.

 Courtesy of Hamamatsu.
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 When a sufficiently energetic electron impinges on a dynode material it knocks out an 
electron from the dynode. Usually, the dynode is a semiconducting material so that the 
incident energetic primary electron enters the CB and interacts with the valence electrons. 
This interaction results in an electron that is knocked out from the VB into the high energy 
levels in the CB, above Ec + χ; and if it is close to the surface, it can escape as shown in 
Figure 4.21b. Notice that the primary electron generates an electron and hole pair (EHP) as 
the electron is excited from the VB to the CB. A sufficiently energetic primary electron can 
release several secondary electrons, and it may itself escape the semiconductor, for example, 
if it is scattered towards the surface. The secondary electron yield δ is defined as

 δ =
Number of secondary electrons emitted
Number of incident primary electrons

Given that the electron multiplication at each dynode is δ, the overall gain after N dynodes 
is δN. The dynode material in modern photomultipliers have δ values around 5 – 10; and with 
several dynodes, the electron multiplication can easily reach ∼106. Typical dynode materials 
are compounds such as BeO, GaP, MgO, Cs3Sb.
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Figure 4.21 (a) Photoemission process in a semiconductor is different than in a metal and excites an electron 
from the VB to the CB. If this electron has a kinetic energy greater than the electron affinity and if it can reach 
the surface before being scattered, it can be emitted. (b) A primary projectile electron with sufficient energy 
knocks out an electron from the VB into the CB. The electron in the CB is a secondary electron that can  
escape the semiconductor if it can reach the surface. There may be several secondary electrons generated. 
Further, the primary electron can also be emitted back to vacuum.

CUTOFF WAVELENGTH OF A Si PHOTODETECTOR What wavelengths of light can be 
absorbed by a Si photodetector given Eg = 1.1 eV? Can such a photodetector be used in 
fiber-optic communications at light wavelengths of 1.31 μm and 1.55 μm?
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SOLUTION

The energy bandgap Eg of Si is 1.1 eV. A photon must have at least this much energy to 
excite an electron from the VB to the CB, where the electron can drift. Excitation corresponds 
to the breaking of a Si–Si bond. A photon of less energy does not get absorbed, because its 
energy will put the electron in the bandgap where there are no states. Thus, hc∕λ > Eg gives

  λ <
hc

Eg

=
(6.6 × 10−34 J s) (3 × 108 m s−1)

(1.1 eV)(1.6 × 10−19 J/eV)

  = 1.13 × 10−6 m  or  1.1 μm

Since optical communications networks use wavelengths of 1.3 and 1.55 μm, these light waves 
will not be absorbed by Si and thus cannot be detected by a Si photodetector.

4.4  ELECTRON EFFECTIVE MASS

When an electric field Ex is applied to a metal, an electron near the Fermi level can 
gain energy from the field and move to higher energy levels, as shown in Figure 4.13. 
The external force Fext = eEx is in the x direction, and it drives the electron along 
x. The acceleration of the electron is still given by a = Fext∕me, where me is the mass 
of the electron in vacuum.
 The law Fext = mea cannot strictly be valid for the electron inside a solid, because 
the electron interacts with the host ions and experiences internal forces Fint as it 
moves around, as depicted in Figure 4.22. The electron therefore has a PE that var-
ies with distance. Recall that we interpret mass as inertial resistance against accel-
eration per unit applied force. When an external force Fext is applied to an electron 
in the vacuum level, as in Figure 4.22a, the electron will accelerate by an amount

 avac =
Fext

me

 [4.4]

as determined by its mass me in vacuum.

Fext

e–

x

Fext
me

a =
Fext
me*

a =

Fint

x

Ex Ex

(a) An external force Fext applied to

an electron in a vacuum results in

an acceleration avac = Fext/me.

(b) An external force Fext applied to

an electron in a crystal results in an

acceleration acryst = Fext /me*.

Vacuum Crystal

Figure 4.22
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 When the same force Fext is applied to the electron inside a crystal, the accel-
eration of the electron will be different, because it will also experience internal 
forces, as shown in Figure 4.22b. Its acceleration in the crystal will be

 acryst =
Fext + Fint

me

 [4.5]

where Fint is the sum of all the internal forces acting on the electron, which is quite 
different than Equation 4.4. To the outside agent applying the force Fext, the electron 
will appear to be exhibiting a different inertial mass, since its acceleration will be 
different. It would be most useful for the external agent if the effect of the internal 
forces in Fint could be accounted for in a simple way, and if the acceleration could 
be calculated from the external force Fext alone, through something like Equation 4.4. 
This is indeed possible.
 In a crystalline solid, the atoms are arranged periodically, and the variation 
of Fint, and hence the PE, or V(x), of the electron with distance along x, is also 
periodic. In principle, then, the effect on the electron motion can be predicted 
and accounted for. When we solve the Schrödinger equation with the periodic PE, 
or V(x), we essentially obtain the effect of these internal forces on the electron 
motion. It has been found that when the electron is in a band that is not full, we 
can still use Equation 4.4, but instead of the mass in vacuum me, we must use 
the effective mass m*e of the electron in that particular crystal. The effective mass 

is a quantum mechanical quantity that behaves in the same way as the inertial 
mass in classical mechanics. The acceleration of the electron in the crystal is 
then  simply

 acryst =
Fext

m*e
 [4.6]

 The effects of all internal forces are incorporated into m*e. It should be 
emphasized that m*e is obtained theoretically from the solution of the Schrödinger 
equation for the electron in a particular crystal, a task that is by no means 
trivial. However, the effective mass can be readily measured. For some of the 
familiar metals, m*e is very close to me. For example, in silver, m*e = me for all 
practical purposes, whereas in lithium m*e = 2.2me, as shown in Table 4.2. On 
the other hand, m*e for many metals and semiconductors is appreciably different 
than the electron mass in vacuum and can even be negative. (m*e depends on the 
properties of the band that contains the electron as discussed in Section 5.13.)

Table 4.2 Effective mass m*e of electrons in some metals

Metal Ag Au Bi Cu Fe K Li Mg Na Zn
m*e
me

 1.0 1.1 0.008 1.3 12 1.2 2.2 1.3 1.2 0.85

 Note: Table compiled from multiple sources; values are typical.
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4.5  DENSITY OF STATES IN AN ENERGY BAND

Although we know there are many energy levels (perhaps ∼1023) in a given band, 
we have not yet considered how many states (or electron wavefunctions) there are 
per unit energy per unit volume in that band. Consider the following intuitive argu-
ment. The crystal will have N atoms and there will be N electron wavefunctions ψ1, 
ψ2, . . . , ψN that represent the electron within the whole crystal. These wavefunctions 
are constructed from N different combinations of atomic wavefunctions, ψA, ψB, 
ψC,  .  . . as schematically illustrated in Figure 4.23a,6 starting with
 ψ1 = ψA + ψB + ψC + ψD + · · ·

all the way to alternating signs

 ψN = ψA − ψB + ψC − ψD + · · ·

and there are N(∼1023) combinations. The lowest-energy wavefunction will be ψ1 
constructed by adding all atomic wavefunctions (all in phase), and the highest-energy 
wavefunction will be ψN from alternating the signs of the atomic wavefunctions, 
which will have the highest number of nodes. Between these two extremes, especially 
around N∕2, there will be many combinations that will have comparable energies 
and fall near the middle of the band. (By analogy, if we arrange N = 10 coins by 
heads and tails, there will be many combinations of coins in which there are 5 heads 
and 5 tails, and only one combination in which there are 10 heads or 10 tails.) We 
therefore expect the number of energy levels, each corresponding to an electron 
wavefunction in the crystal, in the central regions of the band to be very large as 
depicted in Figure 4.23b and c.
 Figure 4.23c illustrates schematically how the energy and volume density of 
electronic states change across an energy band. We define the density of states g(E) 
such that g(E) dE is the number of states (i.e., wavefunctions) in the energy interval 
E to (E + dE) per unit volume of the sample. Thus, the number of states per unit 
volume up to some energy E′ is

 Sv(E′ ) = ∫
E′

0

g(E) dE [4.7]

which is called the total number of states per unit volume with energies less than 
E′. This is denoted Sv(E′).
 To determine the density of states function g(E), we must first determine the 
number of states with energies less than E′ in a given band. This is tantamount to 
calculating Sv(E′) in Equation 4.7. Instead, we will improvise and use the energy 
levels for an electron in a 3D potential well. Recall that the energy of an electron in 
a cubic PE well of size L is given by

 E =
h2

8meL
2
(n2

1 + n2
2 + n2

3)  [4.8]

 6 This intuitive argument, as schematically depicted in Figure 4.23a, is obviously highly simplified because the 
solid is three-dimensional (3D) and we should combine the atomic wavefunctions not on a linear chain but on a 
3D lattice. In the 3D case there are large numbers of wavefunctions with energies that fall in the central regions  
of the band.
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where n1, n2, and n3 are integers 1, 2, 3, . . . . The spatial dimension L of the well 
now refers to the size of the entire solid, as the electron is confined to be some-
where inside that solid. Thus, L is very large compared to atomic dimensions, 
which means that the separation between the energy levels is very small. We will 
use Equation 4.8 to describe the energies of free electrons inside the solid (as in 
a metal).
 Each combination of n1, n2, and n3 is one electron orbital state. For example, 
ψn1,n2,n3

= ψ1,1,2 is one possible orbital state. Suppose that in Equation 4.8 E is given 
as E′. We need to determine how many combinations of n1, n2, n3 (i.e., how many ψ) 
have energies less than E′, as given by Equation 4.8. Assume that (n2

1 + n2
2 + n2

3) = n′2. 
The object is to enumerate all possible choices of integers for n1, n2, and n3 that 
satisfy n2

1 + n2
2 + n2

3 ≤ n′2.
 The two-dimensional 2D case is easy to solve. Consider n2

1 + n2
2 ≤ n′2 and the 

2D n-space where the axes are n1 and n2, as shown in Figure 4.24. The 2D space 
is divided by lines drawn at n1 = 1, 2, 3, . . . and n2 = 1, 2, 3, . . . into infinitely 
many boxes (squares), each of which has a unit area and represents a possible state 
ψn1,n2

. For example, the state n1 = 1, n2 = 3 is shaded, as is that for n1 = 2, n2 = 2.
 Clearly, the area contained by n1, n2 and the circle defined by n′2 = n2

1 + n2
2 

( just like r2 = x2 + y2) is the number of states that satisfy n2
1 + n2

2 ≤ n′2. This area 
is 1

4(πn′2) .

(a) (b) (c)

❘❚❯❱❲❳ ❨❩❚❬

E
ψN

ψ1

g( E)

Figure 4.23 (a) In the solid there are N atoms and N extended electron wavefunctions from ψ1 
all the way to ψN. There are many wavefunctions, states, that have energies that fall in the central 
regions of the energy band. Note that although only eight atoms are shown, these are eight  
sequential atoms among N atoms, and N is very large. Overall, the wavefunctions for N atoms 
must be symmetric or antisymmetric. (b) The distribution of states in the energy band; darker  
regions have a higher number of states. (c) Schematic representation of the density of states  
g(E ) versus energy E.
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 In the 3D case, n2
1 + n2

2 + n2
3 ≤ n′2 is required, as indicated in Figure 4.25. This is 

the volume contained by the positive n1, n2, and n3 axes and the surface of a sphere of 
radius n′. Each state has a unit volume, and within the sphere, n2

1 + n2
2 + n2

3 ≤ n′2 is 
satisfied. Therefore, the number of orbital states Sorb(n′) within this volume is given by

 Sorb(n′ ) =
1

8(4

3
 πn′3) =

1

6
 πn′3

 Each orbital state can take two electrons with opposite spins, which means that 
the number of states, including spin, is given by

 S(n′ ) = 2Sorb(n′ ) =
1

3
πn′3

 We need this expression in terms of energy. Substituting n′2 = 8meL2E′∕h2 from 
Equation 4.8 in S(n′), we get

 S(E′ ) =
πL3(8meE′ )3∕2

3h3

 Since L3 is the physical volume of the solid, the number of states per unit volume 
Sv(E′) with energies E ≤ E′ is

 Sv(E′ ) =
π(8meE′ )3∕2

3h3
 [4.9]

 Furthermore, from Equation 4.7, dSv∕dE = g(E). By differentiating Equation 4.9 
with respect to energy, we get

 g(E) = (8π21∕2)(me

h2 )
3∕2

E1∕2 [4.10]

Figure 4.24 Each state, or electron wavefunction in 
the crystal, can be represented by a box at n1, n2.

Figure 4.25 In three dimensions, the volume  
defined by a sphere of radius n′ and the positive 
axes n1, n2, and n3, contains all the possible  
combinations of positive n1, n2, and n3 values that 
satisfy n2

1 + n2
2 + n2

3 ≤ n′2.
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 Equation 4.10 shows that the density of states g(E) increases with energy as E1∕2 
from the bottom of the band. As we approach the top of the band, according to our 
understanding in Figure 4.23c, g(E) should decrease with energy as (Etop − E)1∕2, 
where Etop is the top of the band, so that as E → Etop, g(E) → 0. The electron mass 
me in Equation 4.10 should be the effective mass m*e as in Equation 4.6. Further, 
Equation 4.10 strictly applies only to free electrons in a crystal. However, we will 
frequently use it to approximate the true g(E) versus E behavior near the band edges 
for both metals and semiconductors.
 Having found the distribution of the electron energy states, Equation 4.10, we 
now wish to determine the number of states that actually contain electrons; that is, 
the probability of finding an electron at an energy level E. This is given by the 
Fermi–Dirac statistics.
 As an example, one convenient way of calculating the population of a city is to 
find the density of houses in that city (i.e., the number of houses per unit area), 
multiply that by the probability of finding a human in a house, and finally, integrate 
the result over the area of the city. The problem is working out the chances of actu-
ally finding someone at home, using a mathematical formula. For those who like 
analogies, if g(A) is the density of houses and f (A) is the probability that a house is 
occupied, then the population of the city is

 n = ∫
City

 f (A)g(A) dA

where the integration is done over the entire area of the city. This equation can be 
used to find the number of electrons per unit volume within a band. If E is the 
electron energy and f (E) is the probability that a state with energy E is occupied, 
then

 n = ∫
Band

 f (E)g(E) dE

where the integration is done over all the energies of the band.

X-RAY EMISSION AND THE DENSITY OF STATES IN A METAL Consider what happens 
when a metal such as Al is bombarded with high-energy electrons. The inner atomic energy 
levels are not disturbed in the solid, so these inner levels remain as distinct single levels, each 
one localized to the parent atom. When an energetic electron hits an electron in one of the 
inner atomic energy levels, it knocks out this electron from the metal leaving behind a vacancy 
in the inner core as depicted in Figure 4.26a. An electron in the energy band of the solid can 
then fall down to occupy this empty state and emit a photon in the process. The energy dif-
ference between the energies in the band and the inner atomic level is in the X-ray range, so 
the emitted photon is an X-ray photon. Since electrons occupy the band from the bottom EB 
to the Fermi level EF, the emitted X-ray photons have a range of energies corresponding to 
transitions from EB and EF to the inner atomic level as shown in Figure 4.26b. These energies 
are in the soft X-ray spectrum. We assumed that the levels above EF are almost empty, though, 
undoubtedly, there is no sharp transition from full to empty levels at EF. Further, since the 
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density of states increases from EB toward EF, there are more and more electrons that can 
fall down to the inner atomic level as we move from EB toward EF. Therefore, the intensity 
of the emitted X-ray radiation increases with photon energy until the energy reaches the Fermi 
level beyond which there are only a small number of electrons available for the transit. 
Figure 4.26c and d contrasts the emission spectra from an aluminum crystal (solid) and its 

vapor. The line spectra from a vapor become an emission band in the spectrum of the solid. 

The emitted radiation from the solid that involves the transitions of the conduction band 

electrons to core levels is called soft X-ray emission spectrum.

 The X-ray intensity emitted from Al in Figure 4.26b starts to rise at around 61 eV and 

then sharply falls around 73 eV. Thus the energy range is 12 eV, which represents approximately 

the Fermi energy with respect to the bottom of the band, that is, EF ≈ 73 − 61 = 12 eV with 
respect to EB.
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Figure 4.26 (a) High-energy electron bombardment knocks out an electron from the closed 
inner L shell leaving an empty state. An electron from the energy band of the metal drops into 
the L shell to fill the vacancy and emits a soft X-ray photon in the process. (b) The spectrum 
(intensity versus photon energy) of soft X-ray emission from a metal involves a range of  
energies corresponding to transitions from the bottom of the band and from the Fermi level 
to the L shell. The intensity increases with energy until around EF where it drops sharply.  
(c) and (d) contrast the emission spectra from a solid and vapor (isolated gas atoms).
 Source: Kinner, H.W.B., Reports on Progress in Physics, 5, 257, 1938 and Crisp, R.S. and Williams S.E., 

Philosophical Magazine, 5, 1205, 1960.
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DENSITY OF STATES IN A BAND Given that the width of an energy band is typically 
∼10 eV, calculate the following, in per cm3 and per eV units:

a. The density of states at the center of the band.
b. The number of states per unit volume within a small energy range kT about the center.
c. The density of states at kT above the bottom of the band.
d. The number of states per unit volume within a small energy range of kT to 2kT from the 

bottom of the band.

SOLUTION

The density of states, or the number of states per unit energy range per unit volume g(E), is 
given by

 g(E) = (8π21∕2)(me

h2 )
3∕2

 E1∕2

which gives the number of states per cubic meter per Joule of energy. Substituting E = 5 eV, 
we have

 gcenter = (8π21∕2)[ 9.1 × 10−31

(6.626 × 10−34)2]
3∕2

(5 × 1.6 × 10−19)1∕2 = 9.50 × 1046 m−3 J−1

 Converting to cm−3 and eV−1, we get

 gcenter = (9.50 × 1046 m−3 J−1)(10−6 m3 cm−3)(1.6 × 10−19 J eV−1)

 = 1.52 × 1022 cm−3 eV−1

 If δE is a small energy range (such as kT), then, by definition, g(E) δE is the number 
of states per unit volume in δE. To find the number of states per unit volume within kT at 
the center of the band, we multiply gcenter by kT or (1.52 × 1022 cm−3 eV−1)(0.026 eV) to get 
3.9 × 1020 cm−3. This is not a small number!
 At kT above the bottom of the band, at 300 K (kT = 0.026 eV), we have

  g0.026 = (8π21∕2)[ 9.1 × 10−31

(6.626 × 10−34)2]
3∕2

(0.026 × 1.6 × 10−19)1∕2

  = 6.84 × 1045 m−3 J−1

 Converting to cm−3 and eV−1 we get

 g0.026 = (6.84 × 1045 m−3 J−1)(10−6 m3 cm−3)(1.6 × 10−19 J eV−1)

 = 1.10 × 1021 cm−3 eV−1

Within kT, the volume density of states is

 (1.10 × 1021 cm−3 eV−1)(0.026 eV) = 2.8 × 1019 cm−3

This is very close to the bottom of the band and is still very large.

 EXAMPLE 4.8
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TOTAL NUMBER OF STATES IN A BAND

a. Based on the overlap of atomic orbitals to form the electron wavefunction in the crystal, 
how many states should there be in a band?

b. The density of states function in Equation 4.10 should be written in terms of the effec-
tive mass me* of electrons in the band as

 g(E) = (8π21∕2)(m*e
h2 )

3∕2

 E1∕2

  By integrating g(E), estimate the total number of states in the 3s-band of Na and 
compare this with the atomic concentration. Assume that the density of states in 
Figure 4.23c is symmetric and the center of the band is roughly at 3 eV. Use me* for 
Na given in Table 4.2.

SOLUTION

a. We know that when N atoms come together to form a solid, N atomic orbitals can over-
lap N different ways to produce N orbitals or 2N states in the crystal, since each orbital 
has two states, spin up and spin down. These states form the band.

b. To estimate the total volume density of states, we assume that the density of states g(E) 
reaches its maximum at the center of the band E = Ecenter = 3 eV. Integrating g(E) from 
the bottom of the band, E = 0, to the center, E = Ecenter, yields the number of states per 
unit volume up to the center of the band. This is roughly half the total number of states 
in the whole band, (see Figure 4.23c), that is, 1

2 Sband, where Sband is the number of states 
per unit volume in the band and is determined by

 
1
2

 Sband = ∫
Ecenter

0

g(E) dE =
16π 21∕2

3 (m*e
h2 )

3∕2

 E 
3∕2
center

 or

  
1
2

Sband =
16π 21∕2

3 [1.2 × 9.1 × 10−31 kg

(6.626 × 10−34 J s)2 ]
3∕2

(3 eV × 1.6 × 10−19 J/eV)3∕2

  = 3.1 × 1028 m−3 = 3.1 × 1022 cm−3

 Thus

 Sband = 6.2 × 1022 states cm−3

   We must now calculate the number of atoms per unit volume in sodium. Given the 
density d = 0.968 g cm−3 and the atomic mass Mat = 22.99 g mol−1 of sodium, the atomic 
concentration is

 nAg =
dNA

Mat
= 2.54 × 1022 atoms cm−3

   The density of states in the 3s band is about about 2.4 times the atomic concentration. 
Given the crude approximations we have used, the estimate can be considered to be rea-
sonably close to the expected value of twice the atomic concentration for the 3s-band.

 EXAMPLE 4.9
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4.6  STATISTICS: COLLECTIONS OF PARTICLES

4.6.1 BOLTZMANN CLASSICAL STATISTICS

Given a collection of particles in random motion and colliding with each other,7 we 
need to determine the concentration of particles in the energy range E to (E + dE). 
Consider the process shown in Figure 4.27, in which two electrons with energies E1 
and E2 interact and then move off in different directions, with energies E3 and E4. 
Let the probability of an electron having an energy E be P(E), where P(E) is the 
fraction of electrons with an energy E. Assume there are no restrictions to the elec-
tron energies, that is, we can ignore the Pauli exclusion principle. The probability 
of this event is then P(E1)P(E2). The probability of the reverse process, in which 
electrons with energies E3 and E4 interact, is P(E3)P(E4). Since we have thermal 
equilibrium, that is, the system is in equilibrium, the forward process must be just 
as likely as the reverse process, so

 P(E1)P(E2) = P(E3)P(E4) [4.11]

Furthermore, the energy in this collision must be conserved, so we also need

 E1 + E2 = E3 + E4 [4.12]

 We can show that P(E) = A exp(−βE), where A and β are constants, is a solution 
by simply substituting this expression into Equations 4.11 and 4.12. Further, we can 
also show that β must be 1∕kT, where k is the Boltzmann constant and T is the 
temperature, by comparing the average energy calculated from using P(E) with that 
observed in experiments.8

 P(E) = A exp(−
E

kT) [4.13]

Equation 4.13 is the Boltzmann probability function and is shown in Figure 4.28. 
The probability of finding a particle at an energy E therefore decreases exponentially 
with energy. We assume, of course, that any number of particles may have a given 
energy E. In other words, there is no restriction such as permitting only one particle 
per state at an energy E, as in the Pauli exclusion principle.
 Suppose that we have N1 particles at energy level E1 and N2 particles at a higher 
energy E2. Then, by Equation 4.13, we have

 
N2

N1
= exp(−

E2 − E1

kT ) [4.14]

 If E2 − E1 ≫ kT, then N2 can be orders of magnitude smaller than N1. As the 
temperature increases, N2∕Nl also increases. Therefore, increasing the temperature 
populates the higher energy levels.
 Classical particles obey the Boltzmann statistics. Whenever there are many more 
states (by orders of magnitude) than the number of particles, the likelihood of 

 7 From Chapter 1, we can associate this with the kinetic theory of gases. The energies of the gas molecules, 
which are moving around randomly, are distributed according to the Maxwell–Boltzmann statistics.

 8 See Question 4.10.
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two particles having the same set of quantum numbers is negligible and we do not have 
to worry about the Pauli exclusion principle. In these cases, we can use the Boltzmann 
statistics. An important example is the statistics of electrons in the conduction band 
of a semiconductor where, in general, there are many more states than electrons.

4.6.2 FERMI–DIRAC STATISTICS

Now consider the interaction for which no two electrons can be in the same quantum 
state, which is essentially obedience to the Pauli exclusion principle, as shown in 
Figure 4.27. We assume that we can have only one electron in a particular quantum 
state ψ (including spin) associated with the energy value E. We therefore need those 
states that have energies E3 and E4 to be not occupied. Let f (E) be the probability 
that an electron is in such a state, with energy E in this new interaction environment. 
The forward event in Figure 4.27 requires that we have an electrons at E1 and E2 and, 
at the same time, E3 and E4 must be unoccupied (empty). Thus, the probability of 
the forward event is given by.

 f (E1) f (E2)[1 − f (E3)][1 − f (E4)]

The square brackets represent the probability that the states with energies E3 and E4 
are empty. In thermal equilibrium, the reverse process, the electrons with E3 and E4 
interacting to transfer to E1 and E2, has just as equal a likelihood as the forward 
process. Thus, f (E) must satisfy the equation

 f(E1) f (E2)[1 − f (E3)][1 − f (E4)] = f (E3) f (E4)[1 − f (E1)][1 − f (E2)] [4.15]

In addition, for energy conservation, we must have

 E1 + E2 = E3 + E4 [4.16]

E1

E2

E4

E3

Interaction

ψ4
ψ2

ψ1 ψ3

Figure 4.27 Two electrons with initial  
wavefunctions ψ1 and ψ2 at E1 and E2 interact 
and end up at different energies E3 and E4.

Their corresponding wavefunctions are ψ3  
and ψ4.

∝ exp(–E/kT )

N2 N1

E

E2

E1

0 N(E)

Figure 4.28 The Boltzmann  
energy distribution describes the 
statistics of particles, such as  
electrons, when there are many 
more available states than the 
number of particles.
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By an “intelligent guess,” the solution to Equations 4.15 and 4.16 is

 f (E) =
1

1 + A exp( E

kT)
 [4.17]

where A is a constant. You can check that this is a solution by substituting Equation 
4.17 into 4.15 and using Equation 4.16. The reason for the term kT in Equation 4.17 
is not obvious from Equations 4.15 and 4.16. It appears in Equation 4.17 so that at 
sufficiently high energies Equation 4.17 becomes the same as the Boltzmann distri-
bution in Equation 4.13 in agreement with experiments.9 In a more rigorous approach 
we would use a constant 1∕β instead of kT in Equation 4.17, and then show that β 
must be 1∕kT by comparing the predictions based on Equation 4.17 with experiments. 
Letting A = exp(−EF∕kT), we can write Equation 4.17 as

 f (E) =
1

1 + exp(E − EF

kT )
 [4.18]

where EF is a constant called the Fermi energy. The probability of finding an 
electron in a state with energy E is given by Equation 4.18, which is called the 
Fermi–Dirac function.

 The behavior of the Fermi–Dirac function is shown in Figure 4.29. Note 
the  effect of temperature. As T increases, f (E) extends to higher energies. At 

Paul Adrien Maurice Dirac (1902–1984) 
received the 1933 Nobel prize for 
physics with Erwin Schrödinger.  
His first degree was in electrical 
engineering from Bristol University. 
He obtained his PhD in 1926 from 
Cambridge University under Ralph 
Fowler.

 © Pictorial Press Ltd./Alamy Stock 
Photo.

 9 If N1 and N2 are the number of electrons at energies E1 and E2, then the Boltzman distribution predicts 
Equation (4.14) for N1∕N2. At sufficiently high energies Equation 4.17 gives the same prediction for N1∕N2. The 
reason is that at very high energies there are very few electrons compared with the available number of states 
at these energies so that it very unlikely that two electrons will try to occupy the same state; that is the Pauli 
exclusion principle is not needed and the electron statistics is simply the Boltzmann distribution.

Fermi–Dirac 

statistics
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energies of a few kT (0.026 eV) above EF, f (E) behaves almost like the Boltzmann 
function

 f (E) = exp[−
(E − EF)

kT ]  (E − EF) ≫ kT  [4.19]

 Above absolute zero, at E = EF, f (EF) = 1
2. We define the Fermi energy as that 

energy for which the probability of occupancy f (EF) equals 1
2. The approximation to 

f (E) in Equation 4.19 at high energies is often referred to as the Boltzmann tail to 
the Fermi–Dirac function. Notice that the spread of f (E) around EF increases with 
temperature. This spread around EF is typically several kTs.

4.7  QUANTUM THEORY OF METALS

4.7.1 FREE ELECTRON MODEL
10

We know that the number of states g(E) for an electron, per unit energy per unit 
volume, increases with energy as g(E) ∝ E1∕2. We have also calculated that the prob-
ability of an electron being in a state with an energy E is the Fermi–Dirac function 
f (E). Consider the energy band diagram for a metal and the density of states g(E) 
for that band, as shown in Figure 4.30a and b, respectively.
 At absolute zero, all the energy levels up to EF are full. At 0 K, f (E) has the 
step form at EF (Figure 4.29). This clarifies why EF in f (E) is termed the Fermi 
energy. At 0 K, f (E) = 1 for E < EF, and f (E) = 0 for E > EF, so at 0 K, EF sepa-
rates the empty and full energy levels. This explains why we restricted ourselves to 
0 K or thereabouts when we introduced EF in the band theory of metals.
 At some finite temperature, f (E) is not zero beyond EF, as indicated in Figure 
4.30c. This means that some of the electrons are excited to, and thereby occupy, 

E

EF

0 1

T1

f(E)
1
2

T = 0

T2 > T1

Figure 4.29 The Fermi–Dirac function f (E ) describes the statistics 
of electrons in a solid. The electrons interact with each other and 
the environment, obeying the Pauli exclusion principle.

 10 The free electron model of metals is also known as the Sommerfeld model.
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energy levels above EF. If we multiply g(E) by f (E), we obtain the number of elec-
trons per unit energy per unit volume, denoted nE. The distribution of electrons in 
the energy levels is described by nE = g(E) f (E).
 Since f(E) = 1 for E ≪ EF, the states near the bottom of the band are all occupied; 
thus, nE ∝ E1∕2 initially. As E passes through EF, f (E) starts decreasing sharply. As 
a result, nE takes a turn and begins to decrease sharply as well, as depicted in Figure 
4.30d. “The spread in nE about EF is around 4kT. But EF is usually a few electron 
volts so that the spread is actually quite narrow.” (Figure 4.30(d) is exaggerated.)

Arnold Johannes Wilhelm Sommerfeld (1868–1951) 
was responsible for the quantum mechanical free 
electron theory of metals covered in this section. 
Sommerfeld was the Director of Institute of  
Theoretical Physics, specially established for him, 
at Munich University.
 AIP Emilio Segrè Visual Archives, Physics Today 
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Figure 4.30 (a) Above 0 K, due to thermal excitation, some of the electrons are at energies above EF.  
(b) The density of states, g(E ) versus E in the band. (c) The probability of occupancy of a state at an energy E 
is f (E ). (d) The product g(E )f (E ) is the number of electrons per unit energy per unit volume, or the electron 
concentration per unit energy. The area under the curve on the energy axis is the concentration of electrons 
in the band.
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 In the small energy range E to (E + dE), there are nE dE electrons per unit 
volume. When we sum all nE dE from the bottom to the top of the band, we get the 
total number of valence electrons per unit volume, n, in the metal, as follows:

 n = ∫
Top of band

0

nE 
 dE = ∫

Top of band

0

g(E)  f (E) dE [4.20]

 Since f(E) falls very sharply when E > EF, we can carry the integration to E = ∞, 
rather than to (EF + Φ), because f → 0 when E ≫ EF. Putting in the functional 
forms of g(E) and f (E) (e.g., from Equations 4.10 and 4.18), we obtain

 n =
8π21∕2m3∕2

e

h3 ∫
∞

0

E1∕2dE

1 + exp(E − EF

kT )
 [4.21]

 If we could integrate this, we would obtain an expression relating n and EF. At 
0 K, however, EF = EFO and the integrand exists only for E < EFO. If we integrate 
at 0 K, Equation 4.21 yields

 EFO = ( h2

8me
)(3n

π )
2∕3

 [4.22]

 As an example, consider aluminum, and assume that each Al atom donates 3 
electrons to the sea of conduction electrons. We can take the electron concentration 
n = 3 × (Concentration of Al atoms), or 6.022 × 1028 m−3, and substitute this n into 
Equation 4.22 to find EFO = 11.7 eV. In Example 4.7, from the soft X-ray emission 
spectrum in Figure 4.26, we found that the Fermi energy was approximately 12 eV. 
Further, we can also evaluate the speed vF of the electrons at the Fermi level by 
writing 1

2mev 

2
F = EFO, which leads to vF = 2.0 × 106 m s−1.

 It may be thought that EF is temperature independent, since it was sketched that 
way in Figure 4.29. However, in our derivation of the Fermi–Dirac statistics, there 
was no restriction that demanded this. Indeed, since the number of electrons in a 
band is fixed, EF at a temperature T is implicitly determined by Equation 4.21, which 
can be solved to express EF in terms of n and T. It turns out that at 0 K, EF is given 
by Equation 4.22, and it changes very little with temperature. In fact, by utilizing 
various mathematical approximations, it is not too difficult to integrate Equation 4.21 
to obtain the Fermi energy at a temperature T, as follows:

 EF(T) = EFO[1 −
π2

12( kT

EFO
)

2

] [4.23]

which shows that EF(T) is only “slightly” temperature dependent, since EFO ≫ kT.
 The Fermi energy has an important significance in terms of the average energy 
Eav of the conduction electrons in a metal. In the energy range E to (E + dE), 
there are nE dE electrons with energy E. The average energy of an electron will 
therefore be

 Eav =
∫  EnE dE

∫  nE dE
 [4.24]

Fermi energy 

at T = 0 K

Fermi energy 

at T(K)
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 If we substitute g(E) f (E) for nE and integrate, the result at 0 K is

 Eav(0) =
3
5

 EFO [4.25]

Above absolute zero, the average energy is approximately

 Eav(T) =
3
5

 EFO[1 +
5π2

12 ( kT

EFO
)

2

] [4.26]

 Since EFO ≫ kT, the second term in the square brackets is much smaller than 
unity, and Eav(T) shows only a very weak temperature dependence. Furthermore, in 
our model of the metal, the electrons are free to move around within the metal, where 
their potential energy PE is zero, whereas outside the metal, it is EF + Φ (Figure 4.11). 
Therefore, their energy is purely kinetic. Thus, Equation 4.26 gives the average KE 
of the electrons in a metal

 
1
2

mev 

2
e = Eav ≈

3
5

EFO

where ve is the root mean square (rms) speed of the electrons, which is simply called 
the effective speed. The effective speed ve depends on the Fermi energy EFO and is 
relatively insensitive to temperature. Compare this with the behavior of molecules 
in an ideal gas. In that case, the average KE = 3

2 kT , so 1
2mv2 = 3

2 kT. Clearly, the 
average speed of molecules in a gas increases with temperature.
 The relationship 1

2 mv2
e ≈ 3

5 EFO is an important conclusion that comes from the 
application of quantum mechanical concepts, ideas that lead to g(E) and f (E) and so 
on. It cannot be proved without invoking quantum mechanics. The fact that the aver-
age electronic speed is nearly constant is the only way to explain the observation that 
the resistivity of a metal is proportional to T (and not T3∕2), as we saw in Chapter 2.

4.7.2 CONDUCTION IN METALS

We know from our energy band discussions that in metals only those electrons in a 
small range ΔE around the Fermi energy EF contribute to electrical conduction as 
shown in Figure 4.13c. The concentration nF of these electrons is approximately 
g(EF) ΔE inasmuch as ΔE is very small. All these electrons within ΔE around EF 
move approximately with the Fermi speed vF. The electron a moves to a′, as shown 
in Figure 4.13b and c, and then it is scattered to an empty state above b′. In steady 
conduction, all the electrons in the energy range ΔE that are moving to the right are 
not canceled by any moving to the left and hence contribute to the current. An 
electron at the bottom of the ΔE range gains energy ΔE to move a′ in a time inter-
val Δt that corresponds to the scattering time τ. It gains a momentum Δpx. Since 
Δpx∕Δt = external force = eEx, we have Δpx = τeEx. The electron a has an energy 
E = p2

x∕(2m*e) which we can differentiate to obtain ΔE when the momentum changes 
by Δpx,

 ΔE =
px

m*e
Δpx =

(m*e vF)
m*e

(τeEx) = evF τEx

Average 

energy per 

electron at 0 K

Average 

energy per 

electron at 

T(K)
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 The current Jx is due to all the electrons in the range ΔE which are moving 
toward the right in Figure 4.13c,

 Jx = enFvF = e[g(EF)ΔE]vF = e[g(EF)evFτEx]vF = e2v 2
Fτg(EF)Ex

The conductivity is therefore

 σ = e2v 2
Fτg(EF)

 However, the numerical factor is wrong because Figure 4.13c considers only a 
hypothetical 1D crystal. In a 3D crystal, the conductivity is one-third of the conduc-
tivity value just determined:

 σ =
1
3

 e2v 
2
F  

τg(EF)  [4.27]

 This conductivity expression is in sharp contrast with the classical expression in 
which all the electrons contribute to conduction. According to Equation 4.27, what 
is important is the density of states at the Fermi energy g(EF). For example, Cu and 
Mg are metals with valencies I and II. Classically, Cu and Mg atoms each contribute 
one and two conduction electrons, respectively, into the crystal. Thus, we would 
expect Mg to have higher conductivity. However, the Fermi level in Mg is where the 
top tail of the 3s band overlaps the bottom tail of the 3p band where the density of 
states is small. In Cu, on the other hand, EF is nearly in the middle of the 4s band 
where the density of states is high. Thus, Mg has a lower conductivity than Cu.
 The scattering time τ in Equation 4.27 assumes that the scattered electrons at 
EF remain in the same energy band. In certain metals, there are two different energy 
bands that overlap at EF. For example, in Ni (see Figure 4.68), 3d and 4s bands 
overlap at EF. An electron can be scattered from the 4s to the 3d band, and vice 
versa. Electrons in the 3d band have very low drift mobilities and effectively do not 
contribute to conduction, so only g(EF) of the 4s band operates in Equation 4.27. 
Since 4s to 3d band scattering is an additional scattering mechanism, by virtue of 
Matthiessen’s rule, the scattering time τ for the 4s band electrons is shortened. Thus, 
Ni has poorer conductivity than Cu.
 In deriving Equation 4.27 we did not assume a particular density of states model. 
If we now apply the free electron model for g(EF) as in Equation 4.10, and also relate 
EF to the total number of conduction electrons per unit volume n as in Equation 4.22, 
we would find that the conductivity is the same as the Drude model, that is,

 σ =
e2nτ

me

 [4.28]

Conductivity 

of Fermi-level 

electrons

Drude model 

and free 

electrons

FERMI ENERGY OF ELECTRONS IN SODIUM Calculate the Fermi energy at 0 K and at 
300 K (room temperature) for sodium. What is the speed vF of Fermi electrons? How does 
this compare with the thermal velocity? The density d of Na is 0.97 g cm−3 and the atomic 
mass (atomic weight) Mat is 22.99 g mol−1. Figure 4.31 shows the emission of soft X-rays 
obtained from a sodium sample that has been bombarded with electrons. The experiment is 
similar to that described in Example 4.7. An inner core electron is knocked out and a con-
duction electron falls down to fill the empty inner core state and emits an X-ray photon. 

 EXAMPLE 4.10
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The transition probability is proportional to two factors: (a) how conduction many electrons 
are available at E to make the transition, that is nE or f (E)g(E), and (b) the quantum mechan-
ical transition probability, which is proportional to (hf )3. It is therefore customary to plot the 
measured X-ray emission intensity I divided by f 3 to indicate f(E)g(E) as shown in Figure 4.31. 
How does your calculation compare with the experiments?

SOLUTION

Sodium (Na) is a metal in which each Na atom donates one electron to the sea of conduction 
electrons inside the crystal. If NA is Avogadro’s number, the concentration of electrons n is

 n =
dNA

Mat
=

0.97 g cm−3 × 6.02 × 1023 mole

22.99 g mol−1 = 2.54 × 1022 cm−3.

 The Fermi energy at 0 K is given by Equation 4.22,

  EFO = ( h2

8me
)(3n

π )
2∕3

=
(6.626 × 10−34 J s)2

(8)(9.109 × 10−31 kg)((3)(2.65 × 1028 m−3)
π )

2∕3

  = 5.05 × 10−19 J, that is, 3.16 eV.

 If we were to repeat the calculation to find EF at 300 K, we would find that the change 
is in the fourth decimal place. The term (π2∕12)(kT∕EFO)2 in Equation 4.23 is 5.2 × 10−5, or 
a decrease of 0.005 percent. In many applications, we can neglect this small change.
 The examination of Figure 4.31 shows that the emitted X-ray photons have energies 
approximately in the range 27.0 eV to 30.3 eV. The transitions of conduction electrons from 
around EF down to the L-level correspond to the maximum photon energy, which is 30.3 eV. 
The smallest emitted photon energy corresponds to a conduction electron falling from the 
bottom of the band to the L-level, which is 27.0 eV. Thus EF = 30.3 − 27.0 = 3.3 eV, very 
close to the calculated value. (The spread of nE around EF is about ∼4kT, that is 0.1 eV.)
 We can calculate the speed of electrons at EF from 1

2 mevF2 = EFO so that vF = 1.05 × 
106 m s−1. The mean speed of all the electrons can be calculated by writing 1

2 mev
2
e = 3
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Figure 4.31 Emission of soft X-rays from a sodium sample that is bombarded by electrons (in a suitable high vacuum). 
An impinging electron knocks out an electron from an inner core shell (L-level). A conduction electron falls down and 
fills this space and emits an X-ray photon. The X-ray emission intensity is proportional to the number of conduction 
electrons available, f (E )g(E ), and to hf 3, a quantum mechanical transition probability. The vertical axis has been scaled 
to make the peak 100 percent.
 Data extracted from Cady, W.M. and Tomboulian D.H., Physical Review 59, 381, 1941, Table 1.
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which leads to ve = 8.16 × 105 m s−1. If we were to treat the electrons classically, that is, 
assume that they obey Boltzmann statistics, then their thermal velocity (or effective velocity) 
would be 1

2mev
2
th = 3

2 kT , so that vth = 1.17 × 105 m s−1.

CONDUCTION IN SILVER Consider silver whose density of states g(E) can be calculated 
by assuming a free electron model for g(E) as in Equation 4.10. For silver, EF = 5.5 eV, so 
from Equation 4.10, the density of states at EF is g(EF) = 1.60 × 1028 m−3 eV−1. The veloc-
ity of Fermi electrons, vF = (2EF∕me)

1∕2 = 1.39 × 106 m s−1. The conductivity σ of Ag at 
room temperature is 62.5 × 106 Ω−1 m−1. Substituting for σ, g(EF), and vF in Equation 4.27,

 σ = 62.5 × 106 =
1
3

e2v 
2
F τg(EF) =

1
3

(1.6 × 10−19)2(1.39 × 106)2τ(1.60 × 1028

1.6 × 10−19)
we find τ = 3.79 × 10−14 s. The mean free path ℓ = vFτ = 53 nm. The drift mobility of EF 
electrons is μ = eτ∕me = 67 cm2 V−1 s−1.
 Silver has a valency of I, which means that the concentration of conduction electrons 
is n = concentration of Ag atoms = nAg = 5.85 × 1028 m−3. Substituting for n and σ in 
Equation 4.28 gives

 σ = 62.5 × 106 =
e2nτ

me

=
(1.6 × 10−19)2(5.85 × 1028)τ

(9.1 × 10−31)

we find τ = 3.79 × 10−14 s as expected because we have used the free electron model.

4.8  FERMI ENERGY SIGNIFICANCE

4.8.1 METAL–METAL CONTACTS: CONTACT POTENTIAL

Suppose that two metals, platinum (Pt) with a work function 5.36 eV and molybdenum 
(Mo) with a work function 4.20 eV, are brought together, as shown in Figure 4.32a. 
We know that in metals, all the energy levels up to the Fermi level are full. Since 
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the Fermi level is higher in Mo (due to a smaller Φ), the electrons in Mo are more 
energetic. They therefore immediately go over to the Pt surface (by tunneling), where 
there are empty states at lower energies, which they can occupy. This electron transfer 
from Mo to the Pt surface reduces the total energy of the electrons in the Pt–Mo 
system, but at the same time, the Pt surface becomes negatively charged with respect 
to the Mo surface. Consequently, a contact voltage (or a potential difference) devel-
ops at the junction between Pt and Mo, with the Mo side being positive.
 The electron transfer from Mo to Pt continues until the contact potential is large 
enough to prevent further electron transfer: the system reaches equilibrium. It should 
be apparent that the transfer of energetic electrons from Mo to Pt continues until the 
two Fermi levels are lined up, that is, until the Fermi level is uniform and the same 
in both metals, so that no part of the system has more (or less) energetic electrons, 
as illustrated in Figure 4.32b. Otherwise, the energetic electrons in one part of the 
system will flow toward a region with lower energy states. Under these conditions, 
the Pt–Mo system is in equilibrium. The contact voltage ΔV is determined by the 
difference in the work functions, that is,

 e ΔV = Φ(Pt) − Φ(Mo) = 5.36 eV − 4.20 eV = 1.16 eV

 We should note that away from the junction on the Mo side, we must still pro-
vide an energy of Φ = 4.20 eV to free an electron, whereas away from the junction 
on the Pt side, we must provide Φ = 5.36 eV to free an electron. This means that 
the vacuum energy level going from Mo to Pt has a step ΔΦ at the junction. Since 
we must do work equivalent to ΔΦ to get a free electron (e.g., on the metal surface) 
from the Mo surface to the Pt surface, this represents a voltage of ΔΦ∕e or 1.16 V.
 From the second law of thermodynamics,11 this contact voltage cannot do work; 
that is, it cannot drive current in an external circuit. To see this, we can close the 
Pt metal–Mo metal circuit to form a ring, as depicted in Figure 4.33. As soon as we 
close the circuit, we create another junction with a contact voltage that is equal and 
opposite to that of the first junction. Consequently, going around the circuit, the net 
voltage is zero and the current is therefore zero.
 There is a deep significance to the Fermi energy EF, which should at least be 
mentioned. For a given metal the Fermi energy represents the free energy per electron 

Mo ❜❝

Mo ❜❝

I ❞ ❡

❢❣❢V

❢❣❢V

Figure 4.33 There is no current when a closed circuit is formed by 
two different metals, even though there is a contact potential at 
each contact.

The contact potentials oppose each other.

 11 By the way, the second law of thermodynamics simply says that you cannot extract heat from a system in 
thermal equilibrium and do work (i.e., charge × voltage).
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called the electrochemical potential μ. In other words, the Fermi energy is a measure 
of the potential of an electron to do electrical work (e × V) or nonmechanical work, 
through chemical or physical processes.12 In general, when two metals are brought into 
contact, the Fermi level (with respect to a vacuum) in each will be different. This dif-
ference means a difference in the chemical potential Δμ, which in turn means that the 
system will do external work, which is obviously not possible. Instead, electrons are 
immediately transferred from one metal to the other, until the free energy per electron 
μ for the whole system is minimized and is uniform across the two metals, so that 
Δμ = 0 or ΔEF = 0. We can guess that if the Fermi level in one metal could be 
maintained at a higher level than the other, by using an external energy source (e.g., 
light or heat), for example, then the difference could be used to do electrical work.
 Whenever two metals are brought together, as shown in Figure 4.32, the Fermi 
level EF in the combined system is the same throughout the combined material system. 
We can understand the Fermi level alignment through a well-known analogy.13 Con-
sider two different beakers A and B, filled with water up to different levels EFA and 
EFB from the bottom of each beaker, and placed on different tables as shown in Fig-
ure 4.34a. The two beakers are two independent systems, each with a certain level of 
water EFA and EFB. Once the two systems are joined together through a pipe, as in 
Figure 4.34b, we have one new combined system. Water flows from B to A until 
equilibrium is reached when the water level in both A and B is the same at a height 
EF. We would need external work to separate the Fermi level in the two beakers and 

 12 A change in any type of PE can, in principle, be used to do work, that is, Δ(PE ) = work done. Chemical PE  
is the potential to do nonmechanical work (e.g., electrical work) by virtue of physical or chemical processes.  
The chemical PE per electron is EF and ΔEF = electrical work per electron.

 13 Remember that this is only an analogy, and like all analogies, you cannot push it too far. The water case 
relies on gravitational potential energy. Had the water levels not aligned in equilibrium, the difference in  
the heights would mean a pressure difference (or potential energy difference) and external work could be 
generated. Likewise, we would need to do work on the combined system to separate the water levels and  
upset the equilibrium.
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B

(a) A and B isolated

Water

Water

(b) A and B joined

EFB

Figure 4.34 (a) Consider two different beakers A and B, filled with water up to different levels EFA and 
EFB from the bottom of each beaker, and placed on different tables. The two beakers are two independent 
systems, each with a certain level of water EFA and EFB. (b) Once the two systems are joined through a 
pipe, we have one combined system. Water flows from B to A until equilibrium is reached when the  
water level in both A and B is the same at a height EF.
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upset the equilibrium. Had the two Fermi levels not aligned in equilibrium, the differ-
ence could have been used to do external work. What is important is that, in equilib-
rium, the Fermi level is uniform throughout the combined system as in Figure 4.34b.

4.8.2 THE SEEBECK EFFECT AND THE THERMOCOUPLE

Consider a conductor such as an aluminum rod that is heated at one end and cooled 
at the other end as depicted in Figure 4.35. The electrons in the hot region are more 
energetic and therefore have greater velocities than those in the cold region.14

 Consequently there is a net diffusion of electrons from the hot end toward the 
cold end which leaves behind exposed positive metal ions in the hot region and 
accumulates electrons in the cold region. This situation prevails until the electric 
field developed between the positive ions in the hot region and the excess electrons 
in the cold region prevents further electron motion from the hot to the cold end. A 
voltage therefore develops between the hot and cold ends, with the hot end at posi-
tive potential. The potential difference ΔV across a piece of metal due to a tem-
perature difference ΔT is called the Seebeck effect.15 To gauge the magnitude of 
this effect we introduce a special coefficient which is defined as the potential dif-
ference developed per unit temperature difference, or

 S =
dV

dT
 [4.29]

 14 The conduction electrons around the Fermi energy have a mean speed that has only a small temperature 
dependence. This small change in the mean speed with temperature is, nonetheless, significant in intuitively 
appreciating the thermoelectric effect. The actual effect, however, depends on the mean free path as discussed later.

 15 Thomas Seebeck observed the thermoelectric effect in 1821 using two different metals as in the thermocouple, 
which is the only way to observe the phenomenon. It was William Thomson (Lord Kelvin) who explained the 
observed effect.
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Figure 4.35 The Seebeck effect.

A temperature gradient along a conductor gives rise to a potential difference. (Note that the EF in the 
hot region is not exactly the same as that in the cold region.)
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 By convention, the sign of S represents the potential of the cold side with respect 
to the hot side. If electrons diffuse from the hot end to the cold end as in Figure 4.35, 
then the cold side is negative with respect to the hot side and the Seebeck coefficient 
is negative (as for aluminum).
 In some metals, such as copper, this intuitive explanation fails to explain why 
electrons actually diffuse from the cold to the hot region, giving rise to positive 
Seebeck coefficients; the polarity of the voltage in Figure 4.35 is actually reversed 
for copper. The reason is that the net diffusion process depends on how the mean 
free path ℓ and the mean free time (due to scattering from lattice vibrations) change 
with the electron energy, which can be quite complicated. Typical Seebeck coeffi-
cients for various selected metals are listed in Table 4.3.
 Consider two neighboring regions H (hot) and C (cold) with widths correspond-
ing to the mean free paths ℓ and ℓ′ in H and C as depicted in Figure 4.36a. Half the 
electrons in H would be moving in the +x direction and the other half in the −x 
direction. Half of the electrons in H therefore cross into C, and half in C cross into 
H. Suppose that, very roughly, the electron concentration n in H and C is about the 
same. The number of electrons crossing from H to C is 1

2 nℓ, and the number cross-
ing from C to H is 1

2 nℓ′ . Then,

 Net diffusion from H to C ∝
1

2
 n(ℓ − ℓ′ )  [4.30]

 Suppose that the scattering of electrons is such that ℓ increases strongly with 
the electron energy. Then electrons in H, which are more energetic, have a longer 
mean free path, that is, ℓ > ℓ′ as shown in Figure 4.36a. This means that the net 

Table 4.3 Seebeck coefficients of various metals

 S at 27 °C 

Metal (μV K−1) EF (eV) Comment

Al −1.7 11.7 S = aT + b∕T; T = 190 − 700 K

   a = −3 × 10−3 μV K−2, b = −235 μV [1]

Au +2.08 5.53 S = aT + b∕T; T = 273 − 650 K;

   a = 5.0 × 10−3 μV K−2, b = 204 μV [2]

Cu +1.94 7.00 S = aT + b∕T; T = 70 − 900 K

   a = 5.8 × 10−3 μV K−2, b ≈ 76.4 μV [2]

K −13.7 2.12 [3]

Li +11.4 4.74 [4]

Na −6.3 3.24 [3]

Mg −1.46 7.08 [3]

Ni −19.5 ∼7.4 [3]

Pd −10.7  [3]

Pt −4.92 ∼6.0 [2]

 Data extracted and combined from [1] Gripshover, R.J., et al., Physical Review, 163, 598 1967; [2] Roberts, R.B., 
Philosophical Magazine, 36, 91, 1977 and Roberts, R.B., Philosophical Magazine, B, 43, 1125, 1981; Ed. Haynes, W.M., 
[3] CRC Handbook of Chemistry and Physics, 94th Edition, 2013-2014, Boca Raton, FL: CRC Press; [4] MacDonald, 
D.K.C., Thermoelectricity: An Introduction to the Principles. Hoboken, NJ: Wiley, 1962, Figure 31. The empirical equations 
for Au and Cu obtained by using data from [2].
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migration is from H to C and S is negative, as in aluminum. In those metals such 
as copper in which ℓ decreases strongly with the energy, electrons in the cold region 
have a longer mean free path, ℓ′ > ℓ as shown in Figure 4.36b. The net electron 
migration is then from C to H and S is positive. Even this qualitative explanation is 
not quite correct because n is not the same in H and C (diffusion changes n) and, 
further, we neglected the change in the mean scattering time with the electron energy. 
Nonetheless, the importance of scattering processes in determining the Seebeck effect 
is clearly apparent.
 The coefficient S is widely referred to as the thermoelectric power even though 
this term is misleading, as it refers to a voltage difference rather than power. A more 
appropriate recent term is the Seebeck coefficient. S is a material property that 
depends on temperature, S = S(T), and is tabulated for many materials as a function 
of temperature. Given the Seebeck coefficient S(T) for a material, Equation 4.29 yields 
the voltage difference between two points where temperatures are To and T as follows:

 ΔV = ∫
T

To

S dT  [4.31]

 Figure 4.37 shows the dependence of the Seebeck coefficient S on the tempera-
ture for aluminum and copper. While S is negative for Al it is positive for Cu. In 
both cases, around and above room temperature, the magnitude of S increases almost 
linearly with the temperature. Typical values for Al and Cu and many pure metals, 
as shown in Table 4.3, are only a few microvolts per 1 °C temperature difference, 
that is, quite small.
 The thermoelectric effect involves the same electrons around the Fermi level as 
those that are normally involved in the electrical conduction process. We can make 
an intuitive argument for the magnitude of the Seebeck coefficient by considering 
those electrons within about kT above EF. When an electron in the hot region at an 
energy EF + k(T + ΔT) in Figure 4.35 diffuses over to the cold region where its 
energy is EF + kT (ignoring the slight difference in EF), it brings with it an addi-
tional energy that is kΔT. If there are N electrons in total, then, due to Fermi–Dirac 
statistics, the number of electrons in the range kT above EF is very roughly (kT∕EF)N. 
Thus, the total additional energy carried over is (kΔT)(kT∕EF)N. The energy that is 

H C H C

ℓ ℓℓ′ ℓ′

(a) S negative (b) S positive

Figure 4.36 Consider two neighboring regions H (hot) and C (cold) with widths corresponding 
to the mean free paths ℓ and ℓ′ in H and C.

Half the electrons in H would be moving in the +x direction and the other half in the −x direction. 
Half of the electrons in H therefore cross into C, and half in C cross into H.
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transferred per electron is therefore (kΔT)(kT∕EF). There is a built-in field or a See-
beck voltage between the two ends as shown in Figure 4.35. The change in the energy 
of the electron must be equivalent to eΔV, that is, the work involved in moving the 
electron through a potential difference of ΔV. Setting eΔV = (kΔT)(kT∕EF), we can 
find S = dV∕dT as16

 S ≈ −
k2T

eEF

 [4.32]

where a negative sign has been inserted to ensure the cold end is negative for this 
example.
 A proper explanation of the Seebeck effect has to consider how electrons around 
the Fermi energy EF are scattered by lattice vibrations, crystal defects, impurities 
and other imperfections. Various scattering processes that typically control the con-
ductivity also influence the diffusion of electrons in a temperature gradient and hence 

the Seebeck coefficient. The scattered electrons need empty states, which in turn 
requires that we consider how the density of states changes with the energy as well 
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 Data extracted and combined from Gripshover, R.J., VanZytveld, J.B., and Bass, J., Physical Review, 163, 598, 1967 and 

Roberts, R.B., Philosophical Magazine 36, 91, 1977 and Roberts, R.B., Philosophical Magazine B, 43, 1125, 1981.

 16 Intuitive derivations like this on the back of an envelope are quite well-known for getting the numerical factor 
wrong among other concerns. Further, there is nothing in this argument that relies on how the energy 
dependence of electron’s mean free path, or the energy dependence of its scattering time, plays a role in the 
thermoelectric effect.
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around EF. Moreover, in certain metals such as Ni, there are overlapping partially 
filled bands and the Fermi level lies both inside the s-band and the d-band. An 
electron can be scattered from one electronic band to another, for example from the 
4s band to the 3d band. For many pure metals that have the Fermi level in a simple 
band, the Seebeck coefficient can be described by the Mott-Jones equation that 
incorporates the energy dependence of the mean free path of the electrons as dis-
cussed in Example 4.12.
 The Seebeck effect above arises purely from the diffusion of electrons through 
various scattering processes along a temperature gradient, and is called the electron 

diffusion contribution. There is one more important driving force that migrates or 
drags electrons through a temperature gradient. We know that lattice vibrations, that 
is, thermal vibrations of the atoms that make up the crystal, are important in thermal 
conduction in nonmetals. These thermal vibrations of the atoms set-up lattice waves 
that travel in the crystal and are responsible for transporting energy from the hot to 
the cold regions as we saw in Chapter 2. Lattice vibrations are generically called 
phonons, which will be discussed in detail later. For now, all we need to know is 
that lattice waves obviously also exist in metals, and lattice vibrations in the hot and 
cold regions will not be in equilibrium. There will be a flow of lattice waves, pho-
nons, from the hot to the cold region. As these lattice waves collide with electrons 
(or vice versa), they will scatter the electrons and help push them along the tem-
perature gradient. Thus, the collisions of phonons with electrons can cause conduc-
tion electrons to be dragged along with phonons and hence contribute to the 
potential difference. This phenomenon is called phonon drag, and typically becomes 
important at low temperatures.
 Consider the S vs. T behavior for Al in Figure 4.37. The linear region above 
300 K is due mainly to the diffusion of electrons. In the range 100–200 K, the 
phonon drag effect becomes quite important, and this increases the magnitude of the 
Seebeck voltage; phonons help migrate more electrons to the cold region. We can 
write the Seebeck coefficient S of a pure metal as arising from diffusion and phonon 
drag contributions as

 S ≈ aT +
b

T
 [4.33]

where a and b are constants, specific for each pure metal. The second term represents 
the phonon drag contribution. Equation 4.33 does not apply at very low temperatures, 
for example, below ∼100 K for Al as can be seen from Figure 4.37.
 Suppose that we try to measure the voltage difference ΔV across the aluminum 
rod by using aluminum connecting wires to a voltmeter as indicated in Figure 4.38a. 
The same temperature difference now also exists across the aluminum connecting 
wires; therefore an identical voltage also develops across the connecting wires, 
opposing that across the aluminum rod. Consequently no net voltage will be regis-
tered by the voltmeter. It is, however, possible to read a net voltage difference, if the 
connecting wires are of different material, that is, have a different Seebeck coef-
ficient from that of aluminum. Then the thermoelectric voltage across this material 
is different than that across the aluminum rod, as in Figure 4.38b.

Seebeck 

coefficient, 

pure metals
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 The Seebeck effect is fruitfully utilized in the thermocouple (TC), shown in 
Figure 4.38b, which uses two different metals with one junction maintained at a 
reference temperature To and the other used to sense the temperature T. The voltage 
across each metal element depends on its Seebeck coefficient. The potential difference 
between the two wires will depend on SA − SB. By virtue of Equation 4.31, the elec-
tromotive force (emf) between the two wires, VAB = ΔVA − ΔVB, is then given by

 VAB = ∫
T

To

(SA − SB) dT = ∫
T

To

SAB dT  [4.34]

where SAB = SA − SB is defined as the thermoelectric power for the thermocouple 

pair A–B. SAB also represents the sensitivity of the TC. For the chromel-alumel 

(K-type) TC, for example, SAB ≈ 40 μV K−1 at 300 K.

 The Seebeck coefficients of a few TC materials are shown in Figure 4.39. The 

TC elements are usually chosen so that when they are used in pairs there is a large 

difference in their Seebeck coefficients, that is, SAB is sufficiently large to generate 

a reasonable emf over the temperature range of interest; and with sufficient sensitivity 
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Figure 4.38 (a) If Al wires are used to measure the Seebeck voltage across the Al rod, 
then the net emf is zero. (b) The Al and Ni have different Seebeck coefficients. There is 
therefore a net emf in the Al–Ni circuit between the hot and cold ends that can be measured.
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for a few metal alloys used in commercial thermocouples. 
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to be able to measure small temperature changes. They are also chosen for their 
stability and reproducibility; for example, stability against oxidation over long term 
use. The K-type thermocouple uses a chromel-alumel pair, and SAB at 0 °C, from 
Figure 4.39 is 22 μV∕K − (−18 μV∕K) that is 40 μV∕K; or an emf of 0.040 mV 
over a 1 °C difference around 0 °C, which can be easily measured.
 The output voltage from a TC pair obviously depends on the two metals used. 
Instead of tabulating the emf from all possible pairs of materials in the world, which 
would be a challenging task, engineers have tabulated the emfs available when a 
given material is used with a reference metal which is chosen to be platinum. The 
reference junction is kept at 0 °C (273.16 K), which corresponds to a mixture of ice 
and water. The emf generated is then measured as a function of the junction tem-
perature T as shown in Figure 4.40. The temperature (T1) of the two junctions at the 
voltmeter must be kept the same and do not affect the emf. (Why?). Some typical 
materials and their emfs are listed in Table 4.4.
 According to Equation 4.34, the emf VAB generated by a TC depends on the 
integration of SAB, that is SA − SB. In many cases, the individual Seebeck coefficients 
depend linearly on the temperature, at least, over some temperature range. Thus, we 
would expect SAB to depend linearly on T so that we can write SAB ≈ a0 + a1T, where 

a0 and a1 are constants. We can now integrate SAB in Equation 4.34 from To to T to 
find that VAB has a quadratic dependence on the temperature difference,

 VAB ≈ c1ΔT + c2ΔT 2 [4.35]

where ΔT = T − To, is the temperature with respect to the reference temperature To 
(273.16 K), and c1 and c2 are new constants for a given pair of TC materials; the 
so-called thermocouple coefficients.

Thermocouple 

equation

Table 4.4  Thermoelectric emf for metals at 100 °C and 
200 °C with respect to Pt and the reference 
junction at 0 °C. Data compiled from various 
sources.

  Emf (mV)

Material At 100 °C At 200 °C

Pure metals

Aluminum, Al 0.42 1.06
Copper, Cu 0.76 1.83
Gold, Au 0.78 1.84
Iron, Fe 1.89 3.54
Nickel, Ni −1.48 −3.10
Platinum, Pt 0 0
Silver, Ag 0.74 1.77
Tungsten, W 1.12 2.62

Alloys

Alumel −1.29 −2.17
Chromel 2.81 5.96
Constantan −3.51 −7.45
Pt-10%Rh (90%Pt-10%Rh) 0.643 1.44
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(Ice bath)

Figure 4.40 The reference junction is at To 
which is 0 °C. The temperature of both the  
DVM terminals is T1 and does not affect the  
EMF measured. EMF depends on T and To only. 
(In this case, metal X is Al, and T = 100 °C and 
the DVM reads +0.42 mV.)
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 The inference from Equation 4.35 is that the emf output from the thermocouple 
wires does not depend linearly on the temperature difference ΔT unless SAB is con-
stant (i.e., a1 = 0). Figure 4.41 shows the emf output versus temperature for various 
thermocouples. At 0 °C, by definition, the TC emf is zero. The K-type thermocouple, 
the chromel-alumel pair, is a widely employed general-purpose thermocouple up to 
about 1250 °C.

MOTT–JONES EQUATION The simplest expression for the Seebeck coefficient for a pure 
metal that has its Fermi level in a single energy band is given by the Mott–Jones equation, 
that is

 S ≈ −
π2k2T

3eEF

x [4.36]

where EF is the Fermi energy of the electrons, and x is a numerical parameter that character-
izes the energy dependence of the mean free path of the electron. For example, if the mean 
free path decreases with electron’s energy then x is negative. Apply this equation to Cu and 
Al and obtain x for these two metals.

SOLUTION

The Al case is relatively straightforward since Table 4.3 gives S for Al as aT + b∕T where 
a = −3.0 × 10−3 μV K−2, b = −235 μV. The aT term represents the diffusion of electrons 

and corresponds to Equation 4.36 above. (The b∕T term is the phonon drag contribution.) Thus,

 −
π2k2

3eEF

x = a = −3.0 × 10−3 × 10−6 V K−2

and substituting EF = 11.7 eV from Table 4.1, and the values for k and e we find x = +1.43.

 EXAMPLE 4.12

Mott–Jones 

equation

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000

❤ ✐❥❦❧

♠ ✐❥❦❧

♥ ✐❥❦❧♦ ✐❥❦❧

♣ ✐❥❦❧

emf (mV)

Temperature (°C)

Figure 4.41 Output emf versus  
temperature (°C) for various  
thermocouples between 0 °C and  
1000 °C.
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 In the case of Cu, from Table 4.3, a = +5.8 × 10−3 μV K−2. Thus,

 −
π2k2

3eEF

x = a = +5.8 × 10−3 × 10−6 V K−2

and substituting EF = 7.0 eV from Table 4.1 we find x = −1.66.

Consider the thermocouple configuration shown in Figure 4.40 where the reference junction 
is at To, the probe junction is at T and the two measuring ends of the thermocouple are con-
nected to the voltmeter terminals which are at a temperature T1. Show that the emf measured 
is independent of T1? What is your conclusion?

SOLUTION

Each thermocouple end that is connected to the voltmeter forms a junction. We therefore have 
two junctions at the voltmeter terminals. Provided that these two junctions are at the same 
temperature T1, the measured emf is indeed independent of T1. Consider the voltage developed 
across each element in Figure 4.40 and then add these going from the top voltmeter terminal 
(at T1), around the circuit, from T1 to T to To to T1 at the bottom terminal, that is,

  Emf at voltmeter = ∫
T

T1

SXdT + ∫
To

T

SPtdT + ∫
T1

To

SXdT

  = ∫
T

To

SXdT − ∫
T

To

SPtdT = ∫
T

To

(SX − SPt)dT

where it is clear that the measured emf depends only on the temperature of the two junctions 
To and T and the integral of the difference of the Seebeck coefficients, SX − SPt; a distinct 
advantage in temperature measurements. Further, if a point or a region within a TC element 
is heated or cooled, the emf remains unchanged. We can run the TC wires through any tem-
perature region and the emf measured will depend only on temperatures T and To of the two 
junctions.17 It is assumed that each TC wire material is homogeneous.

 EXAMPLE 4.13

 17 The general proof is left as an exercise, using arguments along the above lines of thought.

COPPER-CONSTANTAN THERMOCOUPLE Consider a copper-constantan (a Cu and Ni 
alloy) thermocouple pair. The Seebeck coefficient of Cu is in Table 4.3 and the Seebeck 
coefficient of constantan (CuNi alloy) between 273 − 650 K can be described approximately 
by a second order polynomial of the form

 SCuNi = a0 + a1T + a2T
2

where a0 = −8.63 μV K−1, a1 = −0.1258 μV K−2, a2 = 7.92 × 10−5 μV K−3, and T is in K. 
If one junction is at 0 °C, and the other at 200 °C, what is the emf generated? Calculate the 
TC voltage using the emf values of Cu and constantan against Pt in Table 4.4 at 200 °C.

SOLUTION

The voltage developed between the copper and constantan thermocouple with one junction 
at To (reference) and the other at T is given by

 V = ∫
T

To

(SCu − SCuNi)dT

 EXAMPLE 4.14
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We can substitute SCu = aT + b∕T with a and b from Table 4.3 and SCuNi that is given above, 
and carry out the integration with the result that the emf V at T is

 V = −a0(T − To) +
1
2

(a − a1) (T 
2 − T 

2
o) −

1
3

a2(T 
3 − T 

3
o) + b ln(T∕To)

We can now substitute all the values for the coefficients as well as To = 273 K and  
T = 200 + 273 = 473 K to find,

 V = −(−8.63 μV K−1)(473 K − 273 K)

  + (1∕2)[0.53 × 10−3 − (−0.1258) μV K−2](4732 K2 − 2732 K2)

  − (1∕3)(7.92 × 10−5 μV K−3)(4733 K3 − 2733 K3) + (76.4 μV)ln(472∕273)

 = 9,291 μV  or  9.291 mV

 If we were to check standard copper-constantan thermocouple tables we would find 
V = 9.286 mV, so that our calculation is to within ∼0.05% in this case. (The reason for the 
unusually good agreement is that the values of S we have used for Cu and constantan are 
reasonably well known in this temperature range.)
 From Table 4.4, VCu-Pt = 1.83 mV whereas VCuNi-Pt = −7.45 mV, so that

 VCu-CuNi = VCu-Pt − VCuNi-Pt = 1.83 mV − (−7.45 mV) = 9.28 mV

4.9   THERMIONIC EMISSION AND VACUUM  

TUBE DEVICES

4.9.1 THERMIONIC EMISSION: RICHARDSON–DUSHMAN EQUATION

Even though most of us view vacuum tubes as electrical antiques, their basic prin-
ciple of operation (electrons emitted from a heated cathode) still finds application 
in cathode ray and X-ray tubes and various RF microwave vacuum tubes, such as 
triodes, tetrodes, klystrons, magnetrons, and traveling wave tubes and amplifiers. 
Therefore, it is useful to examine how electrons are emitted when a metal is heated.
 When a metal is heated, the electrons become more energetic as the Fermi–Dirac 
distribution extends to higher temperatures. Some of the electrons have sufficiently large 
energies to leave the metal and become free. This situation is self-limiting because 
as the electrons accumulate outside the metal, they prevent more electrons from 
leaving the metal. (Put differently, emitted electrons leave a net positive charge 
behind, which pulls the electrons in.) Consequently, we need to replenish the “lost” 
electrons and collect the emitted ones, which is done most conveniently using the 
vacuum tube arrangement in a closed circuit, as shown in Figure 4.42a. The cathode, 
heated by a filament, emits electrons. A battery connected between the cathode and 
the anode replenishes the cathode electrons and provides a positive bias to the anode to 
collect the thermally emitted electrons from the cathode. The vacuum inside the tube 
ensures that the electrons do not collide with the air molecules and become dis-
persed, with some even being returned to the cathode by collisions. Therefore, the 
vacuum is essential. The current due to the flow of emitted electrons from the cath-
ode to the anode depends on the anode voltage as indicated in Figure 4.42b. The 
current increases with the anode voltage until, at sufficiently high voltages, all the 
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emitted electrons are collected by the anode and the current saturates. The saturation 

current of the vacuum diode depends on the rate of thermionic emission of electrons 
which we will derive below. The vacuum tube in Figure 4.42a acts as a rectifier 
because there is no current flow when the anode voltage becomes negative; the anode 
then repels the electrons.
 We know that only those electrons with energies greater than EF + Φ (Fermi 
energy + work function) which are moving toward the surface can leave the metal. 
Their number depends on the temperature, by virtue of the Fermi–Dirac statistics. 
Figure 4.43 shows how the concentration of conduction electrons with energies above 
EF + Φ increases with temperature. We know that conduction electrons behave as 
if they are free within the metal. We can therefore take the PE to be zero within the 
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(a) Thermionic electron
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(b)  Current-voltage characteristics
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Figure 4.43 Fermi–Dirac function 
f (E ) and the energy density of  
electrons n(E ) (electrons per unit  
energy and per unit volume) at three 
different temperatures.

The electron concentration extends 
more and more to higher energies 
as the temperature increases.  
Electrons with energies in excess  
of EF + Φ can leave the metal  
(thermionic emission).
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metal, but EF + Φ outside the metal. The energy E of the electron within the metal 
is then purely kinetic, or

 E =
1

2
mev 

2
x +

1

2
mev 

2
y +

1

2
mev 

2
z  [4.37]

 Suppose that the surface of the metal is perpendicular to the direction of emis-
sion, say along x. For an electron to be emitted from the surface, its KE = 1

2mv 
2
x  

along x must be greater than the potential energy barrier EF + Φ, that is,

 
1

2
 mev 

2
x > EF + Φ [4.38]

 Let dn(vx) be the number of electrons moving along x with velocities in the range 
vx to (vx + dvx), with vx satisfying emission in Equation 4.38. These electrons will 
be emitted when they reach the surface. Their number dn(vx) can be determined from 
the density of states and the Fermi–Dirac statistics, since energy and velocity are 
related through Equation 4.37. Close to EF + Φ, the Fermi–Dirac function will 
approximate the Boltzmann distribution, f (E) = exp[−(E − EF)∕kT]. The number 
dn(vx) is therefore at least proportional to this exponential energy factor.
 The emission of dn(vx) electrons will give a thermionic current density dJx = 
evxdn(vx). This must be integrated (summed) for all velocities satisfying Equa-
tion 4.38 to obtain the total current density Jx, or simply J. Since dn(vx) includes an 
exponential energy function, the integration also leads to an exponential. The final 
result is

 J = BoT 
2 exp(−

Φ

kT) [4.39]

where Bo = 4πemek
2∕h3. Equation 4.39 is called the Richardson–Dushman equation,18 

and Bo is the Richardson–Dushman constant, whose value is 1.20 × 106 A m−2 K−2. 

Richardson–

Dushman 

thermionic 

emission 

equation

 18 Sir Owen Richardson (1879–1959) won the Nobel prize in physics in 1928 for his work on thermionic emission, 
which forms the basic principle of operation of electron tube devices. It can also be used to describe the emission 
of electrons from the metal into a semiconductor as well in Schottky diodes as we will see in Chapter 5. Saul 
Dushman (1883–1954) worked extensively on thermionic emission and vacuum tube devices at GE and wrote 
several books.

Some high-end audio amplifiers use vacuum tubes to 
satisfy the demanding needs of audio enthusiasts. This 
vacuum tube amplifier is one of the well-known brands that 
has been in the market for over 50 years.

 Photo courtesy of and copyrighted by McIntosh 
Laboratory, Inc.
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We see from Equation 4.39 that the emitted current from a heated cathode varies 
exponentially with temperature and is sensitive to the work function Φ of the cathode 
material. Both factors are apparent in Equation 4.39.
 The wave nature of electrons means that when an electron approaches the sur-
face, there is a probability that it may be reflected back into the metal, instead of 
being emitted over the potential barrier. As the potential energy barrier becomes very 
large, Φ → ∞, the electrons are totally reflected and there is no emission. Taking 
into account that waves can be reflected, the thermionic emission equation is appro-
priately modified to

 J = BeT 
2 exp(−

Φ
kT) [4.40]

where Be = (1 − R)Bo is the emission constant and R is the reflection coefficient. 
The value of R will depend on the material and the surface conditions. For most 
metals, Be is about half of Bo, whereas for some oxide coatings on Ni cathodes used 
in thermionic tubes, Be can be as low as 1 × 102 A m−2 K−2.
 Equation 4.39 was derived by neglecting the effect of the applied field on the 
emission process. Since the anode is positively biased with respect to the cathode, 
the field will not only collect the emitted electrons (by drifting them to the anode), 
but will also enhance the process of thermal emission by lowering the potential 
energy barrier Φ.
 There are many thermionic emission–based vacuum tubes that find applications 
in which it is not possible or practical to use semiconductor devices, especially at 
high-power and high-frequency operation at the same time, such as in radio and TV 
broadcasting, radars, microwave communications; for example, a tetrode vacuum 
tube in radio broadcasting equipment has to handle hundreds of kilowatts of power. 
X-ray tubes operate on the thermionic emission principle in which electrons are 
thermally emitted, and then accelerated and impacted on a metal target to generate 
X-ray photons.

Thermionic 

emission

VACUUM TUBES It is clear from the Richardson–Dushman equation that to obtain an effi-
cient thermionic cathode, we need high temperatures and low work functions. Metals such as 
tungsten (W) and tantalum (Ta) have high melting temperatures but high work functions. For 
example, for W, the melting temperature Tm is 3680 °C and its work function is about 4.5 eV. 
Some metals have low work functions, but also low melting temperatures, a typical example 
being Cs with Φ = 1.8 eV and Tm = 28.5 °C. If we use a thin film coating of a low Φ mate-
rial, such as ThO or BaO, on a high-melting-temperature base metal such as W, we can 
maintain the high melting properties and obtain a lower Φ. For example, Th on W has a 
Φ = 2.6 eV and Tm = 1845 °C. Most vacuum tubes use indirectly heated cathodes that con-
sist of the oxides of B, Sr, and Ca on a base metal of Ni. The operating temperatures for 
these cathodes are typically 800 °C.
 A certain transmitter-type vacuum tube has a cylindrical Th-coated W (thoriated tung-
sten) cathode, which is 4 cm long and 2 mm in diameter. Estimate the saturation current 
if the tube is operated at a temperature of 1600 °C, given that the emission constant is 
Be = 3.0 × 104 A m−2 K−2 for Th on W.

 EXAMPLE 4.15
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SOLUTION

We apply the Richardson–Dushman equation with Φ = 2.6 eV, T = (1600 + 273) K = 1873 K, 
and Be = 3.0 × 104 A m−2 K−2, to find the maximum current density that can be obtained 
from the cathode at 1873 K, as follows:

  J = (3.0 × 104 A m−2 K−2) (1873 K)2 exp[−
(2.6 × 1.6 × 10−19)

(1.38 × 10−23 × 1873) ]
  = 1.08 × 104 A m−2

The emission surface area is

 A = π(diameter)(length) = π(2 × 10−3)(4 × 10−2) = 2.5 × 10−4 m2

so the saturation current, which is the maximum current obtainable (i.e., the thermionic 
current), is
 I = JA = (1.08 × 104 A m−2)(2.5 × 10−4 m2) = 2.7 A

4.9.2 SCHOTTKY EFFECT AND FIELD EMISSION

When a positive voltage is applied to the anode with respect to the cathode, the 
electric field at the cathode helps the thermionic emission process by lowering the 
PE barrier Φ. This is called the Schottky effect. Consider the PE of the electron 
just outside the surface of the metal. The electron is pulled in by the effective 
positive charge left in the metal. To represent this attractive PE we use the theorem 

of image charges in electrostatics,19 which says that an electron at a distance x from 
the surface of a conductor possesses a potential energy that is

 PEimage(x) = −
e2

16πεox
 [4.41]

where εo is the absolute permittivity.
 This equation is valid for x much greater than the atomic separation a; otherwise, 
we must consider the interaction of the electron with the individual ions. Further, 
Equation 4.41 has a reference level of zero PE at infinity (x = ∞), but we defined 
PE = 0 to be inside the metal. We must therefore modify Equation 4.41 to conform 
to our definition of zero PE as a reference. Figure 4.44a shows how this “image PE” 
varies with x in this system. In the region x < xo, we artificially bring PEimage(x) to 
zero at x = 0, so our definition PE = 0 within the metal is maintained. Far away 
from the surface, the PE is expected to be (EF + Φ) (and not zero, as in Equation 4.41), 
so we modify Equation 4.41 to read

 PEimage(x) = (EF + Φ) −
e2

16πεox
 [4.42]

The present model, which takes PEimage(x) from 0 to (EF + Φ) along Equation 4.42, 
is in agreement with the thermionic emission analysis, since the electron must still 
overcome a PE barrier of EF + Φ to escape.

 19 An electron at a distance x from the surface of a conductor experiences a force as if there were a positive 
charge of +e at a distance 2x from it. The force is e2∕[4πεo(2x)2] or e2∕[16πεox2]. The result is called the image 
charge theorem. Integrating the force gives the potential energy in Equation 4.41.
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 From the definition of potential, which is potential energy per unit charge, when 
a voltage difference is applied between the anode and cathode, there is a PE gradient 
just outside the surface of the metal, given by eV(x), or

 PEapplied(x) = −exE [4.43]

where E is the applied field and is assumed, for all practical purposes, to be uniform. 
The variation of PEapplied(x) with x is depicted in Figure 4.44b. The total PE(x) of 
the electron outside the metal is the sum of Equations 4.42 and 4.43, as sketched in 
Figure 4.44c,

 PE(x) = (EF + Φ) −
e2

16πεox
− exE  [4.44]

 Note that the PE(x) outside the metal no longer goes up to (EF + Φ), and the 
PE barrier against thermal emission is effectively reduced to (EF + Φeff), where Φeff 
is a new effective work function that takes into account the effect of the applied 
field. The new barrier (EF + Φeff) can be found by locating the maximum of PE(x), 
that is, by differentiating Equation 4.44 and setting it to zero. The effective work 

function in the presence of an applied field is therefore

 Φeff = Φ − ( e3E

4πεo
)

1∕2

 [4.45]

 This lowering of the work function by the applied field, as predicted by Equa-
tion 4.45, is the Schottky effect. The current density is given by the Richardson–
Dushman equation, but with Φeff instead of Φ,

 J = BeT 
2 exp[−

(Φ − βSE
1∕2)

kT ] [4.46]

where βS = [e3∕4πεo]
1∕2 is the Schottky coefficient, whose value is 3.79 × 10−5 

(eV∕√V m−1) .
 When the field becomes very large, for example, E > 107 V cm−1, the PE(x) 
outside the metal surface may bend sufficiently steeply to give rise to a narrow PE 
barrier. In this case, there is a distinct probability that an electron at an energy EF 

0

EF + Φ EF + Φ
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Figure 4.44 (a) PE of the electron near the surface 
of a conductor. (b) Electron PE due to an applied 
field, that is, between cathode and anode. (c) The 
overall PE is the sum.
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will tunnel through the barrier and escape into vacuum, as depicted in Figure 4.45. 
The likelihood of tunneling depends on the effective height Φeff of the PE barrier 
above EF, as well as the width xF of the barrier at energy level EF. Since tunneling 
is temperature independent, the emission process is termed field emission. The tun-
neling probability P was calculated in Chapter 3, and depends on Φeff and xF through 
the equation20

 P ≈ exp[−2(2me Φeff)
1∕2xF

ħ ]
 We can easily find xF by noting that when x = xF, PE(xF) is level with EF, as 
shown in Figure 4.45. From Equation 4.44, when the field is very strong, then around 
x ≈ xF the second term is negligible compared to the third, so putting x = xF and 
PE(xF) = EF in Equation 4.44 yields Φ = eExF. Substituting xF = Φ∕eE in the equa-
tion for the tunneling probability P above, we obtain

 P ≈ exp[−
2(2meΦeff)

1∕2Φ
eħE ] [4.47]

Equation 4.47 represents the probability P that an electron in the metal at EF will 
tunnel out from the metal, as in Figure 4.45a and b, and become field-emitted. In a 
more rigorous analysis we have to consider that electrons not just at EF but at ener-
gies below EF can also tunnel out (though with lower probability) and we have to 
abandon the rough rectangular PE(x) approximation in Figure 4.45b.

 20 In Chapter 3 we showed that the transmission probability T = To exp(−2αa) where α2 = 2me(Vo − E )∕ħ2 and a 
is the barrier width. The pre-exponential constant To can be taken to be ∼1. Clearly Vo − E = Φeff since electrons 
with E = EF are tunneling and a = xF.
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Figure 4.45 (a) Field emission is the tunneling of an electron at an energy EF through the narrow  
PE barrier induced by a large applied field. (b) For simplicity, we take the barrier to be rectangular.  
(c) A sharp point cathode has the maximum field at the tip where the field emission of electrons occurs.



 4 . 9  THERMIONIC EMISSION AND VACUUM TUBE DEVICES 371

 To calculate the current density J we have to consider how many electrons are 
moving toward the surface per second and per unit area, the electron flux, and then 
multiply this flow by the probability that they will tunnel out. The final result of the 
calculations is the Fowler–Nordheim equation,21 which still has the exponential 
field dependence in Equation 4.47,

 Jfield-emission ≈ CE 
2 exp(−

Ec

E ) [4.48a]

in which C and Ec are temperature-independent constants

 C =
e3

8πhΦ
  and  Ec =

8π(2meΦ
3)1∕2

3eh
 [4.48b]

that depend on the work function Φ of the metal. Equation 4.48a can also be used 
for field emission of electrons from a metal into an insulating material by using the 
electron PE barrier ΦB from metal’s EF into the insulator’s conduction band (where 
the electron is free) instead of Φ.
 Notice that the field E in Equation 4.48a has taken over the role of temperature 
in thermionic emission in Equation 4.40. Since field-assisted emission depends expo-
nentially on the field via Equation 4.48a, it can be enhanced by shaping the cathode 
into a cone with a sharp point where the field is maximum and the electron emission 
occurs from the tip as depicted in Figure 4.45c. The field E in Equation 4.48a is the 
effective field at the tip of the cathode that emits the electrons.
 A popular field-emission tip design is based on the Spindt tip cathode, named 
after its originator. As shown in Figure 4.46a, the emission cathode is an iceberg-
type sharp cone and there is a positively biased gate above it with a hole to extract 
the emitted electrons. A positively biased anode draws and accelerates the electrons 
passing through the gate toward it, which impinge on a phosphor screen to generate 
light by cathodoluminescence, a process in which light is emitted from a material 
when it is bombarded with electrons. Arrays of such electron field-emitters are used, 

 21 Ralph Fowler and Lothar Nordheim published “Electron Emission in Intense Electric Fields” in the Proceedings 
of the Royal Society A (London) in 1928. (See Chapter 2 for Lothar Nordheim.)
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for example, in field emission displays (FEDs) to generate bright images with vivid 
colors. Color is obtained by using red, green, and blue phosphors. The field at the 
tip is controlled by the potential difference between the gate and the cathode, the 
gate voltage VG, which therefore controls field emission. Since E ∝ VG, Equation 4.48a 
can be written to obtain the emission current or the anode current IA as

 IA = aV 
2
G exp(−

b

VG
) [4.49]

where a and b are constants that depend on the particular field-emitting structure 
and cathode material. Figure 4.46b shows the dependence of IA on VG. There is a 
very sharp increase with the voltage once the threshold voltages (around ∼45 V in 
Figure 4.46b) are reached to start the electron emission. Once the emission is fully 
operating, IA versus VG follows the Fowler–Nordheim emission. A plot of ln(IA∕V 2

G) 
versus 1∕VG is a straight line as shown in Figure 4.46c.
 Field emission has a number of distinct advantages. It is much more power effi-
cient than thermionic emission which requires heating the cathode to high tempera-
tures. In principle, field emission can be operated at high frequencies (fast switching 
times) by reducing various capacitances in the emission device or controlling the elec-
tron flow with a grid. Field emission has a number of important realized and potential 
applications: field emission microscopy, cold cathodes in electron microscopes, X-ray 
generators, microwave amplifiers, traveling wave tubes and klystrons, among others.
 Typically molybdenum, tungsten, and hafnium have been used as the field-
emission tip materials. Figure 4.47a shows a typical molybdenum cone cathode in a 
well with a metal grid. Arrays of such cones as shown in Figure 4.47b have been 
used in various prototype devices such as a traveling wave tubes in microwave engi-
neering. Microfabrication has lead to the use of Si emission tips as well. Good 
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Figure 4.47  (a) A 
molybdenum cone in a  
well that has a sharp tip 
where the high field 
causes electron emission 
(b) Arrays of cold cathode 
emitters (c) A carbon 
nanotube (CNT) is a 
whisker-like, very thin and 
long carbon molecule with 
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CNT electron emitter.  
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flow of electrons through 
the aperture.
 (a) and (b), Courtesy of SRI 

International; (d) Courtesy of 
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electron emission characteristics have been also reported for diamond-like carbon 
films. There has been a particular interest in using carbon nanotubes as emitters. A 
carbon nanotube (CNT) is a very thin filament-like carbon molecule whose diam-
eter is in the nanometer range but whose length can be quite long, e.g., 10–100 μm, 
depending on how it is grown or prepared. A CNT is made by rolling a graphite 
sheet into a tube and then capping the ends with hemispherical buckminsterfullerene 
molecules (a half Buckyball) as shown in Figure 4.47c. Depending on how the graph-
ite sheet is rolled up, the CNT may be a metal or a semiconductor22. The high aspect 
ratio (length/diameter) of the CNT makes it an efficient electron emitter. If one were 
to wonder what is the best shape for an efficient field emission tip, one might guess 
that it should be a sharp cone with some suitable apex angle. However, it turns out 
that the best emitter is actually a whisker-type thin filament with a rounded tip, much 
like a CNT. Figure 4.47d shows an SEM photograph of a  field-emission cathode 
consisting of a single CNT emitter in a well and a polycrystalline silicon gate. Arrays 
of such cold cathode emitters have been also used in various prototype tube devices 
where they have replaced heated cathodes.

 22 Carbon nanotubes can be single-walled or multiwalled (when the graphite sheets are wrapped more than once) 
and can have quite complicated structures. There is no doubt that they possess some remarkable properties, so 
it is likely that CNTs will eventually be used in various engineering applications.

FIELD EMISSION Field emission displays operate on the principle that electrons can be 
readily emitted from a microscopic sharp point source (cathode) that is biased negatively with 
respect to a neighboring electrode (gate or grid) as depicted in Figure 4.46a. Emitted electrons 
impinge on colored phosphors on a screen and cause light emission by cathodoluminescence. 
There are millions of these microscopic field emitters to constitute the image. A particular 
field emission cathode in a field-emission-type flat panel display gives a current of 61.0 μA 
when the voltage between the cathode and the grid is 50 V. The current is 279 μA when the 
voltage is 58.2 V. What is the current when the voltage is 56.2 V?

SOLUTION

Equation 4.49 related IA to VG,

 IA = aV 
2
G exp(−

b

VG
)

where a and b are constants that can be determined from the two sets of data given. Thus,

 61.0 μA = a502 exp(−
b

50)  and  279 μA = a58.22 exp(−
b

58.2)
Dividing the first by the second gives

 
61.0
279

=
502

58.22 exp[−b( 1
50

−
1

58.2)]
which can be solved to obtain b = 431.75 V and hence a = 137.25 μA∕V2. At V = 58.2 V,

 I = (137.25)(56.2)2 exp(−
431.75
56.2 ) = 200 μA

The experimental value for this device was 202 μA, which happens to be the device in 
Figure 4.46b (close).

 EXAMPLE 4.16
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4.10  PHONONS

4.10.1 HARMONIC OSCILLATOR AND LATTICE WAVES

Quantum Harmonic Oscillator In the classical picture of a solid, the constituent 
atoms are held together by bonds which can be represented by springs. According 
to the kinetic molecular theory, the atoms in a solid are constantly vibrating about 
their equilibrium positions by stretching and compressing their springs. The oscilla-
tions are assumed to be simple harmonic so that the average kinetic and potential 
energies are the same. Figure 4.48a shows a 1D independent simple harmonic oscil-
lator that represents an atom of mass M attached by springs to fixed neighbors. The 
potential energy V(x) is a function of displacement x from equilibrium. For small 
displacements, V(x) is parabolic in x, as indicated in Figure 4.48b, that is,

 V(x) =
1
2

 βx2 [4.50]

where β is a spring constant. The instantaneous energy, in principle, can be of any 
value. Equation 4.50 neglects the cubic term and is therefore symmetric about the 
equilibrium position at x = 0. It is called a harmonic approximation to the PE curve.
 In modern physics, the energy of such a harmonic oscillator must be calculated 
using the PE in Equation 4.50 in the Schrödinger equation so that

 
d 

2ψ

dx2 +
2M

ħ2 (E −
1
2

 βx2)ψ = 0 [4.51]

 The solution of Equation 4.51 shows that the energy En of such a harmonic 
oscillator is quantized,

 En = (n +
1
2)ħω [4.52]

where ω is the angular frequency of the vibrations23 and n is a quantum number 
0, 1, 2, 3, . . . . The oscillation frequency is determined by the spring constant β 
and the mass M through ω = (β∕M)1∕2. Figure 4.48c shows the allowed energies of 
the quantum mechanical harmonic oscillator.
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Figure 4.48 (a) Harmonic vibrations of an atom about its equilibrium position assuming its neighbors 
are fixed. (b) The PE curve V(x) versus displacement from equilibrium, x. (c) The energy is quantized.
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 23 Henceforth frequency will imply ω.
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 It is apparent that the minimum energy of the oscillator can never be zero but must 
be a finite value that is E0 = 1

2ħω. This energy is called the zero-point energy. As the 
temperature approaches 0 K, the harmonic oscillator would have an energy of E0 and 
not zero. The energy levels are equally spaced by an amount ħω, which represents the 
amount of energy absorbed or emitted by the oscillator when it is excited and de-excited 
to a neighboring energy level. The vibrational energies of a molecule due to its atoms 
vibrating relative to each other, e.g., the vibrations of the Cl2 molecule in which the 
Cl–Cl bond is stretched and compressed, can also be described by Equation 4.52.

Phonons Atoms in a solid are coupled to each other by bonds. Atomic vibrations are 
therefore also coupled. These coupled vibrations lead to waves that involve cooperative 
vibrations of many atoms and cannot be represented by independent vibrations of 
individual atoms. Figure 4.49a shows a chain of atoms in a crystal. As an atom vibrates 
it transfers its energy to neighboring vibrating atoms and the coupled vibrations pro-
duce traveling wave-trains in the crystal.24 (Consider grabbing and strongly vibrating 
the first atom in the atomic chain in Figure 4.49a. Your vibrations will be coupled and 
transferred by the springs to neighboring atoms in the chain along x.) Two examples 
are shown in Figure 4.49b and c. In the first, the atomic vibrations are parallel to the 
direction of propagation x and the wave is a longitudinal wave. In the second, the vibra-
tions are transverse to the direction of propagation and the corresponding wave is a 
transverse wave. Suppose that xr is the position of the rth atom in the absence of 
vibrations, that is, xr = ra, where r is an integer from 0 to N, the number of atoms in 
the chain, as indicated in Figure 4.49a. By writing the mechanical equations (Newton’s 
second law) for the coupled atoms in Figure 4.49a, we can show that the displacement 
ur from equilibrium at a location xr is given by a traveling-wave-like behavior,25

 ur = Aexp[ j(ωt − Kx)] [4.53]

 24 In the presence of coupling, the individual atoms do not execute simple harmonic motion.

 25 The exponential notation for a wave is convenient, but we have to consider only the real part to actually 
represent the wave in the physical world.
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Figure 4.49 (a) A chain of N atoms through a crystal in the absence of vibrations. (b) Coupled atomic  
vibrations generate a traveling longitudinal (L) wave along x. Atomic displacements (ur) are parallel to x.  
(c) A transverse (T) wave traveling along x. Atomic displacements (Ur) are perpendicular to the x axis.  
(b) and (c) are snapshots at one instant.
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where A is the amplitude, K is a wavevector, and ω is the angular frequency. Notice 
that the Kxr term is very much like the usual kx phase term of a traveling wave 
propagating in a continuous medium; the only difference is that kxr exists at discrete 
xr locations. The wave-train described by Equation 4.53 in the crystal is called a 
lattice wave. Along the x direction it has a wavelength Λ = 2π∕K over which the 
longitudinal (or transverse) displacement ur repeats itself. The displacement ur repeats 
itself at one location over a time period 2π∕ω. A wave traveling in the opposite 
direction to Equation 4.53 is of course also possible. Indeed, two oppositely traveling 
waves of the same frequency can interfere to set up a stationary wave which is also 
a lattice wave.
 The lattice wave described by Equation 4.53 is a harmonic oscillation with a 
frequency ω that itself has no coupling to another lattice wave. The energy possessed 
by this lattice vibration is quantized in much the same way as the energy of the 
quantized harmonic oscillator in Equation 4.52. The energy of a lattice vibration 
therefore can only be multiples of ħω above the zero-point energy, 1

2 ħω. The quan-
tum of energy ħω is therefore the smallest unit of lattice vibrational energy that can 
be added or subtracted from a lattice wave. The quantum of lattice vibration ħω is 
called a phonon in analogy with the quantum of electromagnetic radiation, the pho-
ton. One can imagine a phonon to be a traveling lattice wave just as a photon can be 
visualized as a traveling electromagnetic wave. Whenever a lattice vibration interacts 
with another lattice vibration, an electron or a photon, in the crystal, it does so as 
if it had possessed a momentum of ħK. Thus,

 Ephonon = ħω = hf [4.54]

 pphonon = ħK [4.55]

 The momentum of the phonon is sometimes called a phonon crystal momentum 
because the lattice wave itself does not have a real physical momentum; it behaves 
as though it had a momentum ħK in its interactions inside the crystal.
 The frequency of vibrations ω and the wavevector K of a lattice wave are related. 
If we were to use Equation 4.53 in the mechanical equations that describe the cou-
pled atomic vibrations (see Example 4.17), we would find that

 ω = 2( β

M)
1∕2

∣sin(1

2
 Ka) ∣  [4.56]

which relates ω and K and is called the dispersion relation. Figure 4.50 shows 
how the frequency ω of the lattice waves increases with increasing wavevector K, 
or decreasing wavelength Λ. From Equation 4.56, there can be no frequencies 
higher than ωmax = 2(β∕M)1∕2, which is the lattice cut-off frequency. Both longi-
tudinal and transverse waves exhibit this type of dispersion relationship shown 
in  Figure 4.50a though their exact ω–K curves would be different depending on 
the nature of interatomic bonding and the crystal structure. The dispersion relation 
in Equation 4.56 is periodic in K with a period 2π∕a. Only values of K in the 
range −π∕a < K < π∕a are physically meaningful. A point A with KA is the same 
as a point B with KB because we can shift K by the period, 2π∕a as shown in 
Figure 4.50a.
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 The velocity at which traveling waves carry energy is called the group velocity 

vg of the wave.26 It depends on the slope dω∕dK of the ω–K dispersion curve, so 
for lattice waves,

 vg =
dω

dK
= ( β

M)
1∕2

 a cos(1
2

 Ka) [4.57]

which is shown in Figure 4.50b. Points A and B in Figure 4.50a have the same group 
velocity and are equivalent.
 The number of distinct or independent lattice waves, with different wavevectors, 
in a crystal is not infinite but depends on the number of atoms N. Consider a linear 
crystal as in Figure 4.51 with many atoms. We will take N to be large and ignore 
the difference between N and N − 1. The lattice waves in this crystal would be 
standing waves represented by two oppositely traveling waves. The crystal length 
L = Na can support multiples of the half-wavelength 1

2Λ as indicated in Figure 4.51,

  q 

Λ
2

= L = Na  q = 1, 2, 3, . . . [4.58a]

or

  K =
qπ

L
=

qπ

Na
  q = 1, 2, 3, . . . [4.58b]

where q is an integer. Each particular K value Kq represents one distinct lattice wave 
with a particular frequency as determined by the dispersion relation. Four examples 
are shown in Figure 4.51. Each of these Kq values defines a mode or state of lattice 

vibration. Each mode is an independent lattice vibration. Its energy can be increased 
or decreased only by a quantum amount of ħω. Since Kq values outside the range 
−π∕a < K < π∕a are the same as those in that range (A and B are the same in 
Figure 4.50a), it is apparent that the maximum value of q is N and thus the number 
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Figure 4.50 (a) Frequency ω versus wavevector K relationship for lattice waves. (b) Group velocity 
vg versus wavevector K.

 26 For those readers who are not familiar with the group velocity concept, this is discussed in Chapter 9 without 
prerequisite material.
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of modes is also N. Notice that as q increases, Λ decreases. The smallest Λ occurs 
when alternating atoms in the crystal are moving in opposite directions which cor-
responds to 1

2Λ = a, that is, q = N, as shown in Figure 4.51. In terms of the wave-
vector, K = 2π∕Λ = π∕a. Smaller wavelengths or longer wavevectors are meaningless 
and correspond to shifting K by a multiple of 2π∕a. Since N is large, the ω versus 
K curve in Figure 4.50a consists of very finely separated distinct points, each cor-
responding to a particular q, analogous to the energy levels in an energy band.
 The above ideas for the linear chain of atoms can be readily extended to a 3D 
crystal. If Lx, Ly, and Lz are the sides of the solid along the x, y, and z axes, with 
Nx, Ny, and Nz number of atoms, respectively, then the wavevector components along 
x, y, and z are

 Kx =
qxπ

Lx

  Ky =
qyπ

Ly

  Kz =
qzπ

Lz

 [4.59]

where the integers qx, qy, and qz run from 1 to Nx, Ny, and Nz, respectively. The total 
number of permitted modes is NxNyNz or N, the total number of atoms in the solid. 
Vibrations however can be set up independently along the x, y, and z directions so 
that the actual number of independent modes is 3N.

Lattice 

vibrational 

modes in 3-D

LATTICE WAVES AND SOUND VELOCITY Consider longitudinal waves in a linear crystal 
and three atoms at r − 1, r, and r + 1 as in Figure 4.52. The displacement of each atom from 
equilibrium in the +x direction is ur−1, ur, and ur+1, respectively. Consider the rth atom. Its 
bond with the left neighbor stretches by (ur − ur−1). Its bond with the right neighbor stretches 
by (ur+1 − ur). The left spring exerts a force β(ur − ur−1), and the right spring exerts a force 
β(ur+1 − ur). The net force on the rth atom is mass × acceleration,

 Net force = β(ur+1 − ur) − β(ur − ur−1) = M
d2ur

dt2

 EXAMPLE 4.17

q = N

q = 4

q = 2

q = 1

Figure 4.51 Four examples of standing waves in 
a linear crystal corresponding to q = 1, 2, 4, and N.

q is maximum when alternating atoms are vibrating 
in opposite directions. A portion from a very long 
crystal is shown.
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so M 

d 

2ur

dt2 = β(ur+1 − 2ur + ur−1)  [4.60]

 This is the wave equation that describes the coupled longitudinal vibrations of the atoms 
in the crystal. A similar expression can also be derived for transverse vibrations. We can 
substitute Equation 4.53 in Equation 4.60 to show that Equation 4.53 is indeed a solution of 
the wave equation. It is assumed that the crystal response is linear, that is, the net force is 
proportional to net displacement.
 The group velocity of lattice waves is given by Equation 4.57. For sufficiently small K, 
or long wavelengths, such that 1

2 Ka ≪ 1,

 vg = ( β

M)
1∕2

 a cos(1
2

 Ka) ≈ ( β

M)
1∕2

a [4.61]

which is a constant. It is the slope of the straight-line region of ω versus K curve for small K 
values in Figure 4.50. Furthermore, the elastic modulus Y depends on the slope of the net force 
versus displacement curve as derived in Example 1.5. From Equation 4.50, FN = dV∕dx = βx 
and hence Y = β∕a. Moreover, each atom occupies a volume of a3, so the density ρ is M∕a3. 
Substituting both of these results in Equation 4.61 yields

 vg ≈ (Y

ρ)
1∕2

 [4.62]

 The relationship has to be modified for an actual crystal incorporating a small numerical 
factor multiplying Y. Aluminum has a density of 2.7 g cm−3 and Y = 70 GPa, so the long-
wavelength longitudinal velocity from Equation 4.62 is 5092 m s−1. The sound velocity in Al 
is 5100 m s−1, which is very close.

4.10.2 DEBYE HEAT CAPACITY

The heat capacity of a solid represents the increase in the internal energy of the 
crystal per unit increase in the temperature. The increase in the internal energy is 
due to an increase in the energy of lattice vibrations. This is generally true for all 
the solids except metals at very low temperatures where the heat capacity is due 
to the electrons near the Fermi level becoming excited to higher energies. For most 
practical temperature ranges of interest, the heat capacity of solids is determined by 
the excitation of lattice vibrations. The molar heat capacity Cm is the increase in the 
internal energy Um of a crystal of NA atoms per unit increase in the temperature at 
constant volume,27 that is, Cm = dUm∕dT.
 The simplest approach to calculating the average energy is first to assume that 
all the lattice vibrational modes have the same frequency ω. (We will account for 
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Figure 4.52 Atoms executing longitudinal 
vibrations parallel to x.

 27 Constant volume in the definition means that the heat added to the system increases the internal energy 
without doing mechanical work by changing the volume.
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different modes having different frequencies later.) If En is the energy of a harmonic 
oscillator such as a lattice vibration, then the average energy, by definition, is given by

 E =
∑
∞

n=0
EnP(En)

∑
∞

n=0
P(En)

 [4.63]

where P(En) is the probability that the vibration has the energy En which is pro-
portional to the Boltzmann factor. Thus we can use P(En) ∝ exp(−En∕kT) and 
En = (n + 1

2)ħω in Equation 4.63. We can drop the zero-point energy as this does 
not affect the heat capacity (which deals with energy changes). The substitution and 
calculation of Equation 4.63 yields the vibrational mean energy at a frequency ω,

 E(ω) =
ħω

exp(ħω

kT ) − 1
 [4.64]

 This energy increases with temperature. Each phonon has an energy of ħω. Thus, 
the phonon concentration in the crystal increases with temperature; increasing the 
temperature creates more phonons.
 To find the internal energy due to all the lattice vibrations we must also consider 
how many modes there are at various frequencies, that is, the distribution of the 
modes over the possible frequencies, the spectrum of the vibrations. Suppose that 
g(ω) is the number of modes per unit frequency, that is, g(ω) is the density of 

vibrational states or modes. Then g(ω) dω is the number of states in the range dω. 
The internal energy Um of all lattice vibrations for 1 mole of solid is

 Um = ∫
ωmax

0

E(ω)g(ω) dω [4.65]

 The integration is up to a certain allowed maximum frequency ωmax (Figure 4.50a). 
The density of states g(ω) for the lattice vibrations can be found in a similar fashion 
to the density of states for electrons in an energy band. For example, in one dimen-
sion, we would need to calculate how many vibrational modes of the type shown in 
Figure 4.51 would have frequencies in the range ω to ω + dω. We need to do this 
calculation in three dimensions for vibrational modes that are characterized by three 
integers, as in Equation 4.59 similar to an electron in a 3D potential energy well. 
The final result is,

 g(ω) ≈
3V

2π2 
ω2

v 
3  [4.66]

where v is the mean velocity of longitudinal and transverse waves in the solid and 
V is the volume of the crystal. Figure 4.53 shows the spectrum g(ω) for a real crys-
tal such as Cu and the expression in Equation 4.66. The maximum frequency is ωmax 
and is determined by the fact that the total number of modes up to ωmax must be 
3NA. It is called the Debye frequency. Thus, integrating g(ω) up to ωmax we find,

 ωmax ≈ v(6π2NA∕V)1∕3 [4.67]
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 This maximum frequency ωmax corresponds to an energy ħωmax and to a tem-
perature TD defined by,

 TD =
ħωmax

k
 [4.68]

and is called the Debye temperature. Qualitatively, it represents the temperature 
above which all vibrational frequencies are executed by the lattice waves.
 Thus, by using Equations 4.64, 4.66, and 4.69 in Equation 4.65 we can evaluate 
Um and hence differentiate Um with respect to temperature to obtain the molar heat 
capacity at constant volume,

 Cm = 9R( T

TD
)

3

∫
TD∕T

0

x4ex dx

(ex − 1)2  [4.69]

which is the Debye heat capacity expression.

 Figure 4.54 represents the constant-volume molar heat capacity Cm of nearly all 
crystals, Equation 4.69, as a function of temperature, normalized with respect to 
the Debye temperature. The Dulong–Petit rule of Cm = 3R is only obeyed when 
T > TD. Notice that Cm at T = 0.5TD is 0.825(3R) whereas at T = TD it is 0.952(3R). 
For most practical purposes, Cm is to within 6 percent of 3R when the temperature 
is at 0.9TD. For example, for copper TD = 315 K and above about 0.9TD, that is, 
above 283 K (or 10 °C), Cm ≈ 3R, as borne out by experiments.28 Table 4.5 provides 
typical values for TD, and heat capacities for a few selected elements. It is left as an 
exercise to check the accuracy of Equation 4.69 for predicting the heat capacity given 
the TD values. At the lowest temperatures when T ≪ TD, Equation 4.69 predicts that 

 28 Sometimes it is stated that the Debye temperature is a characteristics temperature for each material at which 
all the atoms are able to possess vibrational kinetic energies in accordance with the Maxwell equipartition of 
energy principle; that is, the average vibrational kinetic energy will be 3

2  kT  per atom and average potential 
energy will also be 3

2  kT . This means that the average energy per atom is 3kT, and hence the heat capacity is 
3kNA or 3R per mole which is the Dulong–Petit rule.
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Cm ∝ T 3, and this is indeed observed in low-temperature heat capacity experiments 
on a variety of crystals.29

 It is useful to provide a physical picture of the Debye model inherent in Equa-
tion 4.69. As the temperature increases from near zero, the increase in the crystal’s 
vibrational energy is due to more phonons being created and higher frequencies 
being excited. The phonon concentration increases as T 3, and the mean phonon 
energy increases as T. Thus, the internal energy increases as T 4. At temperatures 
above TD, increasing the temperature creates more phonons but does not increase the 

 29 Well-known exceptions are glasses, noncrystalline solids, whose heat capacity is proportional to a1T + a2T3, 
where a1 and a2 are constants.
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Figure 4.54 Debye constant- 
volume molar heat capacity curve.

The dependence of the molar heat 
capacity Cm on temperature with 
respect to the Debye temperature: 
Cm versus T∕TD. For Si, TD = 625 K, 
so at room temperature (300 K), 
T∕TD = 0.48 and Cm is only 0.82(3R). 
For diamond, TD = 1860 K so that 
at room temperature, Cm is 0.26(3R)

 *TD is obtained by fitting the Debye curve to the experimental molar heat capacity data at the point Cm = 1
2 (3R).

 †Cm, cs, and κ are at 25 °C.

 TD data from De Launay, J., Solid State Physics, vol. 2 (Seitz, F., and Turnbull, D., eds). New York, NY: Academic 
Press, 1956.

Table 4.5 Debye temperatures TD, heat capacities, and thermal conductivities of selected elements

 Crystal

 Ag Be Cu Diamond Ge Hg Si W

TD(K)* 215 1000 315 1860 360 100 625 310
Cm(J K−1 mol−1)† 25.6 16.46 24.5 6.48 23.38 27.68 19.74 24.45
cs(J K

−1 g−1)† 0.237 1.825 0.385 0.540 0.322 0.138 0.703 0.133
κ(W m−1 K−1)† 429 200 400 1000 60 8.65 148 173



 4 .1 0  PHONONS 383

mean phonon energy and does not excite higher frequencies. All frequencies up to 
ωmax have now been excited. The internal energy increases only due to more phonons 
being created. The phonon concentration and hence the internal energy increase as 
T; the heat capacity is constant as expected from Equation 4.69.
 It is apparent that, above the Debye temperature, the increase in temperature 
leads to the creation of more phonons. In Chapters 1 and 2, using classical concepts 
only, we had mentioned that increasing the temperature increases the magnitude of 
atomic vibrations. This simple and intuitive classical concept in terms of modern 
physics corresponds to creating more phonons with temperature. We can use the 
photon analogy from Chapter 3. When we increase the intensity of light of a given 
frequency, classically we simply increase the electric field (magnitude of the vibra-
tions), but in modern physics we have to increase the number of photons flowing 
per unit area.

SPECIFIC HEAT CAPACITY OF Si Find the specific heat capacity cs of a silicon crystal at 
room temperature given TD = 625 K for Si.

SOLUTION

At room temperature, T = 300 K, (T∕TD) = 0.48, and, from Figure 4.54, the molar heat 
capacity is

 Cm = 0.81(3R) = 20.2 J K−1 mol−1

 If Mat = 28.9 g mol−1 is the atomic mass of Si, the specific heat capacity cs from the 
Debye curve is

 cs =
Cm

Mat
≈

(0.81 × 25 J K−1 mol−1)

(28.09 g mol−1)
= 0.72 J K−1 g−1

 The experimental value of 0.70 J K−1 g−1 is very close to the Debye value.

  EXAMPLE 4.18

SPECIFIC HEAT CAPACITY OF GaAs Example 4.18 applied Equation 4.69, the Debye 
molar heat capacity Cm, to the silicon crystal in which all atoms are of the same type. It was 
relatively simple to calculate the specific heat capacity cs (what is really used in engineering) 
from the molar heat capacity Cm by using cs = Cm∕Mat where Mat is the atomic mass of the 
type of atom (only one) in the crystal. When the crystal has two types of atoms, we must 
modify the specific heat capacity derivation. We can still keep the symbol Cm to represent 
the Debye molar heat capacity given in Equation 4.69. Consider a GaAs crystal that has NA 
units of GaAs, that is, 1 mole of GaAs. There will be 1 mole (NA atoms) of Ga and 1 mole 
of As atoms. To a reasonable approximation we can assume that each mole of Ga and As 
contributes a Cm amount of heat capacity so that the total heat capacity of 1 mole GaAs will 
be Cm + Cm or 2Cm, a maximum of 50 J K−1 mol−1. The total mass of this 1 mole of GaAs 
is MGa + MAs. Thus, the specific heat capacity of GaAs is

 cs =
Ctotal

Mtotal
=

Cm + Cm

MGa + MAs
=

2Cm

MGa + MAs

 EXAMPLE 4.19
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which can alternatively be written as

 cs =
Cm

1
2(MGa + MAs)

=
Cm

M
 [4.70]

where M = (MGa + MAs)∕2 is the average atomic mass of the constituent atoms. Although 
we derived cs for GaAs, it can also be applied to other compounds by suitably calculating an 
average atomic mass M . GaAs has a Debye temperature TD = 344 K, so that at a room 
temperature of 300 K, T∕TD = 0.87, and from Figure 4.54, Cm∕(3R) = 0.94. Therefore,

 cs =
Cm

M
=

(0.94)(25 J K−1 mol−1)
1
2(69.72 g mol−1 + 74.92 g mol−1)

= 0.325 J K−1 g−1

 At −40 °C, T∕TD = 0.68, and Cm∕(3R) = 0.90, so the new cs = (0.90∕0.94)(0.325) = 
0.311 J K−1 g−1, which is not a large change in cs.
 The heat capacity per unit volume Cv can be found from Cv = csρ, where ρ is the density. 
Thus, at 300 K, Cv = (0.325 J K−1 g−1)(5.32 g cm−3) = 1.73 J K−1 cm−3. The calculated cs 
match the reported experimental values very closely.

Specific heat 

capacity of a 

polyatomic 

crystal

Average 

phonon 

population 

at ω

PHONON POPULATION DISTRIBUTION Equation 4.64 gives the average energy E(ω)  of 
phonons at a frequency ω. How would you find the number of phonons nph at this frequency? 
How does nph depend on T at low and high temperatures?

SOLUTION

If we divide the average vibrational energy E(ω)  at ω by the energy of a single phonon ħω 
at this frequency we would find the average number of phonons,

 nph =
E(ω)
ħω

=
1

exp(ħω

kT ) − 1
 [4.71]

The above equation is usually called the phonon distribution function. At low temperatures, 
the exponential term dominates the denominator, and we get nph = exp(−ħω∕kT), that is, 
the phonon population increases exponentially with T. At high temperatures, (ħω∕kT) is 
small and we can expand the exponential term in Equation 4.71 as 1 + (ħω∕kT) and find 
nph = kT∕ħω. The phonon population at a given frequency is directly proportional to the 
temperature; nph ∝ T. (Equation 4.71 is known as the Bose-Einstein distribution.)

4.10.3 THERMAL CONDUCTIVITY OF NONMETALS

In nonmetals the heat transfer involves lattice vibrations, that is, phonons. The heat 
absorbed in the hot region increases the amplitudes of the lattice vibrations, which 
is the same as generating more phonons. These new phonons travel toward the cold 
regions and thereby transport the lattice energy from the hot to cold end. The thermal 

conductivity κ measures the rate at which heat can be transported through a medium 
per unit area per unit temperature gradient. It is proportional to the rate at which a 
medium can absorb energy; that is, κ is proportional to the heat capacity. κ is also 
proportional to the rate at which phonons are transported which is determined by 
their mean velocity vph. In addition, of course, κ is proportional to the mean free 
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path ℓph that a phonon has to travel before losing its momentum just as the electrical 
conductivity is proportional to the electron’s mean free path. A rigorous classical 
treatment gives κ as

 κ =
1
3

 Cvvphℓph [4.72]

where Cv is the heat capacity per unit volume. The mean free path ℓph depends on 
various processes that can scatter the phonons and hinder their propagation along 
the direction of heat flow. Phonons collide with other phonons, crystal defects, impu-
rities, and crystal surfaces.
 The mean phonon velocity vph is constant and approximately independent of 
temperature. At temperatures above the Debye temperature, Cv is constant and, 
thus, κ ∝ ℓph. The mean free path of phonons at these temperatures is determined 
by phonon–phonon collisions, that is, phonons interacting with other phonons as 
depicted in Figure 4.55. Since the phonon concentration nph increases with temperature, 
nph ∝ T, the mean free path decreases as ℓph ∝ 1∕T. Thus, κ decreases with increas-
ing temperature as observed for most crystals at sufficiently high temperatures.
 The phonon–phonon collisions that are responsible for limiting the thermal con-
ductivity, that is, scattering the phonon momentum in the opposite direction to the 
heat flow, are due to the unharmonicity (asymmetry) of the interatomic potential 
energy curve. Stated differently, the net force F acting on an atom is not simply βx 
but also has an x2 term; it is nonlinear. The greater the asymmetry or nonlinearity, 
the larger is the effect of such momentum flipping collisions. The same asymmetry 
that is responsible for thermal expansion of solids is also responsible for determin-
ing the thermal conductivity. When two phonons 1 and 2 interact in a crystal region 
as in Figure 4.55, the nonlinear behavior and the periodicity of the lattice cause a 
new phonon 3 to be generated. This new phonon 3 has the same energy as the sum of 
1 and 2, but it is traveling in the wrong direction! (The frequency of 3 is the sum 
of the frequencies of 1 and 2.)
 At low temperatures there are two factors. The phonon concentration is too low 
for phonon–phonon collisions to be significant. Instead, the mean free path ℓph is 
determined by phonon collisions with crystal imperfections, most significantly, crys-
tal surfaces and grain boundaries. Thus, ℓph depends on the sample geometry and 
crystallinity. Further, as we expect from the Debye model, Cv depends on T 3, so κ 
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Unharmonic
interaction

Direction of heat flow
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3
Figure 4.55 Phonons generated in 
the hot region travel toward the cold 
region and thereby transport heat  
energy.

Phonon–phonon unharmonic  
interaction generates a new phonon 
whose momentum is toward the hot 
region.
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has the same temperature dependence as Cv, that is, κ ∝ T 3. Between the two tem-
perature regimes κ exhibits a peak as shown in Figure 4.56 for sapphire (crystalline 
Al2O3) and MgO crystals. Even though there are no conduction electrons in these 
two example crystals, they nonetheless exhibit substantial thermal conductivity.

PHONONS IN GaAs Estimate the phonon mean free path in GaAs at room temperature 
300 K and at 20 K from its κ, Cv, and vph, using Equation 4.72. At room temperature, semi-
conductor data handbooks list the following for GaAs: κ = 45 W m−1 K−1, elastic modulus 
Y = 85 GPa, density ρ = 5.32 g cm−3, and specific heat capacity cs = 0.325 J K−1 g−1. At 
20 K, κ = 4000 W m−1 K−1 and cs = 0.0052 J K−1 g−1. Y and ρ and hence vph do not change 
significantly with temperature compared with the changes in κ and Cv with temperature.

SOLUTION

The phonon velocity vph from Equation 4.62 is approximately

 vph ≈ √ Y

ρ
= √ 85 × 109 N m−2

5.32 × 103 kg m−3 = 4000 m s−1

Heat capacity per unit volume Cv = csρ = (325 J K−1 kg−1)(5320 kg m−3) = 1.73 × 106 J K−1 
m−3. From Equation 4.72, κ = 1

3Cvvphℓph,

 ℓph =
3κ

Cvvph
=

(3)(45 W m−1 K−1)

(1.73 × 106 J K−1 m−3) (4000 m s−1)
= 2.0 × 10−8 m  or  20 nm

 We can easily repeat the calculation at 20 K, given κ ≈ 4000 W m−1 K−1 and cs = 5.2 
J K−1 kg−1, so Cv = csρ ≈ (5.2 J K−1 kg−1)(5320 kg m−3) = 2.77 × 104 J K−1 m−3. Y and ρ 
and hence vph (≈ 4000 m s−1) do not change significantly with temperature compared with κ 
and Cv. Thus,

 ℓph =
3κ

Cvvph
≈

(3)(4 × 103 W m−1 K−1)

(2.77 × 104 J K−1 m−3) (4000 m s−1)
= 1.1 × 10−4 m  or  0.011 cm

 EXAMPLE 4.21

1

10

100

1000

10,000

100,000

1 10 100 1000

Temperature (K)

MgO

Sapphire

κ
 (

W
 m

–
1
K

–
1
)

Figure 4.56 Thermal conductivity of sapphire and 
MgO crystals as a function of temperature.



 4 .1 0  PHONONS 387

For small specimens, the above phonon mean free path will be comparable to the sample 
size, which means that ℓph will actually be limited by the sample size. Consequently κ will 
depend on the sample dimensions, being smaller for smaller samples, similar to the depen-
dence of the electrical conductivity of thin films on the film thickness.

4.10.4 ELECTRICAL CONDUCTIVITY

Except at low temperatures, the electrical conductivity of metals is primarily controlled 
by scattering of electrons around EF by lattice vibrations, that is, phonons. These elec-
trons have a speed vF = (2EF∕me)

1∕2 and a momentum of magnitude mevF. We know 
that the electrical conductivity σ is proportional to the mean collision time τ of the 
electrons, that is, σ ∝ τ. This scattering time assumes that each scattering process is 
100 percent efficient in randomizing the electron’s momentum, that is, destroying the 
momentum gained from the field, which may not be the case. If it takes on average 
N collisions to randomize the electron’s momentum, and τ is the mean time between 
the scattering events, then the effective scattering time is simply Nτ and σ ∝ Nτ. (1∕N 
indicates the efficiency of each scattering process in randomizing the velocity.)
 Figure 4.57 shows an example in which an electron with an initial momentum 
pi collides with a lattice vibration of momentum ħK. The result of the interaction is 
that the electron’s momentum is deflected through a small angle θ to pf which still 
has a component along the original direction x. This is called a low-angle scattering 
process. It will take many such collisions to reverse the electron’s momentum which 
corresponds to flipping the momentum along the +x direction to the −x direction. 
Recall that the momentum gained from the field is actually very small compared 
with the momentum of the electron which is mevF. A scattered electron must have 
an energy close to EF because lower energy states are filled. Thus, pi and pf have 
approximately the same magnitude pi = pf = mevF as shown in Figure 4.57.
 At temperatures above the Debye temperature, we can assume that most of the 
phonons are vibrating with the Debye frequency ωmax, and the phonon concentration 
nph increases as T. These phonons have sufficient energies and momenta to fully 
scatter the electron on impact. Thus,

 σ ∝ τ ∝
1

nph
∝

1
T

 [4.73a]

 When T < TD, the phonon concentration follows nph ∝ T 3, and the mean phonon 
energy Eph ∝ T , because, as the temperature is raised, higher frequencies are excited. 
However, these phonons have low energy and small momenta, thus they only cause 
small-angle scattering processes as in Figure 4.57. The average phonon momentum 
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ħK is also proportional to the temperature (recall that at low frequencies Figure 4.50a 
shows that ħω ∝ ħK). It will take many such collisions, say N, to flip the electron’s 
momentum by 2mevF from +mevF to −mevF. During each collision, a phonon of 
momentum ħK is absorbed as shown in Figure 4.57. Thus, if all phonons deflected 
the electron in the same angular direction, the collisions would sequentially add to θ 
in Figure 4.57, and we will need (2mevF)∕(ħK) number of steps to flip the electron’s 
momentum. The actual collisions add θ’s randomly and the process is similar to 
particle diffusion, random walk, in Section 1.8.2 (L2 = Na2, where L = displaced 
distance after N jumps and a = jump step). Thus,

 N =
(2mevF)2

(ħK)2 ∝
1

T 
2

 The conductivity is therefore given by

 σ ∝ Nτ ∝
N

nph

∝
1

T 
5
 [4.73b]

which is indeed observed for Cu in Figure 2.8 when T < TD over the range where 
impurity scattering is negligible.

ADDITIONAL TOPICS

4.11   BAND THEORY OF METALS: ELECTRON 

DIFFRACTION IN CRYSTALS

A rigorous treatment of the band theory of solids involves extensive quantum 
mechanical analysis and is beyond the scope of this book. However, we can attain 
a satisfactory understanding through a semiquantitative treatment.
 We know that the wavefunction of the electron moving freely along x in space 
is a traveling wave of the spatial form ψk(x) ∝ exp( jkx), where k is the wavevector 
k = 2π∕λ of the electron and ħk is its momentum in the crystal. Here, ψk(x) represents 
a traveling wave because it must be multiplied by exp(−jωt), where ω = E∕ħ, to get 
the total wavefunction Ψ(x, t) ∝ exp[ j(kx − ωt)].
 We will assume that an electron moving freely within the crystal and within a 
given energy band should also have a traveling wave type of wavefunction,
 ψk(x) = A exp( jkx) [4.74]

where k is the electron wavevector in the crystal and A is the amplitude. This is a 
reasonable expectation, since, to a first order, we can take the PE of the electron 
inside a solid as zero, V = 0. Yet, the PE must be large outside, so the electron is 
contained within the crystal. When the PE is zero, Equation 4.74 is a solution to the 
Schrödinger equation. The momentum of the electron described by the traveling wave 
Equation 4.74 is then ħk and its energy is

 Ek =
(ħk)2

2me

 [4.75]

where me is the mass of the electron (Equation 4.75 corresponds to the familiar 
energy versus momentum relation for a free particle.)
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 The electron, as a traveling wave, will freely propagate through the crystal. 
However, not all traveling waves, can propagate in the lattice. The electron cannot 
have any k value in Equation 4.74 and still move through the crystal. Waves can be 
reflected and diffracted, whether they are electron waves, X-rays, or visible light. 
Diffraction occurs when reflected waves interfere constructively. Certain k values 
will cause the electron wave to be diffracted, preventing the wave from propagating.
 The simplest illustration that certain k values will result in the electron wave 
being diffracted is shown in Figure 4.58 for a hypothetical linear lattice in which 
diffraction is simply a reflection (what we call diffraction becomes Bragg reflection). 
The electron is assumed to be propagating in the forward direction along x with a 
traveling wave function of the type in Equation 4.74. At each atom, some of this 
wave will be reflected. At A, the reflected wave is A′ and has a magnitude A′. If the 
reflected waves A′, B′, and C′ reinforce each other, a full reflected wave will be 
created, traveling in the backward direction. The reflected waves A′, B′, C′, . . . will 
reinforce each other if the path difference between A′, B′, C′, . . . is nλ, where λ is 
the wavelength and n = 1, 2, 3, . . . is an integer. When wave B′ reaches A′, it has 
traveled an additional distance of 2a. The path difference between A′ and B′ is 
therefore 2a. For A′ and B′ to reinforce each other, that is for constructive interfer-
ence, we need

 2a = nλ  n = 1, 2, 3, . . .

 Substituting λ = 2π∕k, we obtain the condition in terms of k

 k =
nπ

a
  n = 1, 2, 3, . . . [4.76]

Thus, whenever k is such that it satisfies the condition in Equation 4.76, all the 
reflected waves reinforce each other and produce a backward-traveling, reflected 
wave of the following form (with a negative k value):

 ψ−k(x) = A exp(−jkx) [4.77]

 This wave will also probably suffer a reflection, since its k satisfies Equation 4.76, 
and the reflections will continue. The crystal will then contain waves traveling in 
the forward and backward directions. These waves will interfere to give standing 

waves inside the crystal. Hence, whenever the k value satisfies Equation 4.76, traveling 
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waves cannot propagate through the lattice. Instead, there can only be standing 
waves. For k satisfying Equation 4.76, the electron wavefunction consists of waves 
ψk and ψ−k interfering in two possible ways to give two possible standing waves:

 ψc(x) = A exp(  jkx) + A exp(−jkx) = Ac cos(nπx

a ) [4.78]

 ψs(x) = A exp(  jkx) − A exp(−jkx) = As sin(nπx

a ) [4.79]

 The probability density distributions ∣ψc(x)∣2 and ∣ψs(x)∣2 for the two standing 
waves are shown in Figure 4.59. The first standing wave ψc(x) is at a maximum 
on the ion cores, and the other ψs(x) is at a maximum between the ion cores. Note 
also that both the standing waves ψc(x) and ψs(x) are solutions to the Schrödinger 
equation.
 The closer the electron is to a positive nucleus, the lower is its electrostatic PE, 
by virtue of −e2∕4πεor. The PE of the electron distribution in ψc(x) is lower than 
that in ψs(x), because the maxima for ψc(x) are nearer the positive ions. Therefore, the 
energy of the electron in ψc(x) is lower than that of the electron in ψs(x), or Ec < Es.
 It is not difficult to evaluate the energies Ec and Es. The kinetic energy of the 
electron is the same in both ψc(x) and ψs(x), because these wavefunctions have the 
same k value and KE is given by (ħk)2∕2me. However, there is an electrostatic PE 
arising from the interaction of the electron with the ion cores, and this PE is differ-
ent for the two wavefunctions. Suppose that V(x) is the electrostatic PE of the elec-
tron at position x. We then must find the average, using the probability density 
distribution. Given that ∣ψc(x)∣2 dx is the probability of finding the electron at x in 
dx, the potential energy Vc of the electron is simply V(x) averaged over the entire 
linear length L of the crystal. Thus, the potential energy Vc for ψc(x) is

 Vc =
1

L
∫

L

0

V(x)∣ψc(x)∣2 dx = −Vn [4.80]

where Vn is the numerical result of the integration, which depends on k = nπ∕a or 
n, by virtue of Equation 4.78. The integration in Equation 4.80 is a negative number 
that depends on n. We do not need to evaluate the integral, as we only need its final 
numerical result.
 Using ∣ψs(x)∣2, we can also find Vs, the PE associated with ψc(x). The result is 
that Vs is a positive quantity given by +Vn, where Vn is again the numerical result 
of the integration in Equation 4.80, which depends on n. The energies of the 
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wavefunctions ψc and ψs whenever k = nπ∕a are

 Ec =
(ħk)2

2me

− Vn  k =
nπ

a
 [4.81]

 Es =
(ħk)2

2me

+ Vn  k =
nπ

a
 [4.82]

 Clearly, whenever k has the critical values nπ∕a, there are only two possible 
values Ec and Es for the electron’s energy as determined by Equations 4.81 and 4.82; 
no other energies are allowed in between. These two energies are separated by 2Vn.
 Away from the critical k values determined by k = nπ∕a, the electron simply prop-
agates as a traveling wave; the wave does not get reflected. The energy is then given 
by the free-running wave solution to the Schrödinger equation, that is, Equation 4.75,

 Ek =
(ħk)2

2me

  Away from k =
nπ

a
 [4.83]

 It seems that the energy of the electron increases parabolically with k along 
Equation 4.83 and then suddenly, at k = nπ∕a, it suffers a sharp discontinuity 
and  increases parabolically again. Although the discontinuities at the critical points 
k = nπ∕a are expected, by virtue of the Bragg reflection of waves, reflection effects 
will still be present to a certain extent, even within a small range around k = nπ∕a. 
The individual reflections shown in Figure 4.58 do not occur exactly at the origins 
of the atoms at x = a, 2a, 3a, . . . . Rather, they occur over some distance, since the 
wave must interact with the electrons within the atoms to be reflected. We therefore 
expect the E–k behavior to deviate from Equation 4.83 in the neighborhood of the 
critical points, even if k is not exactly nπ∕a. Figure 4.60 shows the E–k behavior we 
expect, based on these arguments.
 In Figure 4.60, we notice that there are certain energy ranges occurring at 
k = ±(nπ∕a) in which there are no allowed energies for the electron. As we saw pre-
viously, the electron cannot possess an energy between Ec and Es at k = π∕a. These 
energy ranges form energy gaps at the critical points k = ±(nπ∕a).
 The range of k values from zero to the first energy gap at k = ±(π∕a) defines 
a zone of k values called the first Brillouin zone. The zone between the first and 
second energy gap defines the second Brillouin zone, and so on. The Brillouin zone 
boundaries therefore identify where the energy discontinuities, or gaps, occur along 
the k axis.
 Electron motion in the 3D crystal can be readily understood based on the con-
cepts described here. For simplicity, we consider an electron propagating in a 2D 
crystal, which is analogous, for example, to propagation in the xy plane of a crystal, 
as depicted in Figure 4.61. For certain k values and in certain directions, the electron 
will suffer diffraction and will be unable to propagate in the crystal.
 Suppose that the electron’s k vector along x is k1. Whenever k1 = ±nπ∕a, the 
electron will be diffracted by the planes perpendicular to x, that is, the (10) planes.30 

 30 We use Miller indices in two dimensions by dropping the third digit but keeping the same interpretation. The 
direction along x is [10] and the plane perpendicular to x is (10).
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Figure 4.60 The energy of the electron as a function of its wavevector k inside a 1D crystal.

There are discontinuities in the energy at k = ±nπ∕a, where the waves suffer Bragg reflections  
in the crystal. For example, there can be no energy value for the electron between Ec and Es. 
Therefore, Es − Ec is an energy gap at k = ±π∕a. Away from the critical k values, the E–k behavior  
is like that of a free electron, with E increasing with k as E = (ħk)2∕2me. In a solid, these energies  
fall within an energy band.
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Diffraction occurs whenever k has a component 
satisfying k1 = ±nπ∕a, k2 = ±nπ∕a, or k3 =  
±nπ √2∕a. In general terms, diffraction occurs 
when k sin θ = nπ∕d.
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Similarly, it will be diffracted by the (01) planes whenever its k vector along y is 
k2 = ±nπ∕a. The electron can also be diffracted by the (11) planes, whose separa-
tion is a∕√2. If the component of k perpendicular to the (11) plane is k3, then 
whenever k3 = ±nπ(√2∕a) , the electron will experience diffraction. These diffrac-
tion conditions can all be expressed through the Bragg diffraction condition 2d 
sin θ = nλ, or

 k sin θ =
nπ

d
 [4.84]

where d is the interplanar separation and n is an integer; d = a for (10) planes, and 
d = a∕√2 for (11) planes. (See Appendix A for the derivation of Equation 4.84 for 
the diffraction of X-rays.)
 When we plot the energy of the electron as a function of k, we must consider 
the direction of k, since the diffraction behavior in Equation 4.84 depends on sin θ. 
Along x, at θ = 0, the energy gap occurs at k = ±(nπ∕a). Along θ = 45°, it is at 
k = ±nπ(√2∕a) , which is farther away. The E–k behavior for the electron in the 2D 
lattice is shown in Figure 4.62 for the [10] and [11] directions. The figure shows 
that the first energy gap along x, in the [10] direction, is at k = π∕a. Along the [11] 
direction, which is at 45° to the x axis, the first gap is at k = π√2∕a.
 When we consider the overlap of the energy bands along [10] and [11], in the 
case of a metal, there is no apparent energy gap. The electron can always find any 
energy simply by changing its direction.
 The effects of overlap between energy bands and of energy gaps in different 
directions are illustrated in Figure 4.63. In the case of a semiconductor, the energy 
gap along [10] overlaps that along [11], so there is an overall energy gap. The elec-
tron in the semiconductor cannot have an energy that falls into this energy gap.
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Figure 4.62 The E–k behavior for the electron 
along different directions in the 2D crystal.

The energy gap along [10] is at π∕a whereas it is 
at √2π∕a along [11].
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 The first and second Brillouin zones for the 2D lattice of Figure 4.61 are shown 
in Figure 4.64. The zone boundaries mark the occurrences of energy gaps in k space 
(space defined by k axes along the x and y directions). When we look at the E–k 
behavior, we must consider the crystal directions. This is most conveniently done by 
plotting energy contours in k space, as in Figure 4.65. Each contour connects all 
those values of k that possess the same energy. A point such as P on an energy 
contour gives the value of k for that energy along the direction OP. Initially, the 
energy contours are circles, as the energy follows (ħk)2∕2me behavior, whatever the 
direction of k. However, near the critical values, that is, near the Brillouin zone 
boundaries, E increases more slowly than the parabolic relationship, as is apparent 
in Figure 4.60. Therefore, the circles begin to bulge as critical k values are approached. 
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along [10] overlaps the first BZ along [11]. Bands overlap the energy gaps. Thus, the electron can always find any energy 
by changing its direction. (b) For the electron in a semiconductor, there is an energy gap arising from the overlap of the 
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The Brillouin zones identify the boundaries where there are 
discontinuities in the energy (energy gaps).
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In Figure 4.65, the high-energy contours are concentrated in the corners of the zone, 
simply because the critical value is reached last along [11]. The energy contours do 
not continue smoothly across the zone boundary, because of the energy discontinu-
ity in the E–k relationship at the boundary. Indeed, Figure 4.62 shows that the low-
est energy in the second Brillouin zone may be lower than the highest energy in the 
first Brillouin zone.
 There are two cases of interest. In the first, there is no apparent energy gap, as 
in Figure 4.65a, which corresponds to Figure 4.63a. The electron can have any 
energy value. In the second case, there is a range of energies that are not allowed, 
as shown in Figure 4.65b, which corresponds to Figure 4.63b.
 In three dimensions, the E–k energy contour in Figure 4.65 becomes a surface 
in 3D k space. To understand the use of such E–k contours or surfaces, consider that 
an E–k contour (or a surface) is made of many finely separated individual points, 
each representing a possible electron wavefunction ψk with a possible energy E. At 
absolute zero, all the energies up to the Fermi energy are taken by the valence elec-
trons. In k space, the energy surface, corresponding to the Fermi energy is termed 
the Fermi surface. The shape of this Fermi surface provides a means of interpreting 
the electrical and magnetic properties of solids.
 For example, Na has one 3s electron per atom. In the solid, the 3s band is half full. 
The electrons take energies up to EF, which corresponds to a nearly spherical Fermi 
surface within the first Brillouin zone, as indicated in Figure 4.66a. We can then say 
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that all the valence electrons (or nearly all) in this alkali solid exhibit an E = (ħk)2∕2me 
type of behavior, as if they were free. When an external force is applied, such as an 
electric or magnetic field, we can treat the electron behavior as if it were free inside 
the metal with a constant mass, that is, some effective mass m*e. This is a desirable 
simplification for studying such metals. We can illustrate this desirability with an 
example. The Hall coefficient RH derived in Chapter 2 was based on treating the 
electron as if it were a free particle inside the metal, or

 RH = −
1
en

 [4.85]

For Na, the experimental value of RH is −2.50 × 10−10 m3 C−1. Using the density 
(0.97 g cm−3) and atomic mass (23) of Na and one valence electron per atom, we 
can calculate n = 2.54 × 1028 m−3 and RH = −2.46 × 10−10 m3 C−1, which is very 
close to the experimental value.
 In the case of Cu, Ag, and Au (the IB metals in the Periodic Table), the Fermi 
surface is inside the first Brillouin zone, but it is not spherical as depicted in Fig-
ure 4.66b. Also, it touches the centers of the zone boundaries. Some of those elec-
trons near the zone boundary behave quite differently than E = (ħk)2∕2me, although 
the majority of the electrons in the sphere do exhibit this type of behavior. To an 
extent, we can expect the free electron derivations to hold. The experimental value 
of RH for Cu is −0.55 × 10−10 m3 C−1, whereas the expected value, based on Equa-
tion 4.85 with one electron per atom, is −0.73 × 10−10 m3 C−1, which is noticeably 
greater in magnitude than the experimental value.
 The divalent metals Be, Mg, and Ca have closed outer s subshells and should 
have a full s band in the solid. Recall that electrons in a full band cannot respond 
to an applied field and drift. We also know that there should be an overlap between 
the s and p bands, forming one partially filled continuous energy band, so these 
metals are indeed conductors. In terms of Brillouin zones, their structure is based 
on Figure 4.63a, which has the second zone overlapping the first Brillouin zone. 
The Fermi surface extends into the second zone and the corners of the first zone 
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are empty, as depicted in Figure 4.66c. Since there are empty energy levels next 
to the Fermi surface, the electrons can gain energy and drift in response to an 
applied field. But the surface is not spherical; indeed, near the corners of the first 
zone, it even has the wrong curvature. Therefore, it is no longer possible to describe 
these electrons on the Fermi surface as obeying E = (ħk)2∕2me. When a magnetic 
field is applied to a drifting electron to bend its trajectory, its total behavior is 
different than that expected when it is acting as a free particle. The external force 
changes the momentum ħk and the corresponding change in the energy depends 
on the Fermi surface and can be quite complicated. To finish the example on the 
Hall coefficient, we note that based on two valence electrons per atom (Group IIA), 
the Hall coefficient for Be should be −0.25 × 10−10 m3 C−1, but the measured 
value is a positive coefficient of +2.44 × 10−10 m3 C−1. Equation 4.85 is therefore 
useless. It seems that the electrons moving at the Fermi surface of Be are equiva-
lent to the motion of positive charges (like holes), so the Hall effect registers a 
positive coefficient.
 The Fermi surface of a semiconductor is simply the boundary of the first Bril-
louin zone, because there is an energy gap between the first and the second Brillouin 
zones, as depicted in Figure 4.63b. In a semiconductor, all the energy levels up to 
the energy gap are taken up by the valence electrons. The first Brillouin zone forms 
the valence band and the second forms the conduction band.

DEFINING TERMS

Cathode is a negative electrode. It emits electrons or 
attracts positive charges, that is, cations.

Debye frequency is the maximum frequency of lattice 
vibrations that can exist in a particular crystal. It is the 
cut-off frequency for lattice vibrations.

Debye temperature is a characteristic temperature of 
a particular crystal above which nearly all the atoms 
are vibrating in accordance with the kinetic molecular 
theory, that is, each atom has an average energy (poten-
tial + kinetic) of 3kT due to atomic vibrations, and the 
heat capacity is determined by the Dulong–Petit rule.

Density of states g(E) is the number of electron states 
[e.g., wavefunctions, ψ (n, ℓ, mℓ, ms)] per unit energy 
per unit volume. Thus, g(E) dE is the number of states 
in the energy range E to (E + dE) per unit volume.

Density of vibrational states is the number of lattice 
vibrational modes per unit angular frequency range.

Dispersion relation relates the angular frequency ω 
and the wavevector K of a wave. In a crystal lattice, the 

Average energy Eav of an electron in a metal is deter-
mined by the Fermi–Dirac statistics and the density of 
states. It increases with the Fermi energy and also with 
the temperature.

Boltzmann statistics describes the behavior of a col-
lection of particles (e.g., gas atoms) in terms of their 
energy distribution. It specifies the number of particles 
N(E) with given energy, through N(E) ∝ exp(−E∕kT), 
where k is the Boltzmann constant. The description is 
nonquantum mechanical in that there is no restriction 
on the number of particles that can have the same state 
(the same wavefunction) with an energy E. Also, it ap-
plies when there are only a few particles compared to 
the number of possible states, so the likelihood of two 
particles having the same state becomes negligible. 
This is generally the case for thermally excited elec-
trons in the conduction band of a semiconductor, where 
there are many more states than electrons. The kinetic 
energy distribution of gas molecules in a tank obeys 
the Boltzmann statistics.
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Linear combination of atomic orbitals (LCAO) is a 
method for obtaining the electron wavefunction in the 
molecule from a linear combination of individual 
atomic wavefunctions. For example, when two H at-
oms A and B come together, the electron wavefunc-
tions, based on LCAO, are

ψa = ψ1s(A) + ψ1s(B)

ψb = ψ1s(A) − ψ1s(B)

where ψ1s(A) and ψ1s(B) are atomic wavefunctions 
centered around the H atoms A and B, respectively. 
The ψa and ψb represent molecular orbital wavefunc-
tions for the electron; they reflect the behavior of 
the  electron, or its probability distribution, in the 
molecule.

Mode or state of lattice vibration is a distinct, inde-
pendent way in which a crystal lattice can vibrate with 
its own particular frequency ω and wavevector K. 
There are only a finite number of vibrational modes in 
a crystal.

Molecular orbital wavefunction, or simply molecu-
lar orbital, is a wavefunction for an electron within a 
system of two or more nuclei (e.g., molecule). A mo-
lecular orbital determines the probability distribution 
of the electron within the molecule, just as the atomic 
orbital determines the electron’s probability distribu-
tion within the atom. A molecular orbital can take two 
electrons with opposite spins.

Orbital is a region of space in an atom or molecule 
where an electron with a given energy may be found. 
An orbit, which is a well-defined path for an electron, 
cannot be used to describe the whereabouts of the elec-
tron in an atom or molecule because the electron has a 
probability distribution. Orbitals are generally repre-
sented by a surface within which the total probability is 
high, for example, 90 percent.

Orbital wavefunction, or simply orbital, describes 
the spatial dependence of the electron. The orbital is 
ψ (r, θ, ϕ), which depends on n, ℓ, and mℓ, and the spin 
dependence ms is excluded.

Phonon is a quantum of lattice vibrational energy of 
magnitude ħω, where ω is the vibrational angular fre-
quency. A phonon has a momentum ħK where K is the 
wavevector of the lattice wave.

coupling of atomic oscillations leads to a particular re-
lationship between ω and K which determines the al-
lowed lattice waves and their group velocities. The 
dispersion relation is specific to the crystal structure, 
that is, it depends on the lattice, basis, and bonding.

Effective electron mass m*e represents the inertial re-
sistance of an electron inside a crystal against an ac-
celeration imposed by an external force, such as the 
applied electric field. If Fext = eEx is the external ap-
plied force due to the applied field Ex, then the effective 
mass m*e determines the acceleration a of the electron 
by eEx = m*ea. This takes into account the effect of the 
internal fields on the motion of the electron. In vacuum 
where there are no internal fields, m*e is the mass in 
vacuum me.

Electron affinity is the energy needed to remove an 
electron from the conduction band of a semiconductor 
to the vacuum.

Fermi–Dirac statistics determines the probability of 
an electron occupying a state at an energy level E. This 
takes into account that a collection of electrons must 
obey the Pauli exclusion principle. The Fermi–Dirac 
function quantifies this probability via f (E) = 1∕{1 + 
exp[(E − EF)∕kT]}, where EF is the Fermi energy.

Fermi energy is the maximum energy of the electrons 
in a metal at 0 K.

Field emission is the tunneling of an electron from the 
surface of a metal into vacuum, due to the application 
of a strong electric field (typically E > 109 V m−1).

Group velocity is the velocity at which traveling 
waves carry energy. If ω is the angular frequency and 
K is the wavevector of a wave, then the group velocity 
vg = dω∕dK.

Harmonic oscillator is an oscillating system, for ex-
ample, two masses joined by a spring, that can be de-
scribed by simple harmonic motion. In quantum 
mechanics, the energy of a harmonic oscillator is quan-
tized and can only increase or decrease by a discrete 
amount ħω. The minimum energy of a harmonic oscil-
lator is not zero but 1

2ħω (see zero-point energy).

Lattice wave is a wave in a crystal due to coupled os-
cillations of the atoms. Lattice waves may be traveling 
or stationary waves.
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QUESTIONS AND PROBLEMS

4.1 Phase of an atomic orbital

a. What is the functional form of a 1s wavefunction ψ (r)? Sketch schematically the atomic wave-
function ψls(r) as a function of distance from the nucleus.

b. What is the total wavefunction Ψls(r, t)?
c. What is meant by two wavefunctions Ψls(A) and Ψls(B) that are out of phase?
d. Sketch schematically the two wavefunctions Ψls(A) and Ψls(B) at one instant.

4.2 Molecular orbitals and atomic orbitals Consider a linear chain of four identical atoms represent-
ing a hypothetical molecule. Suppose that each atomic wavefunction is a 1s wavefunction. This system 
of identical atoms has a center of symmetry O with respect to the center of the molecule (midway 
between the second and the third atom), and all molecular wavefunctions must be either symmetric 
or antisymmetric about O.
a. Using the LCAO principle, sketch the possible molecular orbitals.
b. Sketch the probability distributions ∣ψ∣2.

c. If more nodes in the wavefunction lead to greater energies, order the energies of the molecular 

orbitals.

 Note: The electron wavefunctions, and the related probability distributions, in a simple potential 

energy well that are shown in Figure 3.16 can be used as a rough guide toward finding the appropri-

ate molecular wavefunctions in the four-atom symmetric molecule. For example, if we were to smooth 

the electron potential energy in the four-atom molecule into a constant potential energy, that is, 

generate a potential energy well, we should be able to modify or distort, without flipping, the molec-

ular orbitals to somewhat resemble ψ1 to ψ4 sketched in Figure 3.16. Consider also that the number 

of nodes increases from none for ψ1 to three for ψ4 in Figure 3.16.

example, ψ (n, ℓ, mℓ, ms) is a state of the electron. From 

the Schrödinger equation, each state corresponds to a 

certain electron energy E. We thus speak of a state with 

energy E, state of energy E, or even an energy state. 

Generally there may be more than one state ψ with the 

same energy E.

Thermionic emission is the emission of electrons 

from the surface of a heated metal.

Work function is the minimum energy needed to free 

an electron from the metal at a temperature of absolute 

zero. It is the energy separation of the Fermi level from 

the vacuum level.

Zero-point energy is the minimum energy of a har-

monic oscillator 1
2 ħω. Even at 0 K, an oscillator in 

quantum mechanics will have a finite amount of energy 

which is its zero-point energy. Heisenberg’s uncer-

tainty principle does not allow a harmonic oscillator to 

have zero energy because that would mean no uncer-

tainty in the momentum and consequently an infinite 

uncertainty in space (Δpx Δx > ħ).

Photoemission is the emission of an electron from the 

surface of a metal or a semiconductor due to the ab-

sorption of an incident photon.

Secondary emission is the emission of an electron 

from the surface of a metal or a semiconductor when 

the surface is bombarded by a projectile (energetic) 

electron. The bombarding electron and the emitted 

electron are called the primary electron and the sec-

ondary electron,  respectively.

Seebeck effect is the development of a built-in poten-
tial difference across a material as a result of a tem-
perature gradient. If dV is the built-in potential across a 
temperature difference dT, then the Seebeck coeffi-
cient S is defined as S = dV∕dT. The coefficient gauges 
the magnitude of the Seebeck effect. Only the net See-
beck voltage difference between different metals can 
be measured. The principle of the thermocouple is 
based on the Seebeck effect.

State is a possible wavefunction for the electron that 
defines its spatial (orbital) and spin properties, for 
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4.4 Electronegativity and the work function of metals The electronegativity of an atom represents its 
relative ability to attract the electrons in a bond it forms with another atom. The ionization energy 
EI of a neutral atom is the energy needed to remove an electron from the atom. Electron affinity EA is 
the energy released when an electron is added to a neutral atom, which becomes an anion. Table 4.7 
lists EI and EA for Group IA, IB, and IIA metals. The Mulliken electronegativity of an atom is 
defined as χM = 1

2(EI + EA) , which is in eV. Higher values of χM indicate a stronger ability to attract 
electrons. It has been argued that a metal whose atoms have a higher electronegativity should also 
have a higher work function Φ. Table 4.7 lists EI and EA for metal atoms in groups IA, IB, and IIA, 

and also lists Φ for the metal itself. (IIB is excluded as there are no reliable EA values, and their 

anions are not stable.) Plot χM versus Φ. What is your conclusion? What would be an empirical 

relationship for all three groups?

Table 4.6  The work function Φ (in eV) of aluminum, gold, and silver 
for single crystal and polycrystalline samples

 Φ (eV)

Sample (100) (110) (111) Polycrystalline

Aluminum (Al) 4.41 4.06 4.24 4.28

Gold (Au) 5.47 5.37 5.31 5.40

Silver (Ag) 4.64 4.52 4.74 4.65

 Data from Michaelson, H.B., IBM Journal of Research and Development, 22, 72, 
1977 and Uda, M., et al, Journal of Electron Spectroscopy and Related 
Phenomena, 88, 643, 1998.

Table 4.7  EI and EA for metal atoms in groups IA, IB, and IIA, and also Φ for the metal itself.  
Φ is for the polycrystalline structure

 Li Na K Rb Cs Cu Ag Au Ca Sr Ba

EI (eV) 5.3917 5.1391 4.3407 4.1771 3.8939 7.7264 7.5762 9.2255 6.1132 5.6949 5.2117

EA (eV) 0.6181 0.5479 0.5015 0.4859 0.4716 1.235 1.302 2.30863 0.02455 0.048 0.14462

Φ (eV) 2.9 2.75 2.3 2.16 2.1 4.65 4.3 5.1 2.87 2.59 2.52

 Data extracted and combined from Ed. Haynes, W.M., CRC Handbook of Chemistry and Physics, 94th Edition, 
2013-2014, Boca Raton, FL: CRC Press and, Φ from Michaelson, H.B., IBM Journal of Research and Development, 
22, 72, 1977.

4.3 Work function of metals and crystal planes The work function of a metal Φ represents the energy 

needed to eject and electron from the Fermi level to the vacuum level. However, this energy depends 

on the surface of the crystal involved on extracting the electron. Φ depends on the crystal plane from 

which the electron is ejected. Surface conditions such as a thin oxide layer or contaminants on the 

surface would obviously modify the observed Φ. Measurements of Φ are therefore done under high 

vacuum condition on clean crystal surfaces. Table 4.6 lists measured Φ for single crystal and polycrys-

talline samples of Al, Au, and Ag that have a cubic crystal structure (FCC). Φ has been obtained for 

three different planes in the case of single crystals. (a) What are the average Φav and mean standard 

deviation of the work function for the three planes for each crystal? (b) What is the percentage difference 

between the Φ for the polycrystalline sample and Φav? (c) In (a), your averaging gave equal weighting 

to each plane, Φav = (Φ001 + Φ011 + Φ111)∕3. How would you modify the averaging process to repre-
sent the different percentages of crystal planes that appear on the surface of a polycrystalline sample?

4.5 Secondary electron emission and photomultiplier tubes Consider a photomultiplier tube as shown 
in Figure 4.20. When an electron emitted from a photocathode, it is accelerated and it strikes a dynode. 
The primary electron enters the dynode material and ejects an electron by a process called secondary 
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electron emission as shown in Figure 4.21b. If δ is the secondary electron emission yield, then after 
N dynodes the overall gain G = δN. δ increases with the kinetic energy Ep of the incident primary 
electron. The more energetic is the incident primary electron, the more it can ionize the medium and 
release secondary electrons. Thus, in general δ ≈ AEα

p, where Ep is the energy of the primary electron, 
and A and α are constants. There is however a limit and δ eventually saturates and then decreases 
with Ep. At very high energies, the primary electron penetrates too far into the solid and the second-
ary electrons are not able to reach the surface to escape. A suitable voltage divider circuit provides 
a voltage difference V between successive dynodes so that the energy of the primary electron upon 
impact with the dynode is eV. A particular photomultiplier tube has GaP:Cs coated on the dynodes. 
R&D team has measured δ for GaP:Cs and has found that δ = 3.7 when V = 100 V. How many 
dynodes are needed to achieve a gain of 105 at V = 100 V? Suppose that the effective distance from 
one dynode to the next (the electron path) is roughly 10 mm. What is the transit time from one dynode 
to the next and the shortest response time of the tube with gain 105?

4.6 Diamond and tin Germanium, silicon, and diamond have the same crystal structure, that of dia-
mond. Bonding in each case involves sp3 hybridization. The bonding energy decreases as we go from 
diamond to Si to Ge, as noted in Table 4.8.
a. What would you expect for the bandgap of diamond? How does it compare with the experimen-

tal value of 5.5 eV?
b. Tin has a tetragonal crystal structure, which makes it different than its group members, diamond, 

silicon, and germanium.
1. Is it a metal or a semiconductor?
2. What experiments do you think would expose its semiconductor properties?

Table 4.8

Property Diamond Silicon Germanium Tin

Melting temperature, °C 3800 1417 937 232
Covalent radius, nm 0.077 0.117 0.122 0.146
Bond energy, eV 3.60 1.84 1.7 1.2
First ionization energy, eV 11.26 8.15 7.88 7.33
Bandgap, eV ? 1.12 0.67 ?

4.7 Compound III–V Semiconductors Indium as an element is a metal. It has a valency of III. Sb as 
an element is a metal and has a valency of V. InSb is a semiconductor, with each atom bonding to 
four neighbors, just like in silicon. Explain how this is possible and why InSb is a semiconductor and 
not a metal alloy. (Consider the electronic structure and sp3 hybridization for each atom.)

4.8 Compound II–VI semiconductors CdTe is a semiconductor, with each atom bonding to four neigh-
bors, just like in silicon. In terms of covalent bonding and the positions of Cd and Te in the Periodic 
Table, explain how this is possible. Would you expect the bonding in CdTe to have more ionic 
character than that in III–V semiconductors?

*4.9 Density of states for a 2D electron gas Consider a 2D electron gas in which the electrons are 
restricted to move freely within a square area a2 in the xy plane. Following the procedure in Section 4.5, 
show that the density of states g(E) is constant (independent of energy).

*4.10 Boltzman statistics Consider a collection of particles described by Boltzmann statistics. Show that 
is P(E) = A exp(−βE), where A and β are constants, is a solution to Equations 4.11 and 4.12. Let 
g(E)dE be the number of states in a small range dE around E where g(E) is called the density of states. 
The number of particles in dE is then P(E)g(E)dE. Take g(E) ∝ E1∕2 and find the average particle 
energy. Experiments carried out on measuring the velocity distribution among gas atoms in a tank shows 
that the average kinetic energy of an atom is (3∕2)kT. What should β be? What is your conclusion?
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4.11 Fermi–Dirac statistics Consider a collection of particles obeying the Pauli exclusion principle and 
conservation of energy during their interactions. Show that f(E) = 1∕[A exp(−βE) + 1], where A and 
β are constants, is a solution to Equations 4.15 and 4.16. Consider two energy levels E1 and E2 
populated by N1 and N2 number of electrons respectively. What is the ratio N2∕N1 for Boltzmann and 
Fermi–Dirac statistics? Show that at sufficiently high energies, the Fermi–Dirac statistics approaches 
the Boltzmann statistics. What should A and β be? What is your conclusion?

4.12 Density of states in a band Consider the density of states function in Equation 4.10. By substitut-
ing the units for each variable and by using suitable interrelations between units, show that the units 
for g(E) is J−1 m−3.

4.13 Fermi–Dirac distribution Consider the Fermi–Dirac function, f(E) = 1∕[e(E−EF)∕kT + 1] . Define 
x  = (E − EF)∕kT and hence show that f ′(x) = df (x)∕dx = −ex∕(ex + 1)2. (a) Plot f (x) versus x and 
y = ∣ f ′(x)∕f ′(0)∣ vs. x. (b) What are f and y at x = ±2? What does the interval Δx = 4 about x = 0 

represent? (c) Show that the width Δx of the y vs. x curve between the y = 0.1 values is approximately 

7.2. (d) What are your conclusions?

4.14 Fermi energy of Cu The Fermi energy of electrons in copper at room temperature is 7.0 eV. The 

electron drift mobility in copper, from Hall effect measurements, is 33 cm2 V−1 s−1.
a. What is the speed vF of conduction electrons with energies around EF in copper? By how many 

times is this larger than the average thermal speed vthermal of electrons, if they behaved like an 
ideal gas (Maxwell–Boltzmann statistics)? Why is vF much larger than vthermal?

b. What is the De Broglie wavelength of these electrons? Will the electrons get diffracted by the 
lattice planes in copper, given that interplanar separation in Cu = 2.09 Å? (Solution guide: Dif-
fraction of waves occurs when 2d sin θ = λ, which is the Bragg condition. Find the relationship 
between λ and d that results in sin θ > 1 and hence no diffraction.)

c. Calculate the mean free path of electrons at EF and comment.

4.15 Free electron model, Fermi energy, and density of states Na and Au both are valency I metals; 
that is, each atom donates one electron to the sea of conduction electrons. Calculate the Fermi 
energy (in eV) of each at 300 K and 0 K. Calculate the mean speed of all the conduction electrons 
and also the speed of electrons at EF for each metal. Calculate the density of states as states per 
eV cm−3 at the Fermi energy. 

4.16 Fermi energy and electron concentration Consider the metals in Table 4.9 from Groups I, II, and 
III in the Periodic Table. Calculate the Fermi energies at absolute zero, and compare the values with 
the experimental values. What is your conclusion?

Table 4.9

    EF(eV) EF(eV)

Metal Group Mat Density (g cm−3) [Calculated] [Experiment]

Cu I 63.55 8.96 — 6.5
Zn II 65.38 7.14 — 11.0
Al III 27 2.70 — 11.8

4.17 Temperature dependence of the Fermi energy

a. Given that the Fermi energy for Cu is 7.0 eV at absolute zero, calculate the EF at 300 K. What 
is the percentage change in EF and what is your conclusion?

b. Given the Fermi energy for Cu at absolute zero, calculate the average energy and mean speed 
per conduction electron at absolute zero and 300 K, and comment.
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4.19 Conductivity of metals in the free electron model Consider the general expression for the con-
ductivity of metals in terms of the density of states g(EF) at EF given by

 σ =
1
3

e2v 
2
F τg(EF)

 Show that within the free electron theory, this reduces to σ = e2nτ∕me, the Drude expression.

4.20 Mean free path of conduction electrons in a metal Show that within the free electron theory, the 

mean free path ℓ and conductivity σ are related by

 σ =
e2

31∕3π2∕3ħ
 ℓn2∕3 = 7.87 × 10−5

ℓn2∕3

 Calculate ℓ for Cu and Au, given each metal’s resistivity of 17 nΩ m and 22 nΩ m, respectively, and 
that each has a valency of I.

*4.21 Low-temperature heat capacity of metals The heat capacity of conduction electrons in a metal is 
proportional to the temperature. The overall heat capacity of a metal is determined by the lattice heat 
capacity, except at the lowest temperatures. If δEt is the increase in the total energy of the conduction 
electrons (per unit volume) and δT is the increase in the temperature of the metal as a result of heat 
addition, Et has been calculated as follows:

 Et = ∫ 
∞

0

Eg(E)  f (E) dE = Et(0) + (π2

4 )n(kT)2

EFO

 where Et(0) is the total energy per unit volume at 0 K, n is the concentration of conduction electrons, 

and EFO is the Fermi energy at 0 K. Show that the heat capacity per unit volume due to conduction 

electrons in the free electron model of metals is

 Ce =
π2

2 ( nk2

EFO
)T = γT  [4.86]

Table 4.10  Soft X-ray emission data from a magnesium target in an X-ray tube. Electron 
bombardment of the target knocks out L-shell electrons. Conduction electrons fall 
down in energy and fill the vacated L-states

hf (eV) 39.5 40 40.5 41 41.5 42 42.5 43 43.5 44

I 0.57 0.70 1.12 2.45 3.99 6.26 11.0 18.1 27.1 37.4

hf (eV) 44.5 45 45.5 46 46.5 47 47.5 48 48.4 48.8

I 48.4 57.7 64.5 70.7 75.6 79.8 82.4 83.2 81.4 85.4

hf (eV) 48.9 49 49.1 49.2 49.3 49.4 49.5 49.6 50 50.4

I 90.9 96.4 100.0 83.5 43.5 15.3 7.48 4.02 1.16 0.43

 Data extracted from Cady, W.M., and Tomboulian, D.H., Physical Review, 57, 381, Table I, 1941.

Mean free path 

and conductivity 

in the free 

electron model

Heat capacity of 

conduction 

electrons

4.18 Fermi energy in Mg The density and atomic mass of Mg are 1.74 g cm−3, and 24.31 g mol−1. Mg 
is in Group II in the Periodic Table. Calculate the Fermi energy of the electrons in Mg in eV to two 
decimal places. When a Mg target is bombarded by electrons in a vacuum tube, soft X-ray are emit-
ted whose spectra are shown in Table 4.10 in two rows at a time as photon energy hf (eV) and relative 
intensity I, where the maximum value of I has been assigned 100. Plot I versus hf. Plot also I∕f 3 

versus hf, but with maximum I∕f 3 set to 100. What is your conclusion? The reason for dividing I by 

f 3 is that the emitted X-ray intensity is proportional to two factors: (a) the concentration of electrons 

nE at E that can fall down to the vacated L-shell, and (b) a quantum mechanical transition probability 

that depends on (hf )3.
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Table 4.11 The Seebeck coefficient of Pt

T(K) 273 300 350 400 450 500 600 700
S(μV∕K) −4.04 −4.92 −6.33 −7.53 −8.59 −9.53 −11.22 −12.71
T(K) 800 900 1000 1100 1200 1300 1400 1600
S(μV∕K) −14.14 −15.66 −17.21 −18.77 −20.29 −21.78 −23.18 −25.67

 NOTE: Data extracted from Roberts, R.B., Philosophical Magazine B, 43, 1125, 1981.

 The hot junction temperature corresponds to the melting temperature of various metals, which ensures that this 
junction temperature is known with a high precision.

 Data extracted from NIST Special Publication, October 1, 1997, pp. 260-134. Data rounded up by the author.

Table 4.12  Emf measured at various temperatures for the hot junction of an Au-Pt 
thermocouple pair

T °C 0 156.60 231.93 419.53 660.32 961.78
Emf (mV) 0 1.3508 2.2361 4.9455 9.3203 16.1205

4.25 Au–Pt thermocouple Consider a gold–platinum thermocouple with one junction at 0 °C. According 
to a NIST (National Institute of Standards and Technology) report (NIST Special Publication, 260–134), 
over the range 0 to 1000 °C, the Au–Pt thermocouple has excellent stability (against oxidation) over 
hundreds of hours of use and high temperature accuracy. The emfs generated at five different tem-
peratures are listed in Table 4.12. There are thus six data points. (a) By suitably plotting the data, 
obtain the coefficients c1 and c2 in the thermocouple equation in Equation 4.35 What should be the 
emf at 500 °C? 

 where γ = (π2∕2)(nk2∕EFO). Calculate Ce for Cu, and then using the Debye equation for the lattice 
heat capacity, find Cv for Cu at 10 K. Compare the two values and comment. What is the comparison 
at room temperature? (Note: Cvolume = Cmolar(ρ∕Mat), where ρ is the density in g cm−3, Cvolume is in 
J K−1 cm−3, and Mat is the atomic mass in g mol−1.)

4.22 Thermoelectric effects and EF Consider a thermocouple pair that consists of gold and aluminum. 
One junction is at 100 °C and the other is at 0 °C. A voltmeter (with a very large input resistance) 
is inserted into the aluminum wire. Use the properties of Au and Al in Table 4.3 to estimate the emf 
registered by the voltmeter and identify the positive end.

4.23 The thermocouple equation Although inputting the measured emf for V in the thermocouple equa-
tion V = c1ΔT + c2(ΔT)2 leads to a quadratic equation, which in principle can be solved for ΔT, in 
general ΔT is related to the measured emf via

 ΔT = a1V + a2V
2 + a3V

3 + · · ·

 with the coefficients a1, a2, etc., determined for each pair of TCs. By carrying out a Taylor’s expan-
sion of the TC equation, find the first two coefficients a1 and a2. Using an emf table for the K-type 
thermocouple or Figure 4.41, evaluate a1 and a2.

*4.24 Seebeck coefficient of Pt and other metals Table 4.11 gives the Seebeck coefficient of Pt as a 
function of temperature. (a) Obtain a third order polynomial to describe the data. (b) Estimate the 
Seebeck coefficient of gold and chromel listed in Table 4.4 at 27 °C, by assuming that over the 
temperature range 0–200 °C, we can write S = a0 + a1T where a0 and a1 are constants specific to 
each material. How would you improve your estimation?
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4.27 The thermocouple equation Given a linear expression for SAB ≈ a0 + a1T, where a0 and a1 are 
constants, derive the thermocouple equation and express c1 and c2 in terms of a0, a1, and To.

4.28 Selecting thermocouple pairs Consider the metals shown in Table 4.4. Which metal pair would 
generate the maximum thermoelectric emf for a given temperature difference? Which pair would 
generate the smallest emf? Consider two thermocouple pairs, labeled E and T. E uses a chromel 
(90%Ni-10%Cu)-constantan (57%Cu-43%Ni) pair whereas T uses a copper (Cu)-constantan (57%Cu-
43%Ni) pair. With the cold junction at 0 °C, and the other at 100 °C, the thermocouple E measures 
6.319 mV whereas T measures 4.279 mV. What would be the magnitude of the voltage measured by 
a copper–chromel pair?

4.29 Thermionic emission A vacuum tube is required to have a cathode operating at 800 °C and provid-
ing an emission (saturation) current of 10 A. What should be the surface area of the cathode for the 
two materials in Table 4.13? What should be the operating temperature for the Th on W cathode, if 
it is to have the same surface area as the oxide-coated cathode?

A

B B

A

B

(a) (b)

Hot Hot

Furnace

1.
32

0 
m

V

DVM DVM

1.
40

1 
m

V

Ice-water mixture
(Ice bath)

Furnace

T0

T1T2T1T2

Figure 4.67 (a) The simplest measurement of temperature T1 using a thermocouple without a junction 
at a reference temperature. The temperature of the DVM terminals is T2 (or room temperature). (b) Usual 
temperature measurement involves a second junction at a reference temperature T0, normally ice-water 
mixture, which is at 0 °C.

Table 4.13

 Be (A m−2 K−2) Φ (eV)

Th on W 3 × 104 2.6
Oxide coating 100 1

*4.26 Temperature measurements with a thermocouple An engineer with limited resources wants to 
measure the temperature (T1) of a furnace. He grabs an aluminum and a copper wire, makes a junc-
tion and inserts the junction into the furnace as in Figure 4.67a, and simply connects the other end 
to the terminals of a digital voltmeter. He reads a voltage of 1.320 mV with the copper side positive. 
He knows that the room temperature (T2) is usually between 20 °C and 25 °C and the DVM has an 
accuracy of ±0.005 mV. He has been given Table 4.3. What is the furnace temperature (T1)? Later, he 
comes across some ice, makes an ice-water bath and uses another copper wire to generate a second junc-
tion as in Figure 4.67b. He inserts this junction into the ice-water bath (0 °C). The voltmeter now registers 
1.401 mV. What is the furnace temperature? Why did he decide to use an ice-water as a reference? What 
is the room temperature? What is the measurement error in temperature? What is your conclusion?
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4.30 Field-assisted emission in MOS devices Metal-oxide-semiconductor (MOS) transistors in micro-
electronics have a metal gate on an SiO2 insulating layer on the surface of a doped Si crystal. Consider 
this as a parallel plate capacitor. Suppose the gate is an Al electrode of area 50 μm × 50 μm and has 
a voltage of 10 V with respect to the Si crystal. Consider two thicknesses for the SiO2, (a) 100 Å 
and (b) 40 Å, where (1 Å = 10−10 m). The work function of Al is 4.2 eV, but this refers to electron 
emission into vacuum, whereas in this case, the electron is emitted into the oxide. The potential energy 
barrier ΦB between Al and SiO2 is about 3.1 eV, and the field-emission current density is given by 
Equation 4.48a and b. Calculate the field-emission current for the two cases. For simplicity, take me 
to be the electron mass in free space. What is your conclusion?

4.31 CNTs and field emission The electric field at the tip of a sharp emitter is much greater than the 
“applied field,” Eo. The applied field is simply defined as VG∕d where d is the distance from the 
cathode tip to the gate or the grid; it represents the average nearly uniform field that would exist if 
the tip were replaced by a flat surface so that the cathode and the gate would almost constitute a 
parallel plate capacitor. The tip experiences an effective field E that is much greater than Eo, which 
is expressed by a field enhancement factor β that depends on the geometry of the cathode–gate 
emitter, and the shape of the emitter; E = βEo. Further, we can take Φ1∕2

eff Φ ≈ Φ3∕2 in Equation 4.48. 
The final expression for the field-emission current density then becomes

 J =
1.5 × 10−6

Φ
β2E2

o exp(10.4

Φ1∕2)exp(−
6.44 × 107Φ3∕2

βEo
) [4.87]

 where J is in A cm−2, Eo is in V cm−1, and Φ is in eV. For a particular CNT emitter, Φ = 4.9 eV. 
Estimate the applied field required to achieve a field-emission current density of 100 mA cm−2 in the 
absence of field enhancement (β = 1) and with a field enhancement of β = 800 (typical value for a 
CNT emitter).

4.32 Nordheim–Fowler field emission in an FED Table 4.14 shows the results of I–V measurements 
on a particular field emission device based on Figure 4.46a where VG is the gate voltage. By a suit-
able plot show that the I–V follows the Nordheim–Fowler emission characteristics.

Fowler–

Nordheim field 

emission current

Table 4.14 Results of current vs. gate voltage tests on a field emission device

VG (V) 44 46 48 50 52 53.8 56.2 58.2 60.4
Iemission (μA) 9.40 20.4 34.1 61 93.8 142.5 202 279 367

4.33 Lattice waves and heat capacity

a. Consider an aluminum sample. The nearest separation 2R (2 × atomic radius) between the Al–Al 
atoms in the crystal is 0.286 nm. Taking a to be 2R, and given the sound velocity in Al as 
5100 m s−1, calculate the force constant β in Equation 4.61. Use the group velocity vg from 
the actual dispersion relation, Equation 4.57, to calculate the “sound velocity” at wavelengths of 
Λ = 1 mm, 1 μm, and 1 nm. What is your conclusion?

b. Aluminum has a Debye temperature of 394 K. Calculate its specific heat at 30 °C (Darwin, 
Australia) and at −30 °C (January, Resolute Nunavut, Canada).

c. Calculate the specific heat capacity of a germanium crystal at 25 °C and compare it with the 
experimental value in Table 4.5.

4.34 Specific heat capacity of GaAs and InSb

a. The Debye temperature TD of GaAs is 344 K. Calculate its specific heat capacity at 30 °C and 
at −30 °C.

b. For InSb, TD = 203 K. Calculate the room temperature specific heat capacity of InSb and com-
pare it with the value expected from the Dulong–Petit rule (T > TD).
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4.35 Thermal conductivity

a. Given that silicon has a Young’s modulus of about 110 GPa and a density of 2.3 g cm−3, 
calculate the mean free path of phonons in Si at room temperature.

b. Diamond has the same crystal structure as Si but has a very large thermal conductivity, about 
1000 W m−1 K−1 at room temperature. Given that diamond has a specific heat capacity cs of 
0.50 J K−1 g−1, Young’s modulus Y of 830 GPa, and density ρ of 0.35 g cm−3, calculate the 
mean free path of phonons in diamond.

c. GaAs has a thermal conductivity of 200 W m−1 K−1 at 100 K and 80 W m−1 K−1 at 200 K. 
Calculate its thermal conductivity at 25 °C and compare with the experimental value of 
44 W m−1 K−1. (Hint: Take κ ∝ T−n in the temperature region of interest; see Figure 4.56.)

4.36 High temperature thermal conductivity At sufficiently high temperatures, we can assume both Cv 
and vph are temperature independent. κ is then proportional to ℓph due to phonon–phonon collisions. 
The probability of phonon–phonon collisions increases with the phonon concentration nph, which is 
proportional to T. Thus, ℓph ∝ 1∕nph ∝ 1∕T, or κ ∝ 1∕T. Except at low temperatures, for many semi-

conductors, κ is taken empirically as κ = AT −n where A and n are constants. Table 4.15 shows 
thermal conductivity data for a Ge crystal between 50 K and 800 K over which κ follows a κ = AT−n 
type of behavior. Find A and n.

Table 4.15  Thermal conductivity vs. temperature values for a Ge crystal from 50 K to 800 K.  
κ is in W cm−1 K−1 and T in K

T 50 60 80 100 150 175 200 250 300 400 500 600 700 800
κ 5.9 4.7 3.1 2.25 1.3 1.1 0.95 0.73 0.6 0.44 0.338 0.269 0.219 0.193

4.37 Low temperature thermal conductivity Table 4.16 shows the low temperature thermal conductivity 
data for a LiF crystal. Show that κ is proportional to T 3.

Table 4.16  Thermal conductivity vs. temperature values for a LiF crystal at low temperatures.  
κ is in W cm−1 K−1 and T in K

T 1.29 1.44 1.59 1.79 2.04 2.45 2.82 3.21 3.59 4.13 4.7 5.36 5.93 6.96 8.02
κ 0.342 0.45 0.556 0.834 1.25 2.05 3.3 4.75 6.64 9.95 14.9 21.9 30 45.0 64.7

 NOTE: The crystal was a rectangular block with dimensions 7.55 mm × 6.97 mm × 60 mm and heat flow along 
the long edge.

 Data from Thatcher, P.D., Physical Review, 156, 975, 1967.

Table 4.17 Thermal conductivity vs. sample cross section size for a LiF crystal at 10 K

Cross section (mm × mm) 0.91 × 1.07 2.1 × 2.135 3.77 × 4.005 6.97 × 7.26
W cm−1 K−1 15.7 34.7 61.4 100

 NOTE: The crystals were rectangular blocks with cross sections given in mm. The heat flow is along the long 
edge, through the cross section a × b. 

 Data from Thatcher, P.D., Physical Review, 156, 975, 1967.

4.38 Thermal conductivity and sample size Table 4.17 shows the low-temperature (at 10 K) thermal 
conductivity data for a LiF crystal with different cross sections a × b to heat flow. The scattering of 
phonons from the sample surfaces decreases the thermal conductivity. a and b are very close in value 
so you can simply average a and b and use an average width w = (a + b)∕2. How would you plot 
the data to find a simple empirical equation for the observed behavior?
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*4.40 Overlapping bands Consider Cu and Ni with their density of states as schematically sketched in 
Figure 4.68. Both have overlapping 3d and 4s bands, but the 3d band is very narrow compared to the 
4s band. In the case of Cu the band is full, whereas in Ni, it is only partially filled.
a. In Cu, do the electrons in the 3d band contribute to electrical conduction? Explain.
b. In Ni, do electrons in both bands contribute to conduction? Explain.
c. Do electrons have the same effective mass in the two bands? Explain.
d. Can an electron in the 4s and with energy around EF become scattered into the 3d band as a 

result of a scattering process? Consider both metals.
e. Scattering of electrons from the 4s band to the 3d band and vice versa can be viewed as an 

additional scattering process. How would you expect the resistivity of Ni to compare with that 
of Cu, even though Ni has two valence electrons and nearly the same density as Cu? In which 
case would you expect a stronger temperature dependence for the resistivity?

Table 4.18 Thermal conductivity versus dopant concentration in a Si crystal at 10 K

Nd (cm−3) 7.5 × 1016 2.5 × 1017 4.7 × 1017 1.0 × 1018 2 × 1019 1.7 × 1020

κ (W m−1 K−1) 832 545 148 63.6 6.41 1.61

 Data combined from Slack, G., Journal of Applied Physics, 35, 3460, 1964 and Fortier, D., and Suzuki, K., Journal 
of Physics, 37, 143, 1976.
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Figure 4.68 Density of states and electron filling in Cu and Ni.

*4.41 Overlapping bands at EF and higher resistivity Figure 4.68 shows the density of states for Cu 
(or Ag) and Ni (or Pd). The d band in Cu is filled, and only electrons at EF in the s band make a 
contribution to the conductivity. In Ni, on the other hand, there are electrons at EF both in the s and 
d bands. The d band is narrow compared with the s band, and the electron’s effective mass in this d 
band is large; for simplicity, we will assume m*e is “infinite” in this band. Consequently, the d-band 
electrons cannot be accelerated by the field (infinite m*e ), have a negligible drift mobility, and make 
no contribution to the conductivity. Electrons in the s band can become scattered by phonons into the 
d band, and hence become relatively immobile until they are scattered back into the s band when they 
can drift again. Consider Ni and one particular conduction electron at EF starting in the s band. Sketch 
schematically the magnitude of the velocity gained ∣vx − ux∣ from the field Ex as a function of time 

for 10 scattering events; vx and ux are the instantaneous and initial velocities, and ∣vx − ux∣ increases 

linearly with time, as the electron accelerates in the s band and then drops to zero upon scattering. 

If τss is the mean time for s to s-band scattering, τsd is for s-band to d-band scattering, τds is for d-band 

4.39 Low temperature thermal conductivity of Si and impurities Table 4.18 shows the low-temperature 

thermal conductivity data for a Si crystal that has been doped with various amounts of phosphorus. 

If Nd is the dopant concentration, show that we can empirically represent the data as κ = ANd
−n, where 

A and n are constants. Find A and n. What is κ for a doped Si crystal with a P concentration of  
3 × 1016 cm−3.
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to s-band scattering, assume the following sequence of 10 events in your sketch: τss, τss, τsd, τds, τss, 
τsd, τds, τss, τsd, τds. What would a similar sketch look like for Cu? Suppose that we wish to apply 
Equation 4.27. What does g(EF) and τ represent? What is the most important factor that makes Ni 
more resistive than Cu? Consider Matthiessen’s rule. (Note: There are also electron spin related effects 
on the resistivity of Ni, but for simplicity these have been neglected.)

*4.42 Seebeck coefficient and overlapping bands Figure 4.68 shows a schematic sketch of the density 
of states for Cu and Ni. In the case of Ni, the 4s and 3d bands overlap and EF is near the top of the 
3d band. In Cu, EF is within the 4s band only. Equation 4.32 can be applied to Cu but not Ni because, 
in the case of Ni, we have two types of electrons, those in the 3d band and those in the 4s band. 
Further EF is close to the top of the 3d band shown as ED in Figure 4.68. The states in the range EF 
to ED have missing electrons, and hence correspond to holes, which contribute to the thermoelectric 
effect. The correct Seebeck coefficient is approximately given by

 S ≈ −
π2k2T 

2

6e(ED − EF)

 What is ED − EF for Ni, Pd, and Pt?

Transition 

metals, 

overlapping 

bands

A photomultiplier tube (Hamamatsu R5108) that is used 
in near infrared spectrophotometers and luminescence 
measurement applications. The light entry window is 
on the left and the tube is painted black to eliminate 
light reflections in the spectrophotometer. The photo-
cathode is Ag-O-Cs with a useful spectral response 
range over 400 − 1200 nm. The tube has 9 dynodes 
to generate a multiplication gain up to 106.

 Photos by S. Kasap

A photomultiplier tube (Hamamatsu 1P21) for the 
detection of low-level light in the visible range.  
The photocathode is Sb-Cs with a useful spectral 
response over 300 − 650 nm. The tube has  
9 dynodes and a typical multiplication gain of 6 × 106. 
This particular model has the advantage that its 
dark current is small, which increases the signal-to-
noise ratio capability of this photomultiplier tube.



PbS (lead sulfide) is a narrow bandgap semiconductor with Eg = 0.37 eV. 
PbS photoconductive detectors are used for the detection of IR  
radiation up to 2.9 μm. They are typically used in such applications 
as radiation thermometers, flame monitors, water content and food 
ingredient analyzers, spectrophotometers, etc. These PbS detectors 
are mounted inside TO5 metal cases, roughly 8 mm in diameter.

 Courtesy of Hamamatsu, Japan.

SiC (silicon carbide) is a semiconductor with a wide bandgap around 3 eV. This is a 
SiC Schottky junction UV photodiode that is sensitive over the wavelength range 
221–358 nm (UVA, UVB, UVC), and is blind to visible light. The SiC chip is mounted 
inside a TO18 metal case, roughly 5 mm in diameter.

 Courtesy of sglux GmbH, Germany.

A two-stage thermoelectric cooler (3 cm × 3 cm × 
1.09 cm), capable of generating a temperature  
difference of 76 °C at a current of 5.70 A.

 Courtesy of Laird, USA.
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5

Semiconductors

In this chapter we develop a basic understanding of the properties of intrinsic and 
extrinsic semiconductors. Although most of our discussions and examples will be 
based on Si, the ideas are applicable to Ge and to the compound semiconductors 
such as GaAs, InP, and others. By intrinsic Si we mean an ideal perfect crystal of 
Si that has no impurities or crystal defects such as dislocations and grain boundaries. 
The crystal thus consists of Si atoms perfectly bonded to each other in the diamond 
structure. At temperatures above absolute zero, we know that the Si atoms in the 
crystal lattice will be vibrating with a distribution of energies. Even though the aver-
age energy of the vibrations is at most 3kT and incapable of breaking the Si–Si bond, 
a few of the lattice vibrations in certain crystal regions may nonetheless be suffi-
ciently energetic to “rupture” a Si–Si bond. When a Si–Si bond is broken, a “free” 
electron is created that can wander around the crystal and also contribute to electri-
cal conduction in the presence of an applied field. The broken bond has a missing 
electron that causes this region to be positively charged. The vacancy left behind by 
the missing electron in the bonding orbital is called a hole. An electron in a neigh-
boring bond can readily tunnel into this broken bond and fill it, thereby effectively 
causing the hole to be displaced to the original position of the tunneling electron. 
By electron tunneling from a neighboring bond, holes are therefore also free to 
wander around the crystal and also contribute to electrical conduction in the presence 
of an applied field. In an intrinsic semiconductor, the number of thermally generated 
electrons is equal to the number of holes (broken bonds). In an extrinsic semiconduc-
tor, impurities are added to the semiconductor that can contribute either excess elec-
trons or excess holes. For example, when an impurity such as arsenic is added to Si, 
each As atom acts as a donor and contributes a free electron to the crystal. Since 
these electrons do not come from broken bonds, the numbers of electrons and holes 
are not equal in an extrinsic semiconductor, and the As-doped Si in this example 
will have excess electrons. It will be an n-type Si since electrical conduction will be 
mainly due to the motion of electrons. It is also possible to obtain a p-type Si crystal 
in which hole concentration is in excess of the electron concentration due to, for 
example, boron doping.
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5.1  INTRINSIC SEMICONDUCTORS

5.1.1 SILICON CRYSTAL AND ENERGY BAND DIAGRAM

The electronic configuration of an isolated Si atom is [Ne]3s2p2. However, in the 
vicinity of other atoms, the 3s and 3p energy levels are so close that the interactions 
result in the four orbitals ψ (3s), ψ (3px), ψ (3py), and ψ (3pz) mixing together to form 
four new hybrid orbitals (called ψ hyb) that are symmetrically directed as far away 
from each other as possible (toward the corners of a tetrahedron). In two dimensions, 
we can simply view the orbitals pictorially as in Figure 5.1a. The four hybrid orbit-
als, ψhyb, each have one electron so that they are half-occupied. Therefore, a ψhyb 
orbital of one Si atom can overlap a ψhyb orbital of a neighboring Si atom to form 
a covalent bond with two spin-paired electrons. In this manner one Si atom bonds 
with four other Si atoms by overlapping the half-occupied ψhyb orbitals, as illustrated 
in Figure 5.1b. Each Si–Si bond corresponds to a bonding orbital, ψB, obtained by 
overlapping two neighboring ψhyb orbitals. Each bonding orbital (ψB) has two spin-
paired electrons and is therefore full. Neighboring Si atoms can also form covalent 
bonds with other Si atoms, thus forming a three-dimensional network of Si atoms. 
The resulting structure is the Si crystal in which each Si atom bonds with four Si 

Conduction band (CB)
Empty of electrons at 0 K.

Valence band (VB)
Full of electrons at 0 K.
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electron

ψB

Bandgap = Eg

Electron energy
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Ec+χ

Si ion core (+4e)

ψhyb orbitals

Figure 5.1 (a) A simplified two-dimensional illustration of a Si atom with four hybrid orbitals ψhyb. 

Each orbital has one electron. (b) A simplified two-dimensional view of a region of the Si crystal 

showing covalent bonds. (c) The energy band diagram at absolute zero of temperature.
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atoms in a tetrahedral arrangement. The crystal structure is that of a diamond, which 
was described in Chapter 1. We can imagine the Si crystal in two dimensions as 
depicted in Figure 5.1b. The electrons in the covalent bonds are the valence electrons.
 The energy band diagram of the silicon crystal is shown in Figure 5.1c.1 The 
vertical axis is the electron energy in the crystal. The valence band (VB) contains 
those electronic states that correspond to the overlap of bonding orbitals (ψB). Since 
all the bonding orbitals (ψB) are full with valence electrons in the crystal, the VB is 
also full with these valence electrons at a temperature of absolute zero. The conduc-
tion band (CB) contains electronic states that are at higher energies, those corre-
sponding to the overlap of antibonding orbitals. The CB is separated from the VB 
by an energy gap Eg, called the bandgap. The energy level Ev marks the top of the 
VB and Ec marks the bottom of the CB. The energy distance from Ec to the vacuum 
level, the width of the CB, is called the electron affinity χ. The general energy band 
diagram in Figure 5.1c applies to all crystalline semiconductors with appropriate 
changes in the energies.
 The electrons shown in the VB in Figure 5.1c are those in the covalent bonds 
between the Si atoms in Figure 5.1b. An electron in the VB, however, is not local-
ized to an atomic site but extends throughout the whole solid. Although the electrons 
appear localized in Figure 5.1b, at the bonding orbitals between the Si atoms this is 
not, in fact, true. In the crystal, the electrons can tunnel from one bond to another 
and exchange places. If we were to work out the wavefunction of a valence electron 
in the Si crystal, we would find that it extends throughout the whole solid. This 
means that the electrons in the covalent bonds are indistinguishable. We cannot label 
an electron from the start and say that the electron is in the covalent bond between 
these two atoms.
 We can crudely represent the silicon crystal in two dimensions as shown in 
Figure 5.2. Each covalent bond between Si atoms is represented by two lines cor-
responding to two spin-paired electrons. Each line represents a valence electron.

5.1.2 ELECTRONS AND HOLES

The only empty electronic states in the silicon crystal are in the CB (Figure 5.1c). 
An electron placed in the CB is free to move around the crystal and also respond to 

Figure 5.2 A two-dimensional pictorial view of the Si 

crystal showing covalent bonds as two lines where each 

line is a valence electron.

 1 The formation of energy bands in the silicon crystal was described in detail in Chapter 4.
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an applied electric field because there are plenty of neighboring empty energy levels. 
An electron in the CB can easily gain energy from the field and move to higher 
energy levels because these states are empty. Generally we can treat an electron in 
the CB as if it were free within the crystal with certain modifications to its mass, 
as explained later in Section 5.1.3.
 Since the only empty states are in the CB, the excitation of an electron from the 
VB requires a minimum energy of Eg. Figure 5.3a shows what happens when a 
photon of energy hf  > Eg is incident on an electron in the VB. This electron absorbs 
the incident photon and gains sufficient energy to surmount the energy gap Eg and 
reach the CB. Consequently, a free electron and a “hole,” corresponding to a missing 
electron in the VB, are created. In some semiconductors such as Si and Ge, the 
photon absorption process also involves lattice vibrations (vibrations of the Si atoms), 
which we have not shown in Figure 5.3b.
 Although in this specific example a photon of energy hf  > Eg creates an electron– 
hole pair, this is not necessary. In fact, in the absence of radiation, there is an electron–
hole generation process going on in the sample as a result of thermal generation. 
Due to thermal energy, the atoms in the crystal are constantly vibrating, which cor-
responds to the bonds between the Si atoms being periodically deformed. In a certain 
region, the atoms, at some instant, may be moving in such a way that a bond becomes 
overstretched, as pictorially depicted in Figure 5.4. This will result in the over-
stretched bond rupturing and hence releasing an electron into the CB (the electron 
effectively becomes “free”). The empty electronic state of the missing electron in 
the bond is what we call a hole in the valence band. The free electron, which is in 
the CB, can wander around the crystal and contribute to the electrical conduction 
when an electric field is applied. The region remaining around the hole in the VB 
is positively charged because a charge of −e has been removed from an otherwise 
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Figure 5.3 (a) A photon with an energy greater than Eg can excite an electron from 

the VB to the CB. (b) When a photon breaks a Si–Si bond, a free electron and a hole in 

the Si–Si bond are created.
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neutral region of the crystal. This hole, denoted as h+, can also wander around the 
crystal as if it were free. This is because an electron in a neighboring bond can “jump,” 
that is, tunnel, into the hole to fill the vacant electronic state at this site and thereby 
create a hole at its original position. This is effectively equivalent to the hole being 
displaced in the opposite direction, as illustrated in Figure 5.5a. This single step can 
reoccur, causing the hole to be further displaced. As a result, the hole moves around 
the crystal as if it were a free positively charged entity, as pictured in Figure 5.5a 

h+

e–

Figure 5.4 Thermal vibrations of atoms can break 

bonds and thereby create electron–hole pairs.
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Figure 5.5 A pictorial illustration of a hole in the valence band wandering around the crystal due to the tunneling 

of electrons from neighboring bonds.
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to d. Its motion is quite independent from that of the original electron. When an 
electric field is applied, the hole will drift in the direction of the field and hence 
contribute to electrical conduction. It is now apparent that there are essentially two 
types of charge carriers in semiconductors: electrons and holes. A hole is effectively 
an empty electronic state in the VB that behaves as if it were a positively charged 
“particle” free to respond to an applied electric field.
 When a wandering electron in the CB meets a hole in the VB, the electron has 
found an empty state of lower energy and therefore occupies the hole. The electron 
falls from the CB to the VB to fill the hole, as depicted in Figure 5.5e and f. This 
is called recombination and results in the annihilation of an electron in the CB and 
a hole in the VB. The excess energy of the electron falling from CB to VB in certain 
semiconductors such as GaAs and InP is emitted as a photon. In Si and Ge the excess 
energy is lost as lattice vibrations (heat).
 It must be emphasized that the illustrations in Figure 5.5 are pedagogical pictorial 
visualizations of hole motion based on classical notions and cannot be taken too seri-
ously, as discussed in more advanced texts (see also Section 5.13). We should remem-
ber that the electron has a wavefunction in the crystal that is extended and not localized, 
as the pictures in Figure 5.5 imply. Further, the hole is a concept that corresponds to 
an empty valence band wavefunction that normally has an electron. Again, we cannot 
localize the hole to a particular site, as the pictures in Figure 5.5 imply.

5.1.3 CONDUCTION IN SEMICONDUCTORS

When an electric field is applied across a semiconductor as shown in Figure 5.6, the 
energy bands bend. The total electron energy E is KE + PE, but now there is an 
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additional electrostatic PE contribution that is not constant in an applied electric 
field. A uniform electric field Ex implies a linearly decreasing potential V(x), by 
virtue of (dV∕dx) = −Ex, that is, V = −Ax + B. This means that the PE, −eV(x), of 
the electron is now eAx − eB, which increases linearly across the sample. All the 
energy levels and hence the energy bands must therefore tilt up in the x direction, 
as shown in Figure 5.6, in the presence of an applied field.
 Under the action of Ex, the electron in the CB moves to the left and immediately 
starts gaining energy from the field. When the electron collides with a thermal vibra-
tion of a Si atom, it loses some of this energy and thus “falls” down in energy in 
the CB. After the collision, the electron starts to accelerate again, until the next 
collision, and so on. We recognize this process as the drift of the electron in an 
applied field, as illustrated in Figure 5.6. The drift velocity vde of the electron is μeEx 
where μe is the drift mobility of the electron. In a similar fashion, the holes in the 
VB also drift in an applied field, but here the drift is along the field. Notice that 
when a hole gains energy, it moves “down” in the VB because the potential energy 
of the hole is of opposite sign to that of the electron.
 Since both electrons and holes contribute to electrical conduction, we may write 
the current density J, from its definition, as

 J = envde + epvdh [5.1]

where n is the electron concentration in the CB, p is the hole concentration in the 
VB, and vde and vdh are the drift velocities of electrons and holes in response to an 
applied electric field Ex. Thus,

 vde = μeEx  and  vdh = μhEx [5.2]

where μe and μh are the electron and hole drift mobilities. In Chapter 2, we derived 
the drift mobility μe of the electrons in a conductor as

 μe =
eτe

me

 [5.3]

where τe is the mean free time between scattering events and me is the electronic 
mass. The ideas on electron motion in metals can also be applied to the electron 
motion in the CB of a semiconductor to rederive Equation 5.3. We must, however, 
use an effective mass m*e  for the electron in the crystal rather than the mass me in 
free space. A “free” electron in a crystal is not entirely free because as it moves it 
interacts with the potential energy (PE ) of the ions in the solid and therefore expe-
riences various internal forces. The effective mass m*e  accounts for these internal 
forces in such a way that we can relate the acceleration a of the electron in the CB 
to an external force Fext (e.g., −eEx) by Fext = m*e a just as we do for the electron in 
vacuum by Fext = mea. In applying the Fext = m*e a type of description to the motion 
of the electron, we are assuming, of course, that the effective mass of the electron 
can be calculated or measured experimentally. It is important to remark that the true 
behavior is governed by the solution of the Schrödinger equation in a periodic lattice 
(crystal) from which it can be shown that we can indeed describe the inertial resistance 
of the electron to acceleration in terms of an effective mass m*e . The effective mass 
depends on the interaction of the electron with its environment within the crystal.

Electron and 

hole drift 

velocities

Drift mobility 

and scattering 

time



418 C H A P T E R  5  ∙ SEMICONDUCTORS

 We can now speculate on whether the hole can also have a mass. As long as we 
view mass as resistance to acceleration, that is, inertia, there is no reason why the 
hole should not have a mass. Accelerating the hole means accelerating electrons 
tunneling from bond to bond in the opposite direction. Therefore, it is apparent that 
the hole will have a nonzero finite inertial mass because otherwise the smallest 
external force will impart an infinite acceleration to it. If we represent the effective 
mass of the hole in the VB by m*h , then the hole drift mobility will be

 μh =
eτh

m*h
 [5.4]

where τh is the mean free time between scattering events for holes.
 Taking Equation 5.1 for the current density further, we can write the conductivity 

of a semiconductor as

 σ = enμe + epμh [5.5]

where n and p are the electron and hole concentrations in the CB and VB, respec-
tively. This is a general equation valid for all semiconductors.

5.1.4 ELECTRON AND HOLE CONCENTRATIONS

The general equation for the conductivity of a semiconductor, Equation 5.5, depends 
on n the electron concentration, and p, the hole concentration. How do we determine 
these quantities? We follow the procedure schematically shown in Figure 5.7a to d 
in which the density of states is multiplied by the probability of a state being occu-
pied and integrated over the entire CB for n and over the entire VB for p.
 We define gcb(E ) as the density of states in the CB, that is, the number of states 
per unit energy per unit volume. The probability of finding an electron in a state 
with energy E is given by the Fermi–Dirac function f (E ), which is discussed in 
Chapter 4. Then gcb(E ) f (E ) is the actual number of electrons per unit energy per 
unit volume nE(E ) in the CB. Thus,

 nE dE = gcb(E ) f (E )dE

is the number of electrons in the energy range E to E + dE. Integrating this from 
the bottom (Ec) to the top of the CB gives the electron concentration n, number of 
electrons per unit volume, in the CB. In other words,

 n = ∫
Top of CB

Ec

nE(E)dE = ∫
Top of CB

Ec

gcb(E)  f (E)dE

 We will assume that (Ec − FF) ≫ kT (i.e., EF is at least a few kT below Ec) 
so  that

 f (E ) ≈ exp[−(E − EF)∕kT ]

We are thus replacing Fermi–Dirac statistics by Boltzmann statistics and thereby 
inherently assuming that the number of electrons in the CB is far less than the num-
ber of states in this band.
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 Further, we will take the upper limit to be E = ∞ since f (E ) decays rapidly with 
energy so that gcb(E) f(E) → 0 near the top of the band. Furthermore, since gcb(E) f(E) 
is significant only close to Ec, we can use

 gcb(E) =
(π8√2)me*

3∕2

h3 (E − Ec)
1∕2

for an electron in a three-dimensional PE well without having to consider the exact 
form of gcb(E)  across the whole band. Thus

 n ≈
(π8√2)me*

3∕2

h3 ∫
∞

Ec

(E − Ec)
1∕2 exp[−

(E − EF)
kT ]dE

which leads to

 n = Nc exp[−
(Ec − EF)

kT ] [5.6]

where

 Nc = 2(2πm*e kT

h2 )
3∕2

 [5.7]

 The result of the integration in Equation 5.6 seems to be simple, but it is an 
approximation as it assumes that (Ec − EF) ≫ kT. Nc is a constant, that is, independent 
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of the Fermi energy, and is called the effective density of states at the CB edge. 
Notice that Nc depends on the effective mass2 and has a small temperature depen-
dence as apparent from Equation 5.7. Equation 5.6 can be interpreted as follows. If 
we take all the states in the conduction band and replace them with an effective 
concentration Nc (number of states per unit volume) at Ec and then multiply this 
simply by the Boltzmann probability function, f (Ec) = exp[−(Ec − EF)∕kT ], we 
obtain the concentration of electrons at Ec, that is, in the conduction band. Nc is thus 
an effective density of states at the CB band edge.
 We can carry out a similar analysis for the concentration of holes in the VB. 
Multiplying the density of states gvb(E)  in the VB with the probability of occupancy 
by a hole [1 − f (E)], that is, the probability that an electron is absent, gives pE, 
the hole concentration per unit energy. Integrating this over the VB gives the hole 
concentration

 p = ∫
Ev

0

pE dE = ∫
Ev

0

gvb(E) [ (1 − f (E) ]dE

 With the assumption that EF is a few kT above Ev, the integration simplifies to

 p = Nv exp[−
(EF − Ev)

kT ] [5.8]

where Nv is the effective density of states at the VB edge and is given by

 Nv = 2(2πm*h kT

h2 )
3∕2

 [5.9]

 We can now see the virtues of studying the density of states g(E)  as a function 
of energy E and the Fermi–Dirac function f(E) . Both were central factors in deriv-
ing the expressions for n and p. There are no specific assumptions in our derivations, 
except for EF being a few kT away from the band edges, which means that Equations 
5.6 and 5.8 are generally valid.
 The general equations that determine the free electron and hole concentrations 
are thus given by Equations 5.6 and 5.8. It is interesting to consider the product np,

 np = Nc exp[−
(Ec − EF)

kT ]Nv exp[−
(EF − Ev)

kT ] = Nc Nv exp[−
(Ec − Ev)

kT ]
or

 np = Nc Nv exp(−
Eg

kT) [5.10]

where Eg = Ec − Ev is the bandgap energy. First, we note that this is a general 
expression in which the right-hand side, NcNv exp(−Eg∕kT ), behaves as if it were 
a constant for a given material at a given temperature; it depends on the bandgap 
Eg but not on the position of the Fermi level. In the special case of an intrinsic 

 2 The effective mass in Equation 5.7 is called the density of states effective mass, and is not the same as that 
used in describing the electron drift mobility.
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semiconductor, n = p, which we can denote as ni, the intrinsic concentration, so 
that NcNv exp(−Eg∕kT ) must be n2

i. From Equation 5.10 we therefore have

 np = n2
i = Nc Nv exp(−

Eg

kT) [5.11a]

 This is a general equation that is valid as long as we have thermal equilibrium. 
External excitation, such as photogeneration, is excluded. It states that the product 
np is constant at a given temperature and depends only on the semiconductor mate-
rial. Equation 5.11a is called the mass action law. If we somehow increase the 
electron concentration, then we inevitably reduce the hole concentration. The con-
stant ni has a special significance because it represents the free electron and hole 
concentrations in the intrinsic material. From Equation 5.11a,

 ni = (Nc Nv)
1∕2 exp(−

Eg

2kT) [5.11b]

 An intrinsic semiconductor is a pure semiconductor crystal in which the elec-
tron and hole concentrations are equal. By pure we mean virtually no impurities in 
the crystal. We should also exclude crystal defects that may capture carriers of one 
sign and thus result in unequal electron and hole concentrations. Clearly in a pure 
semiconductor, electrons and holes are generated in pairs by thermal excitation 
across the bandgap. It must be emphasized that Equation 5.11b is generally valid 
and therefore applies to both intrinsic and nonintrinsic (n ≠ p) semiconductors.
 When an electron and hole meet in the crystal, they “recombine.” The electron 
falls in energy and occupies the empty electronic state that the hole represents. 
Consequently, the broken bond is “repaired,” but we lose two free charge carriers. 
Recombination of an electron and hole results in their annihilation. In a semicon-
ductor we therefore have thermal generation of electron–hole pairs by thermal exci-
tation from the VB to the CB, and we also have recombination of electron–hole pairs 
that removes them from their conduction and valence bands, respectively. The rate 
of recombination R will be proportional to the number of electrons and also to the 
number of holes. Thus

 R ∝ np

 The rate of generation G will depend on how many electrons are available for 
excitation at Ev, that is, Nv; how many empty states are available at Ec, that is, Nc; and 
the probability that the electron will make the transition, that is, exp(−Eg∕kT), so that

 G ∝ Nc Nv exp(−
Eg

kT)
 Since in thermal equilibrium we have no continuous increase in n or p, we must 
have the rate of generation equal to the rate of recombination, that is, G = R. This 
is equivalent to Equation 5.11a.
 In sketching the diagrams in Figure 5.7a to d to illustrate the derivation of the 
expressions for n and p (in Equations 5.6 and 5.8), we assumed that the Fermi level EF 
is somewhere around the middle of the energy bandgap. This was not an assumption 
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in the mathematical derivations but only in the sketches. From Equations 5.6 and 
5.8, we also note that the position of Fermi level is important in determining the 
electron and hole concentrations. It serves as a “mathematical crank” to determine 
n and p.
 We first consider an intrinsic semiconductor, n = p = ni. Setting p = ni in Equa-
tion 5.8, we can solve for the Fermi energy in the intrinsic semiconductor, EFi, that is,

 Nv exp[−
(EFi − Ev)

kT ] = (Nc Nv)
1∕2 exp(−

Eg

2kT)
which leads to

 EFi = Ev +
1
2

Eg −
1
2

 kT ln(Nc

Nv
) [5.12]

 Furthermore, substituting the proper expressions for Nc and Nv we get

 EFi = Ev +
1
2

 Eg −
3
4

 kT ln(m*e
m*h ) [5.13]

 It is apparent from these equations that if Nc = Nv or m*e  = m*h, then

 EFi = Ev +
1
2

 Eg

that is, EFi is right in the middle of the energy gap. Normally, however, the effective 
masses will not be equal and the Fermi level will be slightly shifted down from 
midgap by an amount 3

4 kT ln(m*e∕m*h) , which is quite small compared with 1
2 Eg. For 

Si and Ge, the hole effective mass (for density of states) is slightly smaller than the 
electron effective mass, so EFi is slightly below the midgap.
 The condition np = n2

i means that if we can somehow increase the electron 
concentration in the CB over the intrinsic value—for example, by adding impurities 
into the Si crystal that donate additional electrons to the CB—we will then have 
n > p. The semiconductor is then called n-type. The Fermi level must be closer to 
Ec than Ev, so that

 Ec − EF < EF − Ev

and Equations 5.6 and 5.8 yield n > p. The np product always yields n2
i in thermal 

equilibrium in the absence of external excitation, for example, illumination.
 It is also possible to have an excess of holes in the VB over electrons in the CB, 
for example, by adding impurities that remove electrons from the VB and thereby 
generate holes. In that case EF is closer to Ev than to Ec. A semiconductor in which 
p > n is called a p-type semiconductor. The general band diagrams with the appro-
priate Fermi levels for intrinsic, n-type, and p-type semiconductors (e.g., i-Si, n-Si, 
and p-Si, respectively) are illustrated in Figure 5.8a to c.
 It is apparent that if we know where EF is, then we have effectively determined 
n and p by virtue of Equations 5.6 and 5.8. We can view EF as a material property 
that is related to the concentration of charge carriers that contribute to electrical 
conduction. Its significance, however, goes beyond n and p. It also determines the 
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energy needed to remove an electron from the semiconductor. The energy difference 
between the vacuum level (where the electron is free) and EF is the work function 

Φ of the semiconductor, the energy required to remove an electron even though there 
are no electrons at EF in a semiconductor.
 The Fermi level can also be interpreted in terms of the potential energy per 
electron for electrical work similar to the interpretation of electrostatic PE. Just as 
eΔV is the electrical work involved in taking a charge e across a potential difference 
ΔV, any difference in EF in going from one end of a material (or system) to another 
is available to do an amount ΔEF of external work. A corollary to this is that if 
electrical work is done on the material, for example, by passing a current through 
it, then the Fermi level is not uniform in the material. ΔEF then represents the work 
done per electron. For a material in thermal equilibrium and not subject to any 
external excitation such as illumination or connections to a voltage supply, the Fermi 
level in the material must therefore be uniform, ΔEF = 0.
 What is the average energy of an electron in the conduction band of a semicon-
ductor? Also, what is the mean speed of an electron in the conduction band? We 
note that the concentration of electrons with energies E to E + dE is nE(E)  dE or 
gcb(E) f (E)  dE. Thus the average energy of electrons in the CB, by definition of the 
mean, is

 ECB =
1

n ∫
CB

Egcb(E)  f (E) dE

where the integration must be over the CB. Substituting the proper expressions for 
gcb(E)  and f(E)  in the integrand and carrying out the integration from Ec to the top 
of the band, we find the very simple result that

 ECB = Ec +
3

2
 kT  [5.14]

Thus, an electron in the conduction band has an average energy of 3
2 kT  above Ec. 

Since we know that an electron at Ec is “free” in the crystal, 3
2 kT  must be its average 

kinetic energy.
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Figure 5.8 Energy band diagrams for (a) intrinsic, (b) n-type, and (c) p-type semiconductors.
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 This is just like the average kinetic energy of gas atoms (such as He atoms) in 
a tank assuming that the atoms (or the “particles”) do not interact, that is, they are 
independent. We know from the kinetic theory that the statistics of a collection of 
independent gas atoms obeys the classical Maxwell–Boltzmann description with an 
average energy given by 3

2 kT . We should also recall that the description of electron 
statistics in a metal involves the Fermi–Dirac function, which is based on the Pauli 
exclusion principle. In a metal the average energy of the conduction electron is 3

5 EF 
and, for all practical purposes, temperature independent. We see that the collective 
electron behavior is completely different in the two solids. We can explain the dif-
ference by noting that the conduction band in a semiconductor is only scarcely 
populated by electrons, which means that there are many more electronic states than 
electrons and thus the likelihood of two electrons trying to occupy the same elec-
tronic state is practically nil. We can then neglect the Pauli exclusion principle and 
use the Boltzmann statistics. This is not the case for metals where the number of 
conduction electrons and the number of states are comparable in magnitude.
 Table 5.1 compares some of the properties of the important semiconductors, Ge, 
Si, InP, and GaAs.

Table 5.1 Selected typical properties of Ge, Si, InP, and GaAs at 300 K

 Eg χ Nc Nv ni μe μh

 (eV) (eV) (cm−3) (cm−3) (cm−3) (cm2 V−1 s−1) (cm2 V−1 s−1) m*e ∕me m*
h∕me εr

Ge 0.66 4.13 1.04 × 1019 6.0 × 1018 2.3 × 1013 3900 1900 0.12a 0.23a 16
        0.56b 0.40b

Si 1.10 4.01 2.8 × 1019 1.2 × 1019 1.0 × 1010 1400 450 0.26a 0.38a 11.9
        1.08b 0.60b

InP 1.34 4.50 5.2 × 1017 1.1 × 1019 1.3 × 107
 4600 190 0.079a,b 0.46a 12.6

         0.58b

GaAs 1.42 4.07 4.4 × 1017 7.7 × 1018 2.1 × 106 8800 400 0.067a,b 0.40a 13.0
         0.50b

 NOTE: Ge and Si are indirect whereas InP and GaAs are direct bandgap semiconductors. Effective mass related to conductivity 
(labeled a) is different than that for density of states (labeled b). In numerous textbooks, ni is taken as 1.45 × 1010 cm−3 and is therefore 
the most widely used value of ni for Si, though the correct value is actually 1.0 × 1010 cm−3. (Green, M.A., Journal of Applied Physics, 67, 
2944, 1990.) (Data combined from various sources.)

INTRINSIC CONCENTRATION AND CONDUCTIVITY OF Si Given that the density of 
states related effective masses of electrons and holes in Si are approximately 1.08me and 
0.60me, respectively, and the electron and hole drift mobilities at room temperature are 1400 
and 450 cm2 V−1 s−1, respectively, calculate the intrinsic concentration and intrinsic resistivity 
of Si.

SOLUTION

We simply calculate the effective density of states Nc and Nv by

 Nc = 2(2πm*e  kT

h2 )
3∕2

  and  Nv = 2(2πm*h kT

h2 )
3∕2

 EXAMPLE 5.1



 5 .1  INTRINSIC SEMICONDUCTORS 425

Thus

 Nc = 2[2π(1.08 × 9.1 × 10−31 kg)(1.38 × 10−23 J K−1) (300 K)

(6.63 × 10−34 J s)2 ]
3∕2

 = 2.81 × 1025 m−3  or  2.81 × 1019 cm−3

and

 Nv = 2[2π(0.60 × 9.1 × 10−31 kg)(1.38 × 10−23 J K−1) (300 K)

(6.63 × 10−34 J s)2 ]
3∕2

 = 1.16 × 1025 m−3  or  1.16 × 1019 cm−3

 The intrinsic concentration is

 ni = (Nc Nv)
1∕2 exp(−

Eg

2kT)
so that

 ni = [(2.81 × 1019 cm−3) (1.16 × 1019 cm−3) ]1∕2 exp[−
(1.10 eV)

2(300 K)(8.62 × 10−5 eV K−1) ]
 = 1.0 × 1010 cm−3

 The conductivity is
 σ = enμe + epμh = eni(μe + μh)

that is,
 σ = (1.6 × 10−19 C)(1.0 × 1010 cm−3)(1400 + 450 cm2 V−1 s−1)
 = 3.0 × 10−6 Ω−1 cm−1

 The resistivity is

 ρ =
1
σ

= 3.3 × 105 Ω cm

Although we calculated ni = 1.0 × 1010 cm−3, the most widely used ni value in the literature 
has been 1.45 × 1010 cm−3. The difference arises from a number of factors but, most impor-
tantly, from what exact value of the effective hole mass should be used in calculating Nv. 
Henceforth we will simply use3 ni = 1.0 × 1010 cm−3, which seems to be the “true” value.

 3 The correct value appears to be 1.0 × 1010 cm−3 as discussed by M. A. Green (J. Appl. Phys., 67, 2944, 1990) 
and A. B. Sproul, and M. A. Green (J. Appl. Phys., 70, 846, 1991).

MEAN SPEED OF ELECTRONS IN THE CB Estimate the mean speed of electrons in the 
conduction band of Si at 300 K. If a is the magnitude of lattice vibrations, then the kinetic 
theory predicts a2 ∝ T; or stated differently, the mean energy associated with lattice vibrations 
(proportional to a2) increases with kT. Given the temperature dependence of the mean speed 
of electrons in the CB, what should be the temperature dependence of the drift mobility? The 
effective mass of an electron in the conduction band is 0.26me.

SOLUTION

Suppose that vth is the root mean square velocity of the electron in the CB, then the average 
KE, 1

2 m*e v 2
th, of this electron from Equation 5.14 is 3

2 kT . Thus,

 vth = (3kT

m*e )
1∕2

= [ (3 × 1.38 × 10−23 × 300)

(0.26 × 9.1 × 10−31) ]
1∕2

= 2.3 × 105 m s−1

 EXAMPLE 5.2
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 The above velocity vth is called the thermal velocity, and it is roughly the same as the 
mean speed of the electron in the CB. (See Example 1.11.) 
 The mean free time τ of the electron between scattering events due to thermal vibrations 
of the atoms is inversely proportional to both the mean speed vth of the electron and the scat-
tering cross section of the thermal vibrations, that is,

 τ ∝
1

vth(πa2)

where a is the amplitude of the atomic thermal vibrations. But, vth ∝ T1∕2 and (πa2) ∝ kT, so 
that τ ∝ T−3∕2 and consequently μe ∝ T−3∕2.
 Experimentally μe is not exactly proportional to T−3∕2 but to T−2.4, a higher power index. 
The effective mass used in the density of states calculations is actually different than that 
used in transport calculations such as the mean speed, drift mobility, and so on.

MEAN FREE PATH OF ELECTRONS IN THE CB Consider the motion of electrons in the 
CB of an undoped GaAs crystal. What is the mean free path of an average electron in the 
conduction band? How does this compare with the mean free path of a conduction electron 
in copper which has a drift mobility of 32 cm2 V−1 s−1 and a mean free path of 40 nm. What 
is your conclusion?

SOLUTION

The drift mobility of electrons in a semiconductor is controlled by various scattering mecha-
nisms that limit the mean scattering time or the free time of an electron in the CB. If τ is the 
mean scattering time for electrons in the CB, then, from Chapter 2, drift mobility μe = eτ∕m*e , 
where m*e  is the effective mass of the electron in the crystal. Thus,

 τ =
μem*e

e
=

(1400 × 10−4 m2 V−1 s−1) (0.26 × 9.11 × 10−31 kg)

(1.602 × 10−19 C)
= 2.1 × 10−13 s

We know from Example 5.1 that the mean velocity or the thermal velocity vth of electrons in 
the CB is approximately 2.3 × 105 m s−1. The mean free path ℓ = vthτ = (2.3 × 105 m s−1) 
(2.1 × 10−13 s) = 48 × 10−9 m or 48 nm. The conduction electrons in copper have significantly 
lower drift mobility but their mean free path is almost the same as a conduction electron in 
Si. Recall from Chapter 4 that conduction electrons in a metal follow Fermi–Dirac statistics 
and their mean speed is very much larger than the thermal velocity of electrons in Si.

5.2  EXTRINSIC SEMICONDUCTORS

By introducing small amounts of impurities into an otherwise pure Si crystal, it is 
possible to obtain a semiconductor in which the concentration of carriers of one 
polarity is much in excess of the other type. Such semiconductors are referred to as 
extrinsic semiconductors vis-à-vis the intrinsic case of a pure and perfect crystal. 
For example, by adding pentavalent impurities, such as arsenic, which have a valency 
of more than four, we can obtain a semiconductor in which the electron concentra-
tion is much larger than the hole concentration. In this case we will have an n-type 
semiconductor. If we add trivalent impurities, such as boron, which have a valency 
of less than four, then we find that we have an excess of holes over electrons. We 
now have a p-type semiconductor. How do impurities change the concentrations of 
holes and electrons in a semiconductor?

 EXAMPLE 5.3
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5.2.1 n-TYPE DOPING

Consider what happens when small amounts of a pentavalent (valency of 5) element 
from Group V in the Periodic Table, such as As, P, Sb, are introduced into a pure 
Si crystal. We only add small amounts (e.g., one impurity atom for every million 
host atoms) because we wish to surround each impurity atom by millions of Si atoms, 
thereby forcing the impurity atoms to bond with Si atoms in the same diamond 
crystal structure. Arsenic has five valence electrons, whereas Si has four. Thus when 
an As atom bonds with four Si atoms, it has one electron left unbonded. It cannot 
find a bond to go into, so it is left orbiting around the As atom, as illustrated in 
Figure 5.9. The As+ ionic center with an electron e− orbiting it is just like a hydro-
gen atom in a silicon environment. We can easily calculate how much energy is 
required to free this electron away from the As site, thereby ionizing the As impurity. 
Had this been a hydrogen atom in free space, the energy required to remove the 
electron from its ground state (at n = 1) to far away from the positive center would 
have been given by −En with n = 1. The binding energy of the electron in the H 
atom is thus

 Eb = −E1 =
mee

4

8ε2
oh

2 = 13.6 eV

 If we wish to apply this to the electron around an As+ core in the Si crystal 
environment, we must use εrεo instead of εo, where εr is the relative permittivity of 
silicon, and also the effective mass of the electron m*e in the silicon crystal. Thus, 
the binding energy of the electron to the As+ site in the Si crystal is

 E 
Si
b =

m*e e4

8ε2
rε

2
oh

2 = (13.6 eV)(m*e
me

)( 1
ε2

r
) [5.15]

 With εr = 11.9 and m*e ≈ 1
3  
me for silicon, we find Eb

Si = 0.032 eV, which is 
comparable with the average thermal energy of atomic vibrations at room temperature, 
∼3kT (∼0.07 eV). Thus, the fifth valence electron can be readily freed by thermal 
vibrations of the Si lattice. The electron will then be “free” in the semiconductor, 

As+

e–

Figure 5.9 Arsenic-doped Si crystal.

The four valence electrons of As allow it to bond just 

like Si, but the fifth electron is left orbiting the As site. 

The energy required to release the free fifth electron 

into the CB is very small.

Electron 

binding 

energy at a 

donor
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or, in other words, it will be in the CB. The energy required to excite the electron 
to the CB is therefore 0.032 eV. The addition of As atoms introduces localized 
electronic states at the As sites because the fifth electron has a localized wavefunction, 
of the hydrogenic type, around As+. The energy Ed of these states is 0.032 eV below 
Ec because this is how much energy is required to take the electron away into the 
CB. Thermal excitation by the lattice vibrations at room temperature is sufficient to 
ionize the As atom, that is, excite the electron from Ed into the CB. This process 
creates free electrons but immobile As+ ions, as shown in the energy band diagram 
of an n-type semiconductor in Figure 5.10. Because the As atom donates an electron 
into the CB, it is called a donor atom. Ed is the electron energy around the donor 
atom. Ed is close to Ec, so the spare fifth electron from the dopant can be readily 
donated to the CB. If Nd is the donor atom concentration in the crystal, then provided 
that Nd ≫ ni, at room temperature the electron concentration in the CB will be nearly 
equal to Nd, that is n ≈ Nd. The hole concentration will be p = n2

i∕Nd, which is less 
than the intrinsic concentration because a few of the large number of electrons in 
the CB recombine with holes in the VB so as to maintain np = n2

i. The conductivity 
will then be

 σ = eNd μe + e( n2
i

Nd
)μh ≈ eNd μe [5.16]

 At low temperatures, however, not all the donors will be ionized and we need 
to know the probability, denoted as fd(Ed), of finding an electron in a state with 
energy Ed at a donor. This probability function is similar to the Fermi–Dirac function 
f (Ed) except that it has a factor of 1

2 multiplying the exponential term,

 fd(Ed) =
1

1 +
1
2

 exp[ (Ed − EF)
kT ]

 [5.17]

 The factor 1
2 is due to the fact that the electron state at the donor can take an 

electron with spin either up or down but not both4 (once the donor has been occupied, 
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Figure 5.10 Energy band diagram for an  

n-type Si doped with 1 ppm As.

There are donor energy levels just below Ec 

around As+ sites.

n-type 
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 4 The proof can be found in advanced solid-state physics texts.
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a second electron cannot enter this site). Thus, the concentration of ionized donors 
at a temperature T is given by

  N+
d = Nd × (probability of not finding an electron at Ed)

  = Nd[1 − fd(Ed) ]

  =
Nd

1 + 2 exp[ (EF − Ed)
kT ]

 [5.18]

5.2.2 p-TYPE DOPING

We saw that introducing a pentavalent atom into a Si crystal results in n-type doping 
because the fifth electron cannot go into a bond and escapes from the donor into the 
CB by thermal excitation. By similar arguments, we should anticipate that doping a 
Si crystal with a trivalent atom (valency of 3) such as B, Al, Ga, or In will result 
in a p-type Si crystal. We consider doping Si with small amounts of B as shown in 
Figure 5.11a. Because B has only three valence electrons, when it shares them with 
four neighboring Si atoms, one of the bonds has a missing electron, which of course 
is a hole. A nearby electron can tunnel into this hole and displace the hole further 
away from the boron atom. As the hole moves away, it gets attracted by the negative 
charge left behind on the boron atom and therefore takes an orbit around the B− ion, 
as shown in Figure 5.11b. The binding energy of this hole to the B− ion can be 
calculated using the hydrogenic atom analogy as in the n-type Si case. This binding 
energy turns out to be very small, ∼0.05 eV, so at room temperature the thermal 
vibrations of the lattice can free the hole away from the B− site. A free hole, we 

B–
h+

Free

B–

(a) (b)

Figure 5.11 Boron-doped Si crystal.

B has only three valence electrons. When it substitutes for a Si atom, one of its 

bonds has an electron missing and therefore a hole, as shown in (a). The hole orbits 

around the B− site by the tunneling of electrons from neighboring bonds, as shown 

in (b). Eventually, thermally vibrating Si atoms provide enough energy to free the 

hole from the B− site into the VB, as shown.

Ionized donor 

concentration
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recall, exists in the VB. The escape of the hole from the B− site involves the B atom 
accepting an electron from a neighboring Si–Si bond (from the VB), which effectively 
results in the hole being displaced away and its eventual escape to freedom in the VB. 
The B atom introduced into the Si crystal therefore acts as an electron acceptor and, 
because of this, it is called an acceptor impurity. The electron accepted by the B atom 
comes from a nearby bond. On the energy band diagram, an electron leaves the VB 
and gets accepted by a B atom, which becomes negatively charged. This process leaves 
a hole in the VB that is free to wander away, as illustrated in Figure 5.12.
 It is apparent that doping a silicon crystal with a trivalent impurity results in a 
p-type material. We have many more holes than electrons for electrical conduction 
since the negatively charged B atoms are immobile and hence cannot contribute to 
the conductivity. If the concentration of acceptor impurities Na in the crystal is much 
greater than the intrinsic concentration ni, then at room temperature all the acceptors 
would have been ionized and thus p ≈ Na. The electron concentration is then deter-
mined by the mass action law, n = n2

i∕Na, which is much smaller than p, and con-
sequently the conductivity is simply given by σ = eNaμh.
 Typical ionization energies for donor and acceptor atoms in the silicon crystal 
are summarized in Table 5.2.

5.2.3 COMPENSATION DOPING

What happens when a semiconductor contains both donors and acceptors? Compen-

sation doping is a term used to describe the doping of a semiconductor with both 

B– B– B– B–

h+

Electron energy

x Distance
into crystal

~0.05 eV

VB

Ec

Ea

B atom sites every 106 Si atoms

Ev

Figure 5.12 Energy band diagram 

for a p-type Si doped with 1 ppm B.

There are acceptor energy levels Ea 

just above Ev around B− sites. These 

acceptor levels accept electrons 

from the VB and therefore create 

holes in the VB.

Table 5.2 Examples of donor and acceptor ionization energies (eV) in Si

 Donors Acceptors

 P As Sb B Al Ga

0.045 0.054 0.039 0.045 0.057 0.072
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donors and acceptors to control the properties. For example, a p-type semiconductor 
doped with Na acceptors can be converted to an n-type semiconductor by simply 
adding donors until the concentration Nd exceeds Na. The effect of donors compen-
sates for the effect of acceptors and vice versa. The electron concentration is then 
given by Nd − Na provided the latter is larger than ni. When both acceptors and 
donors are present, what essentially happens is that electrons from donors recombine 
with the holes from the acceptors so that the mass action law np = n2

i is obeyed. 
Remember that we cannot simultaneously increase the electron and hole concentra-
tions because that leads to an increase in the recombination rate that returns the 
electron and hole concentrations to satisfy np = n2

i. When an acceptor atom accepts 
a valence band electron, a hole is created in the VB. This hole then recombines with 
an electron from the CB. Suppose that we have more donors than acceptors. If we 
take the initial electron concentration as n = Nd, then the recombination between 
the electrons from the donors and Na holes generated by Na acceptors results in the 
electron concentration reduced by Na to n = Nd − Na. By a similar argument, if we 
have more acceptors than donors, the hole concentration becomes p = Na − Nd, with 
electrons from Nd donors recombining with holes from Na acceptors. Thus there are 
two compensation effects:

 1. More donors: Nd − Na ≫ ni  n = (Nd − Na) and p =
n2

i

(Nd − N a)

 2. More acceptors: Na − Nd ≫ ni  p = (Na − Nd) and n =
n2

i

(Na − Nd)

 These arguments assume that the temperature is sufficiently high for donors and 
acceptors to have been ionized. This will be the case at room temperature. At low 
temperatures, we have to consider donor and acceptor statistics and the charge neu-
trality of the whole crystal, as in Example 5.9.

Compensation 

doping

RESISTIVITY OF INTRINSIC AND DOPED Si Find the resistance of a 1 cm3 pure silicon 
crystal. What is the resistance when the crystal is doped with arsenic if the doping is 1 in 109, 
that is, 1 part per billion (ppb) (note that this doping corresponds to one foreigner living in 
China)? Note that the atomic concentration in silicon is 5 × 1022 cm−3, ni = 1.0 × 1010 cm−3, 
μe = 1400 cm2 V−1 s−1, and μh = 450 cm2 V−1 s−1.

SOLUTION

For the intrinsic case, we apply

 σ = enμe + epμh = en(μe + μh)

so σ = (1.6 × 10−19 C)(1.0 × 1010 cm−3)(1400 + 450 cm2 V−1 s−1)

 = 2.96 × 10−6 Ω−1 cm−1

 Since L = 1 cm and A = 1 cm2, the resistance is

 R =
L

σA
=

1
σ

= 3.47 × 105 Ω  or  347 kΩ

 EXAMPLE 5.4
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 When the crystal is doped with 1 in 109, then

 Nd =
NSi

109 =
5 × 1022

109 = 5 × 1013 cm−3

 At room temperature all the donors are ionized, so

 n = Nd = 5 × 1013 cm−3

 The hole concentration is

 p =
n2

i

Nd

=
(1.0 × 1010)2

(5 × 1013)
= 2.0 × 106 cm−3 ≪ ni

 Therefore,

 σ = enμe = (1.6 × 10−19 C)(5 × 1013 cm−3)(1400 cm2 V−1 s−1)

 = 1.12 × 10−2 Ω−1 cm−1

 Further, R =
L

σA
=

1
σ

= 89.3 Ω

 Notice the drastic fall in the resistance when the crystal is doped with only 1 in 109 atoms.
 Doping the silicon crystal with boron instead of arsenic, but still in amounts of 1 in 109, 
means that Na = 5 × 1013 cm−3, which results in a conductivity of

 σ = epμh = (1.6 × 10−19 C)(5 × 1013 cm−3)(450 cm2 V−1 s−1)

 = 3.6 × 10−3 Ω−1 cm−1

 Therefore, R =
L

σA
=

1
σ

= 278 Ω

The reason for a higher resistance with p-type doping compared with the same amount of 
n-type doping is that μh < μe.

COMPENSATION DOPING An n-type Si semiconductor containing 1016 phosphorus (donor) 
atoms cm−3 has been doped with 1017 boron (acceptor) atoms cm−3. Calculate the electron 
and hole concentrations in this semiconductor.

SOLUTION

This semiconductor has been compensation doped with excess acceptors over donors, so

 Na − Nd = 1017 − 1016 = 9 × 1016 cm−3

This is much larger than the intrinsic concentration ni = 1.0 × 1010 cm−3 at room tempera-
ture, so
 p = Na − Nd = 9 × 1016 cm−3

The electron concentration

 n =
n2

i

p
=

(1.0 × 1010 cm−3)2

(9 × 1016 cm−3)
= 1.1 × 103 cm−3

 Clearly, the electron concentration and hence its contribution to electrical conduction is 
completely negligible compared with the hole concentration. Thus, by excessive boron doping, 
the n-type semiconductor has been converted to a p-type semiconductor.

 EXAMPLE 5.5
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THE FERMI LEVEL IN n- AND p-TYPE Si An n-type Si wafer has been doped uniformly 
with 1016 antimony (Sb) atoms cm−3. Calculate the position of the Fermi energy with respect 
to the Fermi energy EFi in intrinsic Si. The above n-type Si sample is further doped with 
2  ×  1017 boron atoms cm−3. Calculate the position of the Fermi energy with respect to the 
Fermi energy EFi in intrinsic Si. (Assume that T = 300 K, and kT = 0.0259 eV.)

SOLUTION

Sb gives n-type doping with Nd = 1016 cm−3, and since Nd ≫ ni (=1.0 × 1010 cm−3), we have

 n = Nd = 1016 cm−3

For intrinsic Si,

 ni = Nc exp[−
(Ec − EFi)

kT ]
whereas for doped Si,

 n = Nc exp[−
(Ec − EFn)

kT ] = Nd

where EFi and EFn are the Fermi energies in the intrinsic and n-type Si. Dividing the two 
expressions,

 
Nd

ni

= exp[ (EFn − EFi)
kT ]

so that

 EFn − EFi = kT ln(Nd

ni
) = (0.0259 eV) ln( 1016

1.0 × 1010) = 0.36 eV

 When the wafer is further doped with boron, the acceptor concentration is

 Na = 2 × 1017 cm−3 > Nd = 1016 cm−3

The semiconductor is compensation doped and compensation converts the semiconductor to 
p-type Si. Thus

 p = Na − Nd = (2 × 1017 − 1016) = 1.9 × 1017 cm−3

 For intrinsic Si,

 ni = Nv exp[−
(EFi − Ev)

kT ]
whereas for doped Si,

 p = Nv exp[−
(EFp − Ev)

kT ] = Na − Nd

where EFi and EFp are the Fermi energies in the intrinsic and p-type Si, respectively. Dividing 
the two expressions,

 
p

ni

= exp[−
(EFp − EFi)

kT ]

 EXAMPLE 5.6
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so that

  EFp − EFi = −kT ln( p

ni
) = −(0.0259 eV) ln(1.9 × 1017

1.0 × 1010)
  = −0.43 eV

ENERGY BAND DIAGRAM OF AN n-TYPE SEMICONDUCTOR CONNECTED TO A VOLTAGE 

SUPPLY Consider the energy band diagram for an n-type semiconductor that is connected 
to a voltage supply of V and is carrying a current. The applied voltage drops uniformly along 
the semiconductor, so the electrons in the semiconductor now also have an imposed electro-
static potential energy that decreases toward the positive terminal, as depicted in Figure 5.13. 
The whole band structure, the CB and the VB, therefore tilts. When an electron drifts from 
A toward B, its PE decreases because it is approaching the positive terminal. The Fermi level 
EF is above that for the intrinsic case, EFi.
 We should remember that an important property of the Fermi level is that a change in 
EF within a system is available externally to do electrical work. As a corollary we note that 
when electrical work is done on the system, for example, when a battery is connected to a 
semiconductor, then EF is not uniform throughout the whole system. A change in EF within 

 EXAMPLE 5.7
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Figure 5.13 Energy band diagram of an n-type  
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a system ΔEF is equivalent to electrical work per electron or eV. EF therefore follows the 
electrostatic PE behavior, and the change in EF from one end to the other, EF(A) − EF(B), is 
just eV, the energy expended in taking an electron through the semiconductor, as shown in 
Figure 5.13. Electron concentration in the semiconductor is uniform, so Ec − EF must be 
constant from one end to the other. Thus the CB, VB, and EF all bend by the same amount.

5.3  TEMPERATURE DEPENDENCE OF CONDUCTIVITY

So far we have been calculating conductivities and resistivities of doped semiconduc-
tors at room temperature by simply assuming that n ≈ Nd for n-type and p ≈ Na for 
p-type doping, with the proviso that the concentration of dopants is much greater 
than the intrinsic concentration ni. To obtain the conductivity at other temperatures 
we have to consider two factors: the temperature dependence of the carrier concen-
tration and the drift mobility.

5.3.1 CARRIER CONCENTRATION TEMPERATURE DEPENDENCE

Consider an n-type semiconductor doped with Nd donors per unit volume where  
Nd ≫ ni. We take the semiconductor down to very low temperatures until its con-
ductivity is practically nil. At this temperature, the donors will not be ionized because 
the thermal vibrational energy is insufficiently small. As the temperature is increased, 
some of the donors become ionized and donate their electrons to the CB, as shown 
in Figure 5.14a. The Si–Si bond breaking, that is, thermal excitation from Ev to Ec, 
is unlikely because it takes too much energy. Since the donor ionization energy  
ΔE = Ec − Ed is very small (≪Eg), thermal generation involves exciting electrons from 
Ed to Ec. The electron concentration at low temperatures is given by the expression

 n = (1

2
 Nc Nd)

1∕2

 exp(−
ΔE

2kT) [5.19]

CB

As As AsAs+ As+ As+ As+ As+ As+ As+ As+As+

T < Ts Ts < T < Ti T > Ti

EF

Eg

VB

(a) T = T1 (b) T = T2 (c) T = T3

EF EF

Figure 5.14 (a) Below Ts, the electron concentration is controlled by the ionization of the 

donors. (b) Between Ts and Ti, the electron concentration is equal to the concentration 

of donors since they would all have ionized. (c) At high temperatures, thermally generated 

electrons from the VB exceed the number of electrons from ionized donors and the 

semiconductor behaves as if intrinsic.
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similar to the intrinsic case, that is,

 n = (Nc Nv)
1∕2 exp(−

Eg

2kT) [5.20]

 Equation 5.20 is valid when thermal generation occurs across the bandgap Eg 
from Ev to Ec. Equation 5.19 is the counterpart of Equation 5.20 taking into account 
that at low temperatures the excitation is from Ed to Ec (across ΔΕ) and that instead 
of Nv, we have Nd as the number of available electrons. The numerical factor 1

2 in 
Equation 5.19 arises because donor occupation statistics is different by this factor 
from the usual Fermi–Dirac function, as mentioned earlier.
 As the temperature is increased further, eventually all the donors become ionized 
and the electron concentration is equal to the donor concentration, that is, n = Nd, 
as depicted in Figure 5.14b. This state of affairs remains unchanged until very high 
temperatures are reached, when thermal generation across the bandgap begins to 
dominate. At very high temperatures, thermal vibrations of the atoms will be so 
strong that many Si–Si bonds will be broken and thermal generation across Eg will 
dominate. The electron concentration in the CB will then be mainly due to thermal 
excitation from the VB to the CB, as illustrated in Figure 5.14c. But this process 
also generates an equal concentration of holes in the VB. Accordingly, the semicon-
ductor behaves as if it were intrinsic. The electron concentration at these tempera-
tures will therefore be equal to the intrinsic concentration ni, which is given by 
Equation 5.20.
 The dependence of the electron concentration on temperature thus has three 
regions:

1. Low-temperature range (T < Ts). The increase in temperature at these low 
temperatures ionizes more and more donors. The donor ionization continues until 
we reach a temperature Ts, called the saturation temperature, when all donors have 
been ionized and we have saturation in the concentration of ionized donors. The 
electron concentration is given by Equation 5.19. This temperature range is often 
referred to as the ionization range.

2. Medium-temperature range (Ts < T < Ti). Since nearly all the donors 
have been ionized in this range, n = Nd. This condition remains unchanged until 
T  =  Ti, when ni, which is temperature dependent, becomes equal to Nd. It is this 
temperature range Ts < T < Ti that utilizes the n-type doping properties of the semi-
conductor in pn junction device applications. This temperature range is often referred 
to as the extrinsic range.

3. High-temperature range (T > Ti). The concentration of electrons generated 
by thermal excitation across the bandgap ni is now much larger than Nd, so the 
electron concentration n = ni(T ). Furthermore, as excitation occurs from the VB to 
the CB, the hole concentration p = n. This temperature range is referred to as the 
intrinsic range.

 Figure 5.15 shows the behavior of the electron concentration with temperature in 
an n-type semiconductor. By convention we plot ln(n) versus the reciprocal tempera-
ture T−1. At low temperatures, ln(n) versus T−1 is almost a straight line with a slope 
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−(ΔΕ∕2k), since the temperature dependence of Nc
1∕2 (∝ T3∕4) is negligible compared 

with the exp(−ΔΕ∕2kT ) part in Equation 5.19. In the high-temperature range, how-
ever, the slope is quite steep and almost −Εg∕2k since Equation 5.20 implies that

 n ∝ T 
3∕2 exp(−

Eg

2kT)
and the exponential part again dominates over the T 3∕2 part. In the intermediate 
range, n is equal to Nd and practically independent of the temperature.
 Figure 5.16 displays the temperature dependence of the intrinsic concentration 
in Ge, Si, and GaAs as log(ni) versus 1∕T where the slope of the lines is, of course, 
a measure of the bandgap energy Eg. The log(ni) versus 1∕T graphs can be used to 
find, for example, whether the dopant concentration at a given temperature is more 
than the intrinsic concentration. As we will find out in Chapter 6, the reverse satura-
tion current in a pn junction diode depends on n2

i, so Figure 5.16 also indicates how 
this saturation current varies with temperature.

ln(n)

ln(Nd)

Intrinsic

slope = –Eg/2k

Extrinsic Ts

Ionization

slope = –ΔE/2k

Ti

ni(T)

1/T

Figure 5.15 The temperature dependence of the electron 

concentration in an n-type semiconductor.
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SATURATION AND INTRINSIC TEMPERATURES An n-type Si sample has been doped with 
1015 phosphorus atoms cm−3. The donor energy level for P in Si is 0.045 eV below the con-
duction band edge energy.

a. Estimate the temperature above which the sample behaves as if intrinsic.
b. Estimate the lowest temperature above which most of the donors are ionized.

 EXAMPLE 5.8
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SOLUTION

Remember that ni(T ) is highly temperature dependent, as shown in Figure 5.16 so that as T 
increases, eventually at T ≈ Ti, ni becomes comparable to Nd. Beyond Ti, ni(T > Ti) ≫ Nd. 
Thus we need to solve

 ni(Ti) = Nd = 1015 cm−3

From the log(ni) versus 103∕T graph for Si in Figure 5.16, when ni = 1015 cm−3, (103∕Ti) ≈ 1.85, 
giving Ti ≈ 541 K or 268 °C. 
 We will assume that most of the donors are ionized, say at T ≈ Ts, where the extrinsic 
and the extrapolated ionization lines intersect in Figure 5.15:

 n = (1
2

 Nc Nd)
1∕2

 exp(−
ΔE

2kTs
) ≈ Nd

This is the temperature at which the ionization behavior intersects the extrinsic region. In the 
above equation, Nd = 1015 cm−3, ΔΕ = 0.045 eV, and Nc ∝ Τ 3∕2, that is,

 Nc(Ts) = Nc(300 K)( Ts

300)
3∕2

Clearly, then, the equation can only be solved numerically. Similar equations occur in a wide 
range of physical problems where one term has the strongest temperature dependence. Here, 
exp(−ΔΕ∕kTs) has the strongest temperature dependence. First assume Nc is that at 300 K, 
Nc = 2.8 × 1019 cm−3, and evaluate Ts,

 Ts =
ΔE

k ln( Nc

2Nd
)

=
0.045 eV

(8.62 × 10−5 eV K−1) ln[ 2.8 × 1019 cm−3

2(1.0 × 1015 cm−3) ]
= 54.7 K

At T = 54.7 K,

 Nc(54.7 K) = Nc(300 K)(54.7
300 )

3∕2

= 2.18 × 1018 cm−3

 With this new Nc at a lower temperature, the improved Ts is 74.6 K. Since we only need 
an estimate of Ts, the extrinsic range of this semiconductor is therefore from about 75 K to 
541 K or −198 °C to about 268 °C.

TEMPERATURE DEPENDENCE OF THE ELECTRON CONCENTRATION By considering 
the mass action law, charge neutrality within the crystal, and occupation statistics of electronic 
states, we can show that at the lowest temperatures the electron concentration in an n-type 
semiconductor is given by

 n = (1
2

 Nc Nd)
1∕2

 exp(−
ΔE

2kT)
where ΔΕ = Ec − Ed. Furthermore, at the lowest temperatures, the Fermi energy is midway 
between Ed and Ec.
 There are only a few physical principles that must be considered to arrive at the effect 
of doping on the electron and hole concentrations. For an n-type semiconductor, these are

 1. Charge carrier statistics.

 n = Nc exp[−
(Ec − EF)

kT ] (1)

 EXAMPLE 5.9
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 2. Mass action law.

 np = n2
i (2)

 3. Electrical neutrality of the crystal. We must have the same number of positive and 
negative charges:

 p + Nd
+ = n (3)

 where Nd
+ is the concentration of ionized donors.

 4. Statistics of ionization of the dopants.

  N+
d = Nd × (probability of not finding an electron at Ed) = Nd[1 − fd(Ed) ]

  =
Nd

1 + 2 exp[ (EF − Ed)
kT ]

 (4)

 Solving Equations 1 to 4 for n will give the dependence of n on T and Nd. For example, 
from the mass action law, Equation 2, and the charge neutrality condition, Equation 3, we get

 
n2

i

n
+ N+

d = n

 This is a quadratic equation in n. Solving this equation gives

 n =
1
2

(N+
d ) + [1

4
(N+

d )2 + n2
i ]

1∕2

 Clearly, this equation should give the behavior of n as a function of T and Nd when we 
also consider the statistics in Equation 4. In the low-temperature region (T < Ts), n

2
i  is neg-

ligible in the expression for n and we have

 n = N+
d =

Nd

1 + 2 exp[ (EF − Ed)
kT ]

≈
1
2

 Nd exp[−
(EF − Ed)

kT ]
 But the statistical description in Equation 1 is generally valid, so multiplying the low-
temperature region equation by Equation 1 and taking the square root eliminates EF from the 
expression, giving

 n = (1
2

 Nc Nd)
1∕2

 exp[−
(Ec − Ed)

2kT ]
 To find the location of the Fermi energy, consider the general expression

 n = Nc exp[−
(Ec − EF)

kT ]
which must now correspond to n at low temperatures. Equating the two and rearranging to 
obtain EF we find

 EF =
Ec + Ed

2
+

1
2

 kT ln( Nd

2Nc
)

which puts the Fermi energy near the middle of ΔE = Ec − Ed at low temperatures.

Ionization 

region
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5.3.2 DRIFT MOBILITY: TEMPERATURE AND IMPURITY DEPENDENCE

The temperature dependence of the drift mobility follows two distinctly different 
temperature variations. In the high-temperature region, it is observed that the drift 
mobility is limited by scattering from lattice vibrations. As the magnitude of atomic 
vibrations increases with temperature, the drift mobility decreases in the fashion  
μ ∝ T−3∕2. However, at low temperatures the lattice vibrations are not sufficiently 
strong to be the major limitation to the mobility of the electrons. It is observed that 
at low temperatures the scattering of electrons by ionized impurities is the major 
mobility limiting mechanism and μ ∝ T 3∕2, as we will show below.
 We recall from Chapter 2 that the electron drift mobility μ depends on the mean 
free time τ between scattering events via

 μ =
eτ

m*e
 [5.21]

in which

 τ =
1

Svth Ns

 [5.22]

where S is the cross-sectional area of the scatterer; vth is the mean speed of the 
electrons, called the thermal velocity; and Ns is the number of scatterers per unit 
volume. If a is the amplitude of the atomic vibrations about the equilibrium, then 
S = πa2. As the temperature increases, so does the amplitude a of the lattice vibra-
tions following a2 ∝ T behavior, as shown in Chapter 2. An electron in the CB is 
free to wander around and therefore has only KE. We also know that the mean kinetic 
energy per electron in the CB is 3

2 kT , just as if the kinetic molecular theory could 
be applied to all those electrons in the CB. Therefore,

 
1

2
 m*e v 

2
th =

3

2
 kT

so that vth ∝ T 1∕2. Thus the mean time τL between scattering events from lattice 
vibrations is5

 τL =
1

(πa2)vth Ns

∝
1

(T) (T 
1∕2)

∝ T 
−3∕2

which leads to a lattice vibration scattering limited mobility, denoted as μL, of 
the form

 μL ∝ Τ−3∕2 [5.23]

 At low temperatures, scattering of electrons by thermal vibrations of the lattice 
will not be as strong as the electron scattering brought about by ionized donor impu-
rities. As an electron passes by an ionized donor As+, it is attracted and thus deflected 

 5 The present arguments are totally classical whereas in terms of modern physics, the electrons are scattered 
by phonons and the phonon concentration increases with temperature. An analogy may help. The light intensity 
classically depends on E2 whereas in quantum physics it is given by the photon flux density.
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from its straight path, as schematically shown in Figure 5.17. This type of scattering 
of an electron is what limits the drift mobility at low temperatures.
 The PE of an electron at a distance r from an As+ ion is due to the Coulombic 
attraction, and its magnitude is given by

 ∣PE∣ =
e2

4πεoεrr

 If the KE of the electron approaching an As+ ion is larger than its PE at distance 
r from As+, then the electron will essentially continue without feeling the PE and 
therefore without being deflected, and we can say that it has not been scattered. 
Effectively, due to its high KE, the electron does not feel the Coulombic pull of the 
donor. On the other hand, if the KE of the electron is less than its PE at r from As+, 
then the PE of the Coulombic interaction will be so strong that the electron will be 
strongly deflected. This is illustrated in Figure 5.17. The critical radius rc corre-
sponds to the case when the electron is just scattered, which is when KE ≈ ∣PE(rc)∣. 
But the average KE = 3

2 kT , so at r = rc

 
3
2

 kT = ∣PE(rc)∣ =
e2

4πεoεrrc

from which rc = e2∕(6πεoεrkT ). As the temperature increases, the scattering radius 
decreases. The scattering cross section S = πr2

c is thus given by

 S =
πe4

(6πεoεrkT)2 ∝ T 
−2

 Incorporating vth ∝ T 1∕2 as well, the temperature dependence of the mean scat-
tering time τI between impurities, from Equation 5.22, must be

 τI =
1

SvthNI

∝
1

(T 
−2) (T 

1∕2)NI

∝
T 

3∕2

NI

where NI is the concentration of ionized impurities (all ionized impurities including 
donors and acceptors). Consequently, the ionized impurity scattering limited 

mobility from Equation 5.21 is

 μI ∝
T 

3∕2

NI

 [5.24]
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Figure 5.17 Scattering of electrons by an ionized  

impurity.
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 Note also that μI decreases with increasing ionized dopant concentration NI, 
which itself may be temperature dependent. Indeed, at the lowest temperatures, below 
the saturation temperature Ts, NI will be strongly temperature dependent because not 
all the donors would have been fully ionized.
 The overall temperature dependence of the drift mobility is then, simply, the 
reciprocal additions of the μI and μL by virtue of Matthiessen’s rule, that is,

 
1
μe

=
1
μI

+
1
μL

 [5.25]

so the scattering process having the lowest mobility determines the overall (effective) 
drift mobility.
 The experimental temperature dependence of the electron drift mobility in 
both Ge and Si is shown in Figure 5.18 as a log–log plot for various donor con-
centrations. The slope on this plot corresponds to the index n in μe ∝ T n. The 
simple theoretical sketches in the insets show how μL and μI from Equations 5.23 
and 5.24 depend on the temperature. For Ge, at low doping concentrations (e.g., 
Nd = 1013 cm−3), the experiments indicate a μe ∝ Τ −1.5 type of behavior, which 
is in agreement with μe determined by μL in Equation 5.23. Curves for Si at low-
level doping (μI negligible) at high temperatures, however, exhibit a μe ∝ Τ −2.3 
type of behavior rather than Τ −1.5, which can be accounted for in a more rigorous 
theory. As the donor concentration increases, the drift mobility decreases by vir-
tue of μI getting smaller. At the highest doping concentrations and at low tem-
peratures, the electron drift mobility in Si exhibits almost a μe ∝ Τ 3∕2 type of 
behavior. Similar arguments can be extended to the temperature dependence of 
the hole drift mobility.
 The dependences of the room temperature electron and hole drift mobilities on 
the dopant concentration for Si are shown in Figure 5.19 where, as expected, past a 
certain amount of impurity addition, the drift mobility is overwhelmingly controlled 
by μI in Equation 5.25.
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5.3.3 CONDUCTIVITY TEMPERATURE DEPENDENCE

The conductivity of an extrinsic semiconductor doped with donors depends on the 
electron concentration and the drift mobility, both of which have been determined 
above. At the lowest temperatures in the ionization range, the electron concentration 
depends exponentially on the temperature by virtue of

 n = (1
2

 Nc Nd)
1∕2

 exp[−
(Ec − Ed)

2kT ]
which then also dominates the temperature dependence of the conductivity. In the 
intrinsic range at the highest temperatures, the conductivity is dominated by the 
temperature dependence of ni since
 σ = eni(μe + μh)

and ni is an exponential function of temperature in contrast to μ ∝ T−3∕2. In the 
extrinsic temperature range, n = Nd and is constant, so the conductivity follows 
the  temperature dependence of the drift mobility. Figure 5.20 shows schematically 
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the semilogarithmic plot of the conductivity against the reciprocal temperature where 
through the extrinsic range σ exhibits a broad “S” due to the temperature dependence 
of the drift mobility.

COMPENSATION-DOPED Si

a. A Si sample has been doped with 1017 arsenic atoms cm−3. Calculate the conductivity 
of the sample at 27 °C (300 K) and at 127 °C (400 K).

b. The above n-type Si sample is further doped with 9 × 1016 boron atoms cm−3. Calculate 
the conductivity of the sample at 27 °C and 127 °C.

SOLUTION

a. The arsenic dopant concentration, Nd = 1017 cm−3, is much larger than the intrinsic 
concentration ni, which means that n = Nd and p = (n2

i∕Nd) ≪ n and can be neglected. 
Thus n = 1017 cm−3 and the electron drift mobility at Nd = 1017 cm−3 is approxi-
mately 700 cm2 V−1 s−1 from the drift mobility versus dopant concentration graph in 
Figure 5.19, so

 σ = enμe + epμh = eNdμe

 = (1.6 × 10−19 C)(1017 cm−3)(700 cm2 V−1 s−1) = 11.2 Ω−1 cm−1

 At T = 127 °C = 400 K from the μe vs. T graph in Figure 5.18,

 μe ≈ 450 cm2 V−1 s−1

 Thus,

 σ = eNdμe = 7.20 Ω−1 cm−1

b. With further doping we have Na = 9 × 1016 cm−3, so from the compensation effect

 Nd − Na = 1 × 1017 − 9 × 1016 = 1016 cm−3

 Since Nd − Na ≫ ni, we still have an n-type material with n = Nd − Na = 1016 cm−3. 
But the drift mobility now is about ∼600 cm2 V−1 s−1 because, even though Nd − Na is 
now 1016 cm−3 and not 1017 cm−3, all the donors and acceptors are still ionized and hence 
still scatter the charge carriers. The recombination of electrons from the donors and holes 
from the acceptors does not alter the fact that at room temperature all the dopants will 
be ionized. Effectively, the compensation effect is as if all electrons from  the donors 
were being accepted by the acceptors. Although with compensation doping the net elec-
tron concentration is n = Nd − Na, the drift mobility scattering is determined by (Nd + Na), 
which in this case is 1017 + 9 × 1016 cm−3 = 1.9 × 1017 cm−3, which gives an electron 
drift mobility of ∼600 cm2 V−1 s−1 at 300 K (Figure 5.19) and ∼400 cm2 V−1 s−1 at 400 K 
(Figure 5.18). Then, neglecting the hole concentration p = n2

i ∕(Nd − Na), we have

At 300 K, σ = e(Nd − Na)μe ≈ (1.6 × 10−19 C)(1016 cm−3)(600 cm2 V−1 s−1)

 = 0.96 Ω−1 cm−1

At 400 K, σ = e(Nd − Na)μe ≈ (1.6 × 10−19 C)(1016 cm−3)(400 cm2 V−1 s−1)

 = 0.64 Ω−1 cm−1

 EXAMPLE 5.10
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COMPENSATION DOPING IN Si Consider a p-type Si crystal that has been doped uniformly 
with B with a concentration of 1015 cm−3. We wish to convert this to an n-Si with a conduc-
tivity 20 Ω−1 cm−1 within 10 percent. What is the donor concentration we need?

SOLUTION

The starting p-Si has Na = 1015 cm−3 which means that, Figure 5.19, μe ≈ 1350 cm2 V−1 s−1. 
Upon compensation doping, we would have n-Si in which the electron concentration n = Nd − Na 
and the conductivity is

 σ = enμe = e(Nd − Na)μe = 20 Ω−1 cm−1

We know Na, and if μe was independent of doping, we could readily solve this for Nd. How-
ever, as shown in Figure 5.19, μe depends on the ionized dopant concentration, Nd + Na. We 
start by first using μe = 1350 cm2 V−1 s−1 in the starting crystal so that

 σ = (1.60 × 10−19)(Nd − 1015 cm−3)(1350 cm2 V−1 s−1) = 20 Ω−1 cm−1

which we can solve and find Nd = 9.36 × 1016 cm−3. This is almost two order of magnitude 
larger than Na so we may as well neglect Na in the conductivity equation. The ionized 
dopant concentration, Nd + Na is also approximately Nd and at this Nd, from Figure 5.19, 
μe′ ≈ 750 cm2 V−1 s−1. Therefore, the actual conductivity σ′ is (750∕1350)σ or 11.1 Ω−1 cm−1, 
roughly half of what we need. We can improve our calculation by using the new mobility μe′. 
So we can now write σ with this new mobility μ′e as

 σ = eNdμ′e = 1.60 × 10−19 × Nd × 750 cm2 V−1 s−1 = 20 Ω−1 cm−1

and solving this we find Nd = 1.7 × 1017 cm−3. From Figure 5.19, at Nd = 1.7 × 1017 cm−3, 
μe″ ≈ 600 cm2 V−1 s−1. The actual conductivity σ″ is (600∕750)σ or 16 Ω−1 cm−1. Obviously, 
we are getting closer to 20 Ω−1 cm−1. The next iteration will have

 σ = eNdμ″e = 1.60 × 10−19 × Nd × 600 cm2 V−1 s−1 = 20 Ω−1 cm−1

which upon solving gives Nd = 2.1 × 1017 cm−3. At this donor concentration the mobility 
μe″′ ≈ 550 cm2 which yields a conductivity of 18.5 Ω−1 cm−1, within 10 percent of our tar-
get 20 Ω−1 cm−1.
 Clearly in σ = eNdμe, the drift mobility μe depends on Nd as in Figure 5.19, so the solu-
tion for Nd above took a tedious number of iterative calculations and look-ups in Figure 5.19. 
We can always represent the μe versus Nd curve with an empirical equation μe(Nd) and then 
solve σ = eNdμe(Nd) numerically; an approach taken in Question 5.7.

5.3.4 DEGENERATE AND NONDEGENERATE SEMICONDUCTORS

The general exponential expression for the concentration of electron in the CB,

 n ≈ Nc exp[−
(Ec − EF)

kT ] [5.26]

is based on replacing Fermi–Dirac statistics with Boltzmann statistics, which is only 
valid when Ec is several kT above EF. In other words, we assumed that the number 
of states in the CB far exceeds the number of electrons there, so the likelihood of 
two electrons trying to occupy the same state is almost nil. This means that the Pauli 
exclusion principle can be neglected and the electron statistics can be described by 
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the Boltzmann statistics. Nc is a measure of the density of states in the CB. The 
Boltzmann expression for n is valid only when n ≪ Nc. Those semiconductors for 
which n ≪ Nc and p ≪ Nv are termed nondegenerate semiconductors. They essen-
tially follow all the discussions above and exhibit all the normal semiconductor 
properties outlined above.
 When the semiconductor has been excessively doped with donors, then n may 
be so large, typically 1019–1020 cm−3, that it may be comparable to or greater than 
Nc. In that case the Pauli exclusion principle becomes important in the electron 
statistics and we have to use the Fermi–Dirac statistics. Equation 5.26 for n is then 
no longer valid. Such a semiconductor exhibits properties that are more metal-like 
than semiconductor-like; for example, the resistivity follows ρ ∝ Τ. Semiconductors 
that have n > Nc or p > Nv are called degenerate semiconductors.

 The large carrier concentration in a degenerate semiconductor is due to its heavy 
doping. For example, as the donor concentration in an n-type semiconductor is 
increased, at sufficiently high doping levels, the donor atoms become so close to 
each other that their orbitals overlap to form a narrow energy band that overlaps and 
becomes part of the conduction band. Ec is therefore slightly shifted down and Eg 
becomes slightly narrower. The valence electrons from the donors fill the band from 
Ec. This situation is reminiscent of the valence electrons filling overlapping energy 
bands in a metal. In a degenerate n-type semiconductor, the Fermi level is therefore 
within the CB, or above Ec just like EF is within the band in a metal. The majority 
of the states between Ec and EF are full of electrons as indicated in Figure 5.21. In 
the case of a p-type degenerate semiconductor, the Fermi level lies in the VB below 
Ev. It should be emphasized that one cannot simply assume that n = Nd or p = Na 
in a degenerate semiconductor because the dopant concentration is so large that they 
interact with each other. Not all dopants are able to become ionized, and the carrier 
concentration eventually reaches a saturation typically around ∼1020 cm−3. Further-
more, the mass action law np = n2

i is not valid for degenerate semiconductors.
 Degenerate semiconductors have many important uses. For example, they are 
used in laser diodes, zener diodes, and ohmic contacts in ICs, and as metal gates in 
many microelectronic MOS devices.

CB

VB

(b)(a)

CB
E

g(E)

Impurities
forming a band EFn

Ec Ec

EFp

Ev
Ev

Figure 5.21 (a) Degenerate n-type semiconductor. Large number of donors form a 

band that overlaps the CB. (b) Degenerate p-type semiconductor.
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DEGENERATE n-TYPE Si Consider a degenerate n-type Si crystal in which the donor con-
centration (e.g., P) is 1020 cm−3 (or 1026 m−3). Where is the Fermi level with respect to the 
bottom (Ec) of the CB, that is EFn − Ec? What is your conclusion?

SOLUTION

Clearly, Nd > Nc, and if we attempt to use Equation 5.6, that is we assume Boltzman statistics, 
then

 ΔEFn = EFn − Ec = kT ln(Nd∕Nc) = (0.02585 eV)ln[(1020)∕(2.8 × 1019)] = 0.033 eV

Remember that Boltzman statistics inherent in Equation 5.6 does not obey the Pauli exclusion 
principle; no two electrons can be in the same state (same wavefunction, including spin). 
When EFn is within the CB, electrons need follow the Pauli exclusion principle and look for 
higher energy states to avoid sharing the same state. So, we expect EFn to be greater than 
0.033 eV. The electron concentration in the CB is given by the integration of the product of 
density of states gcb(E ) and the Fermi–Dirac function f (E ),

 n = Nd = ∫
∞

0

gcb(E)dE

1 + exp[(E − EFn)∕kT ]

This is the same procedure we used in the case of metals in Chapter 4 to relate the Fermi 
energy to the electron concentration. Recall that the Fermi energy ΔEFn(0) at absolute zero 
with respect to the bottom of the band is given by Equation 4.22

 ΔEFn(0) =
h2

8m*e (3n

π )
2∕3

=
(6.626 × 10−34)2

8(1.08 × 9.11 × 10−31)[3(1 × 1026)
π ]

2∕3

= 0.0727 eV

Notice that we used the effective mass me* related to the density of states. While, as expected, 
this is larger than that from Boltzman statistics, it is still not correct because it is at 0 K. At 
a finite temperature T, we argued that for metals EFm(0) ≫ kT and the Fermi energy from 
the above integration approximates to Equation 4.23

 ΔEFn = ΔEFn(0)(1 −
π2

12[ kT

ΔEFn(0) ]
2

) = (0.0727)(1 −
π2

12[0.02585
0.0727 ]

2

) = 0.0652 eV

or 65 meV above Ec. We can, of course, find EFn by trial and error until the above integration 
generates n = Nd. The final result is very close to 65 meV.6 It is clear that the description of 
degenerate semiconductors follows the same concepts we used in the case of metals.

5.4  DIRECT AND INDIRECT RECOMBINATION

Above absolute zero of temperature, the thermal excitation of electrons from the VB 
to the CB continuously generates free electron–hole pairs. It should be apparent that 
in equilibrium there should be some annihilation mechanism that returns the electron 
from the CB down to an empty state (a hole) in the VB. When a free electron, 
wandering around in the CB of a crystal, “meets” a hole, it falls into this low-energy 
empty electronic state and fills it. This process is called recombination. Intuitively, 
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conductor

 6 The Joyce–Dixon equation that is used in advanced semiconductor textbooks allows a good approximation to 
ΔEFn and gives 66 meV.
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recombination corresponds to the free electron finding an incomplete bond with a 
missing electron. The electron then enters and completes this bond. The free electron 
in the CB and the free hole in the VB are consequently annihilated. On the energy 
band diagram, the recombination process is represented by returning the electron 
from the CB (where it is free) into a hole in the VB (where it is in a bond). Fig-
ure 5.22 shows a direct recombination mechanism, for example, as it occurs in GaAs, 
in which a free electron recombines with a free hole when they meet at one location 
in the crystal. The excess energy of the electron is lost as a photon of energy  
hf  = Eg. In fact, it is this type of recombination that results in the emitted light from 
light emitting diodes (LEDs).
 The recombination process between an electron and a hole, like every other 
process in nature, must obey the momentum conservation law. The wavefunction of 
an electron in the CB, ψcb, is a traveling wave with a certain wavevector kcb. The 
actual electron wavefunctions are discussed later in this chapter, but for now we 
simply accept the fact if we were to solve the Schrodinger equation for an electron 
in a crystal in which the electron potential energy V(x) is periodic (due to a periodic 
arrangement of atoms), we would find traveling wave solutions. For example, the 
electron wavefunctions ψcb in the CB will be traveling waves each with an energy E 
and a wavevector kcb. The quantity, ħkcb, just as in the case of a photon, can be used to 
represent the momentum of the electron in the CB. In fact, in response to an exter-
nal force Fext, the electron’s momentum ħkcb will change according to Fext = d(ħkcb)∕dt, 
exactly as we expect a momentum to change in mechanics. The quantity ħkcb is called 
the electron’s crystal momentum because it represents the momentum that we need 
in describing the behavior of the electron inside the crystal in response to an exter-
nal force.7 Similarly, the electron wavefunction, ψvb in the VB will have a momentum 
ħkcb associated with it.

 7 The rate of change of electron’s true momentum would be due to external and internal forces summed 
together. However, this is not a useful approach inasmuch we would like to know the effect of external forces 
on the behavior of the electron. We can account for the internal forces by using a periodic potential energy in 
the Schrodinger equation, and once we have done this, ħk turns out to be a useful momentum quantity that 
follows our usual experience that external force (Fext) is d(ħk)∕dt.

Figure 5.22 Direct recombination in GaAs.
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 If we were to plot the energy E of each ψcb against ħkcb for the CB wavefunc-
tions, we would find the E versus ħk behavior shown in Figure 5.23a. Each circle is 
a wavefuncion ψcb with an energy E and wavevector kcb. The circles represent electron 
states. These are normally so close to each other that they form a continuum; Figure 
5.23a is highly exaggerated. Notice that E increases parabolically with ħkcb near the 
bottom of the CB, as we would expect classically from E = p2∕(2m*e ), where p is 
electron’s momentum. Similar arguments, of course, apply to the VB, and we can 
plot E versus ħkvb as well in this case as shown in Figure 5.23a. The hole energy 
increases downwards (in the opposite direction to the electron energy), so that the 
hole energy near the top of the VB also shows a parabolic behavior with momen-
tum, that is, Ehole = p2∕(2m*h ), where p the hole momentum and m*h  is the hole 
effective mass.
 Conservation of linear momentum during recombination requires that when 
the electron drops from the CB to the VB, its wavevector should remain the same, 
kvb = kcb, because the momentum carried away by the photon is negligibly small. 
This is indeed the case for GaAs whose E versus ħk behavior follows that shown in 
Figure 5.23a. Such semiconductors are called direct bandgap semiconductors. The 
top of the valence band is immediately below the bottom of the CB on the E versus 
ħk diagram as in Figure 5.23a. Thus, for direct bandgap semiconductors, such as 
GaAs, the states with kvb = kcb are right at the top of the valence band where there are 
many empty states (i.e., holes). Consequently, an electron in the CB of GaAs can 
drop down to an empty electronic state at the top of the VB and maintain kvb = kcb. 
Thus, direct recombination is highly probable in GaAs and it is this very reason 
that makes GaAs an LED material.
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Figure 5.23 (a) The electron energy (E ) versus electron’s crystal momentum (ħk) in a direct bandgap 

semiconductor. Each circle represents a possible state, an electron wavefunction (ψ ), a solution of 

Schrödinger’s equation in a crystal, with a wavevector k. These solutions fall either into the CB or the VB; 

there are no solutions within the bandgap. The sketches are highly exaggerated because the circles  

are so close that they form a continuous energy versus momentum behavior. (b) Energy versus crystal 

momentum for an indirect bandgap semiconductor such as Si.
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 For the elemental semiconductors, Si and Ge, the electron energy versus crystal 
momentum (E vs. ħk) behavior is such that the bottom of the CB is displaced with 
respect to the top of the VB in terms of ħk as shown in Figure 5.23b. Such semi-
conductors are called indirect bandgap semiconductors. Those states (ψvb) with 
kvb = kcb are now somewhere in the middle of the VB and they are therefore fully 
occupied as shown in Figure 5.23b. Consequently, there are no empty states in the 
VB which can satisfy kvb = kcb and so direct recombination in Si and Ge is next 
to impossible.
 In elemental indirect bandgap semiconductors such as Si and Ge, electrons and 
holes usually recombine through recombination centers. A recombination center 
increases the probability of recombination because it can “take up” any momentum 
difference between a hole and electron. The process essentially involves a third body, 
which may be an impurity atom or a crystal defect. The electron is captured by the 
recombination center and thus becomes localized at this site. It is “held” at the 
center until some hole arrives and recombines with it. In the energy band diagram 
picture shown in Figure 5.24a, the recombination center provides a localized elec-
tronic state below Ec in the bandgap, which is at a certain location in the crystal. 
When an electron approaches the center, it is captured. The electron is then localized 
and bound to this center and “waits” there for a hole with which it can recombine. 
In this recombination process, the energy of the electron is usually lost to lattice 
vibrations (as “sound”) via the “recoiling” of the third body. Emitted lattice vibra-
tions are called phonons. A phonon is a quantum of energy associated with atomic 
vibrations in the crystal analogous to the photon.
 Typical recombination centers, besides the donor and acceptor impurities, might 
be metallic impurities and crystal defects such as dislocations, vacancies, or intersti-
tials. Each has its own peculiar behavior in aiding recombination, which will not be 
described here.
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Figure 5.24 Recombination and trapping.  

(a) Recombination in Si via a recombination center 

that has a localized energy level at Er in the bandgap, 

usually near the middle. (b) Trapping and detrapping 

of electrons by trapping centers. A trapping center 

has a localized energy level in the bandgap.
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 It is instructive to mention briefly the phenomenon of charge carrier trapping since 
in many devices this can be the main limiting factor on the performance. An electron 
in the conduction band can be captured by a localized state, just like a recombination 
center, located in the bandgap, as shown in Figure 5.24b. The electron falls into the 
trapping center at Et and becomes temporarily removed from the CB. At a later time, 
due to an incident energetic lattice vibration, it becomes excited back into the CB and 
is available for conduction again. Thus trapping involves the temporary removal of the 
electron from the CB, whereas in the case of recombination, the electron is permanently 
removed from the CB since the capture is followed by recombination with a hole. We 
can view a trap as essentially being a flaw in the crystal that results in the creation 
of a localized electronic state, around the flaw site, with an energy in the bandgap. 
A charge carrier passing by the flaw can be captured and lose its freedom. The flaw 
can be an impurity or a crystal imperfection in the same way as a recombination 
center. The only difference is that when a charge carrier is captured at a recombina-
tion site, it has no possibility of escaping again because the center aids recombination. 
Although Figure 5.24b illustrates an electron trap, similar arguments also apply to 
hole traps, which are normally closer to Ev. In general, flaws and defects that give 
localized states near the middle of the bandgap tend to act as recombination centers.

5.5  MINORITY CARRIER LIFETIME

Consider what happens when an n-type semiconductor, doped with 5 × 1016 cm−3 
donors, is uniformly illuminated with appropriate wavelength light to photogenerate 
electron–hole pairs (EHPs), as shown in Figure 5.25. We will now define thermal 
equilibrium majority and minority carrier concentrations in an extrinsic semiconduc-
tor. In general, the subscript n or p is used to denote the type of semiconductor, and 
o to refer to thermal equilibrium in the dark.
 In an n-type semiconductor, electrons are the majority carriers and holes are the 
minority carriers.

  nno is defined as the majority carrier concentration (electron concentration 
in an n-type semiconductor) in thermal equilibrium in the dark. These electrons, 
constituting the majority carriers, are thermally ionized from the donors.

Ed

CB

VB

Ec

Ev

Figure 5.25 Low-level photoinjection into an n-type 

semiconductor in which Δnn < nno.
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  pno is termed the minority carrier concentration (hole concentration in an 
n-type semiconductor) in thermal equilibrium in the dark. These holes that con-
stitute the minority carriers are thermally generated across the bandgap.

 In both cases the subscript no refers to an n-type semiconductor and thermal 
equilibrium conditions, respectively. Thermal equilibrium means that the mass action 
law is obeyed and nnopno = n2

i.
 When we illuminate the semiconductor, we create excess EHPs by photogenera-
tion. Suppose that the electron and hole concentrations at any instant are denoted by 
nn and pn, which are defined as the instantaneous majority (electron) and minority 
(hole) concentrations, respectively. At any instant and at any location in the semi-
conductor, we define the departure from the equilibrium by excess concentrations 
as follows:

Δnn is the excess electron (majority carrier) concentration: Δnn = nn − nno

Δpn is the excess hole (minority carrier) concentration: Δpn = pn − pno

 Under illumination, at any instant, therefore

 nn = nno + Δnn  and  pn = pno + Δpn

 Photoexcitation creates EHPs or an equal number of electrons and holes, as 
shown in Figure 5.25, which means that

 Δpn = Δnn

and obviously the mass action law is not obeyed: nnpn ≠ n2
i. It is worth remembering 

that

 
dnn

dt
=

dΔnn

dt
  and  

dpn

dt
=

dΔpn

dt

since nno and pno depend only on temperature.
 Let us assume that we have “weak” illumination, which causes, say, only a 
10 percent change in nno, that is,

 Δnn = 0.1nno = 0.5 × 1016 cm−3

Then

 Δpn = Δnn = 0.5 × 1016 cm−3

Figure 5.26 shows a single-axis plot of the majority (nn) and minority (pn) concen-
trations in the dark and in light. The scale is logarithmic to allow large orders of 
magnitude changes to be recorded. Under illumination, the minority carrier concen-
tration is

 pn = pno + Δpn = 2.0 × 103 + 0.5 × 1016 ≈ 0.5 × 1016 = Δpn

That is, pn ≈ Δpn, which shows that although nn changes by only 10 percent, pn 
changes drastically, that is, by a factor of ∼1012.
 Figure 5.27 shows a pictorial view of what is happening inside an n-type semi-
conductor when light is switched on at a certain time and then later switched off 
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again. Obviously when the light is switched off, the condition pn = Δpn (state B in 
Figure 5.27) must eventually revert back to the dark case (state A) where pn = pno. 
In other words, the excess minority carriers Δpn and excess majority carriers Δnn 
must be removed. This removal occurs by recombination. Excess holes recombine 
with the electrons available and disappear. This, however, takes time because the 
electrons and holes have to find each other. In order to describe the rate of recom-
bination, we introduce a temporal quantity, denoted by τh and called the minority 

carrier lifetime (mean recombination time), which is defined as follows: τh is the 
average time a hole exists in the VB from its generation to its recombination, that 
is, the mean time the hole is free before recombining with an electron. An alternative 
and equivalent definition is that 1∕τh is the average probability per unit time that a 
hole will recombine with an electron. We must remember that the recombination 
process occurs through recombination centers, so the recombination time τh will 
depend on the concentration of these centers and their effectiveness in capturing the 
minority carriers. Once a minority carrier has been captured by a recombination 
center, there are many majority carriers available to recombine with it, so τh in an 
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indirect process is independent of the majority carrier concentration. This is the 
reason for defining the recombination time as a minority carrier lifetime.
 If the minority carrier recombination time is, say, 10 s, and if there are some 
1000 excess holes, then it is clear that these excess holes will be disappearing at a 
rate of 1000∕10 s = 100 per second. The rate of recombination of excess minority 
carriers is simply Δpn∕τh. At any instant, therefore,

 Rate of increase in excess =  Rate of − Rate of recombination
 hole concentration photogeneration of excess holes

 If Gph is the rate of photogeneration, then clearly the net rate of change of Δpn is

 
dΔpn

dt
= Gph −

Δpn

τh
 [5.27]

 This is a general expression that describes the time evolution of the excess 
minority carrier concentration given the photogeneration rate Gph, the minority car-
rier lifetime τh, and the initial condition at t = 0. The only assumption is weak 
injection (Δpn < nno).
 We should note that the recombination time τh depends on the semiconductor 
material, impurities, crystal defects, temperature, and so forth, and there is no typical 
value to quote. It can be anywhere from nanoseconds to seconds. Later it will be 
shown that certain applications require a short τh, as in fast switching of pn junctions, 
whereas others require a long τh, for example, persistent luminescence.

Excess 

minority 

carrier 

concentration

PHOTORESPONSE TIME Sketch the hole concentration when a step illumination is applied 
to an n-type semiconductor at time t = 0 and switched off at time t = toff(≫ τh).

SOLUTION

We use Equation 5.27 with Gph = constant in 0 ≤ t ≤ toff. Since Equation 5.27 is a first-order 
differential equation, integrating it we simply find

 ln[Gph − (Δpn

τh
)] = −

t

τh

+ C1

where C1 is the integration constant. At t = 0, Δpn = 0, so C1 = ln Gph. Therefore, the 
solution is

 Δpn(t) = τhGph[1 − exp(−
t

τh
)]  0 ≤ t < toff  [5.28]

 We see that as soon as the illumination is turned on, the minority carrier concentration 
rises exponentially toward its steady-state value Δpn(∞) = τhGph. This is reached after a time 
t > τh.
 At the instant the illumination is switched off, we assume that toff ≫ τh so that from 
Equation 5.28,

 Δpn(toff) = τhGph

We can define t′ to be the time measured from t = toff, that is, t′ = t − toff. Then

 Δpn(t′ = 0) = τhGph

 EXAMPLE 5.13
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Solving Equation 5.27 with Gph = 0 in t > toff or t′ > 0, we get

 Δpn(t′ ) = Δpn(0) exp(−
t′

τh
)

where Δpn(0) is actually an integration constant that is equivalent to the boundary condition 
on Δpn at t′ = 0. Putting t′ = 0 and Δpn = τhGph gives

 Δpn(t′ ) = τhGph exp(−
t′

τh
) [5.29]

 We see that the excess minority carrier concentration decays exponentially from the 
instant the light is switched off with a time constant equal to the minority carrier recom-
bination time. The time evolution of the minority carrier concentration is sketched in 
Figure 5.28.
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pno + Δpn(∞)

t′

0

G and pn(t)

Gph

Time, t

τhGph

Δpn(t′) = Δpn(0) exp(–t′/τh)

Figure 5.28 Illumination is switched on at time t = 0 and then off at t = toff.

The excess minority carrier concentration Δpn(t) rises exponentially to its 

steady-state value with a time constant τh. From toff, the excess minority  

carrier concentration decays exponentially to its equilibrium value.
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Figure 5.29 A semiconductor 

slab of length L, width W, and 

depth D is illuminated with light 

of wavelength λ. Iph is the 

steady-state photocurrent.

PHOTOCONDUCTIVITY Suppose that a direct bandgap semiconductor with no traps is 
illuminated with light of intensity I(λ) and wavelength λ that will cause photogeneration as 
shown in Figure 5.29. The area of illumination is A = (L × W), and the thickness (depth) 
of the semiconductor is D. Assume that all incident photons are absorbed. If η is the quan-
tum efficiency (number of free EHPs generated per absorbed photon) and τ is the recombi-
nation lifetime of the photogenerated carriers, show that the steady-state photoconductivity, 
defined as

 Δσ = σ(in light) − σ (in dark)

is given by

 Δσ =
eηI λτ(μe + μh)

hcD
 [5.30]

 A photoconductive cell has a CdS crystal 1 mm long, 1 mm wide, and 0.1 mm thick 
with electrical contacts at the end, so the receiving area of radiation is 1 mm2, whereas the 

 EXAMPLE 5.14
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area of each contact is 0.1 mm2. The cell is illuminated with a blue radiation of wavelength 
450 nm and intensity 1 mW/cm2. For unity quantum efficiency and an electron recombination 
time of 1 ms, calculate

a. The number of EHPs generated per second, assuming that all the incident light is absorbed
b. The photoconductivity of the sample
c. The photocurrent produced if 50 V is applied to the sample

 Note that a CdS photoconductor is a direct bandgap semiconductor with an energy gap 
Eg = 2.6 eV, electron mobility μe = 0.034 m2 V−1 s−1, and hole mobility μh = 0.0018 m2 V−1 s−1.

SOLUTION

If Γph is the number of photons arriving per unit area per unit second (the photon flux density), 
then Γph = I∕hf  where I is the light intensity (energy flowing per unit area per second) and 
hf  is the photon energy. The quantum efficiency η is defined as the number of free EHPs 
generated per absorbed photon. Thus, the number of EHPs generated per unit volume per 

second, the photogeneration rate per unit volume Gph is given by

 Gph =
ηAΓph

AD
=

η( I

hf)
D

=
ηIλ
hcD

 In the steady state,

 
dΔn

dt
= Gph −

Δn

τ
= 0

so

 Δn = τGph =
τηI λ
hcD

But, by definition, the steady-state photoconductivity,

 Δσ = eμeΔn + eμhΔp = eΔn(μe + μh)

since electrons and holes are generated in pairs, Δn = Δp. Thus, substituting for Δn in the 
Δσ expression, we get Equation 5.30:

 Δσ =
eηI λτ(μe + μh)

hcD

a. The photogeneration rate per unit time is not Gph, which is per unit time per unit volume. 
We define EHPph as the total number of EHPs photogenerated per unit time in the whole 
volume (AD). Thus

 EHPph = Total photogeneration rate

 = (AD)Gph = (AD)
ηI λ
hcD

=
AηI λ

hc

 = [(10−3 × 10−3 m2)(1)(10−3 × 104 J s−1 m−2)(450 × 10−9 m)]

 ÷ [(6.63 × 10−34 J s)(3 × 108 m s−1)]

 = 2.26 × 1013 EHP s−1
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b. From Equation 5.30,

 Δσ =
eηI λτ(μe + μh)

hcD

 That is

Δσ =
(1.6 × 10−19 C)(1)(10−3 × 104 J s−1 m−2) (450 × 10−9 m)(1 × 10−3 s) (0.0358 m2 V−1 s−1)

(6.63 × 10−34 J s) (3 × 108 m s−1) (0.1 × 10−3 m)
 = 1.30 Ω−1 m−1

c. Photocurrent density will be

 ΔJ = ΕΔσ = (1.30 Ω−1 m−1)(50 V∕10−3 m) = 6.50 × 104 A m−2

 Thus the photocurrent

 ΔI = ΑΔJ = (10−3 × 0.1 × 10−3 m2)(6.50 × 104 A m−2)

 = 6.5 × 10−3 A or 6.5 mA

 We assumed that all the incident radiation is absorbed. If this is not the case, the pho-
toconductivity and hence the photocurrent will be smaller. Further we assumed that the pho-
togeneration of carriers is uniform over the area LW and along the thickness D. Usually 
photogeneration along D is not uniform.

5.6   DIFFUSION AND CONDUCTION EQUATIONS,  

AND RANDOM MOTION

It is well known that, by virtue of their random motion, gas particles diffuse from 
high-concentration regions to low-concentration regions. When a perfume bottle is 
opened at one end of a room, the molecules diffuse out from the bottle and, after a 
while, can be smelled at the other end of the room. Whenever there is a concentra-
tion gradient of particles, there is a net diffusional motion of particles in the direc-
tion of decreasing concentration. The origin of diffusion lies in the random motion 
of particles. To quantify particle flow, we define the particle flux density Γ just 
like current density, as the number of particles (not charges) crossing unit area per 
unit time. Thus if ΔN particles cross an area A in time Δt, then, by definition,

 Γ =
ΔN

A Δt
 [5.31]

 Clearly if the particles are charged with a charge Q (−e for electrons and +e for 
holes), then the electric current density J, which is basically a charge flux density, 
is related to the particle flux density Γ by

 J = QΓ [5.32]

 Suppose that the electron concentration at some time t in a semiconductor 
decreases in the x direction and has the profile n(x, t) shown in Figure 5.30a. This 
may have been achieved, for example, by photogeneration at one end of a semicon-
ductor. We will assume that the electron concentration changes only in the x direction 

Definition of 

particle flux 

density

Definition  

of current 

density



458 C H A P T E R  5  ∙ SEMICONDUCTORS

so that the diffusion of electrons can be simplified to a one-dimensional problem as 
depicted in Figure 5.30a. We know that in the absence of an electric field, the elec-
tron motion is random and involves scattering from lattice vibrations and impurities. 
Suppose that ℓ is the mean free path in the x direction and τ is the mean free time 
between the scattering events. The electron moves a mean distance ℓ in the +x or 
−x direction and then it is scattered and changes direction. Its mean speed along x 
is vx = ℓ∕τ. Let us evaluate the flow of electrons in the +x and −x directions through 
the plane at xo and hence find the net flow in the +x direction.
 We can divide the x axis into hypothetical segments of length ℓ so that each 
segment corresponds to a mean free path. Going across a segment, the electron 
experiences one scattering process. Consider what happens during one mean free 
time, the time it takes for the electrons to move across a segment toward the left or 
right. Half of the electrons in (xo − ℓ) would be moving toward xo and the other half 
away from xo, and in time τ half of them will reach xo and cross as shown in 
Figure 5.30b. If n1 is the concentration of electrons at xo − 1

2ℓ, then the number of 
electrons moving toward the right to cross xo is 1

2 n1Aℓ where A is the cross-sectional 
area and hence Aℓ is the volume of the segment. Similarly half of the electrons in 
(xo + ℓ) would be moving toward the left and in time τ would reach xo. Their number 
is 1

2 n2 Aℓ where n2 is the concentration at xo + 1
2ℓ. The net number of electrons cross-

ing xo per unit time per unit area in the +x direction is the electron flux density Γe,

 Γe =
1
2 n1Aℓ − 1

2 n2 Aℓ

Aτ

that is,

 Γe = −
ℓ

2τ
(n2 − n1)  [5.33]

x x

(a) (b)

xo – ℓ
xo – ℓ

xo + ℓ
xo + ℓxo xo

Net electron diffusion flux

Electric current

n(x,t)

n(x,t) n1

n2

Figure 5.30 (a) Arbitrary electron concentration n(x, t) profile in a semiconductor. There 

is a net diffusion (flux) of electrons from higher to lower concentrations. (b) Expanded view 

of two adjacent sections at xo. There are more electrons crossing xo coming from the left 

(xo − ℓ) than coming from the right (xo + ℓ).
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 As far as calculus of variations is concerned, the mean free path ℓ is small, so 
we can calculate n2 − n1 from the concentration gradient using

 n2 − n1 ≈ (dn

dx)Δx = (dn

dx)ℓ

 We can now write the flux density in Equation 5.33 in terms of the concentration 
gradient as

 Γe = −
ℓ

2

2τ(dn

dx)
or

 Γe = −De

dn

dx
 [5.34]

where the quantity (ℓ2∕2τ) has been defined as the diffusion coefficient of electrons 
and denoted by De. Thus, the net electron flux density Γe at a position x is propor-
tional to the concentration gradient and the diffusion coefficient. The steeper this 
gradient, the larger the flux density Γe. In fact, we can view the concentration gradient 
dn∕dx as the driving force for the diffusion flux, just like the electric field −(dV∕dx) 
is the driving force for the electric current: J = σE = −σ (dV∕dx).
 Equation 5.34 is called Fick’s first law and represents the relationship between 
the net particle flux and the driving force, which is the concentration gradient. It is 
the counterpart of Ohm’s law for diffusion. De has the dimensions of m2 s−1 and is 
a measure of how readily the particles (in this case, electrons) diffuse in the medium. 
Note that Equation 5.34 gives the electron flux density Γe at a position x where the 
electron concentration gradient is dn∕dx. Since from Figure 5.30, the slope dn∕dx is 
a negative number, Γe in Equation 5.34 comes out positive, which indicates that the 
flux is in the positive x direction. The electric current (conventional current) due to 
the diffusion of electrons to the right will be in the negative direction by virtue of 
Equation 5.32. Representing this electric current density due to diffusion as JD,e we 
can write

 JD,e = −eΓe = eDe 

dn

dx
 [5.35]

 In the case of a hole concentration gradient, as shown in Figure 5.31, the hole 
flux Γh(x) is given by

 Γh = −Dh 

dp

dx

where Dh is the hole diffusion coefficient. Putting in a negative number for the slope 
dp∕dx, as shown in Figure 5.31, results in a positive hole flux (in the positive x 
direction), which in turn implies a diffusion current density toward the right. The 
current density due to hole diffusion is given by

 JD,h = eΓh = −eDh 

dp

dx
 [5.36]
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 Suppose that there is also a positive electric field Ex acting along +x in 
Figures 5.30 and 5.31. A practical example is shown in Figure 5.32 in which a 
semiconductor is sandwiched between two electrodes, the left one semitransparent. 
By connecting a battery to the electrodes, an applied field of Ex is set up in the 
semiconductor along +x. The left electrode is continuously illuminated, so excess 
EHPs are generated at this surface that give rise to concentration gradients in n and p. 
The applied field imposes an electrical force on the charges, which then try to drift. 
Holes drift toward the right and electrons toward the left. Charge motion then 
involves both drift and diffusion. The total current density due to the electrons drift-
ing, driven by Ex, and also diffusing, driven by dn∕dx, is then given by adding 
Equation 5.35 to the usual electron drift current density,

 Je = enμeEx + eDe 

dn

dx
 [5.37]

 We note that as Ex is along x, so is the drift current (first term), but the diffusion 
current (second term) is actually in the opposite direction by virtue of a negative dn∕dx.
 Similarly, the hole current due to holes drifting and diffusing, Equation 5.36, is 
given by

 Jh = epμhEx − eDh 

dp

dx
 [5.38]

x

xo – ℓ xo + ℓ
xo

p(x,t)
Net hole diffusion flux
Electric current

Figure 5.31 Arbitrary hole concentration p(x, t) profile in a 

semiconductor.

There is a net diffusion (flux) of holes from higher to lower 

concentrations. There are more holes crossing xo coming 

from the left (xo − ℓ) than coming from the right (xo + ℓ).
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Figure 5.32 When there is an electric 

field and also a concentration gradient, 

charge carriers move both by diffusion  

and drift.
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In this case the drift and diffusion currents are in the same direction.
 We mentioned that the diffusion coefficient is a measure of the ease with which 
the diffusing charge carriers move in the medium. But drift mobility is also a mea-
sure of the ease with which the charge carriers move in the medium. The two quan-
tities are related through the Einstein relation,

 
De

μe

=
kT

e
  and  

Dh

μh

=
kT

e
 [5.39]

 In other words, the diffusion coefficient is proportional to the temperature and 
mobility. This is a reasonable expectation since increasing the temperature will 
increase the mean speed and thus accelerate diffusion. The randomizing effect 
against diffusion in one particular direction is the scattering of the carriers from 
lattice vibrations, impurities, and so forth, so that the longer the mean free path 
between scattering events, the larger the diffusion coefficient. This is examined in 
Example 5.15.
 We equated the diffusion coefficient D to ℓ2∕2τ in Equation 5.34. Our analysis, 
as represented in Figure 5.30, is oversimplified because we simply assumed that all 
electrons move a distance ℓ before scattering and all are free for a time τ. We essen-
tially assumed that all those at a distance ℓ from xo and moving toward xo cross the 
plane exactly in time τ. This assumption is not entirely true because scattering is a 
stochastic process and consequently not all electrons moving toward xo will cross it 
even in the segment of thickness ℓ. A rigorous statistical analysis shows that the 
diffusion coefficient is given by

 D =
ℓ

2

τ
 [5.40]

Einstein 

relation

Diffusion 

coefficient

THE EINSTEIN RELATION Using the relation between the drift mobility and the mean free 
time τ between scattering events and the expression for the diffusion coefficient D = ℓ

2∕τ, 
derive the Einstein relation for electrons.

SOLUTION

In one dimension, for example, along x, the diffusion coefficient for electrons is given by 
De = ℓ

2∕τ where ℓ is the mean free path along x and τ is the mean free time between scat-
tering events for electrons. The mean free path ℓ = vxτ, where vx is the mean (or effective) 
speed of the electrons along x. Thus,

 De = v 
2
xτ

 In the conduction band and in one dimension, the mean KE of electrons is 1
2 kT, so 

1
2 kT = 1

2 m*e v 
2
x  where m*e is the effective mass of the electron in the CB. This gives

 v 
2
x =

kT

m*e

Substituting for vx in the De equation, we get,

 De =
kTτ

m*e
=

kT

e ( eτ

m*e )

 EXAMPLE 5.15
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 Further, we know from Chapter 2 that the electron drift mobility μe is related to the mean 
free time τ via μe = eτ∕m*e , so we can substitute for τ to obtain

 De =
kT

e
 μe

which is the Einstein relation. We assumed that Boltzmann statistics, that is, v 2
x = kT∕m*e  is 

applicable, which, of course, is true for the conduction band electrons in a semiconductor but 
not for the conduction electrons in a metal. Thus, the Einstein relation is only valid for elec-
trons and holes in a nondegenerate semiconductor and certainly not valid for electrons in a 
metal. (A more rigorous derivation can be found in Question 5.24.)

DIFFUSION COEFFICIENT OF ELECTRONS IN Si Calculate the diffusion coefficient of 
electrons at 27 °C in n-type Si doped with 1016 As atoms cm−3.

SOLUTION

From the μe versus dopant concentration graph in Figure 5.19, the electron drift mobility μe 
at a donor concentration of 1016 cm−3 is about 1200 cm2 V−1 s−1, so

 De =
μe kT

e
= (1200 cm2 V−1 s−1) (0.0259 V) = 31.08 cm2 s−1

 EXAMPLE 5.16

BUILT-IN POTENTIAL DUE TO DOPING VARIATION Suppose that due to a variation in the 
amount of donor doping in a semiconductor, the electron concentration is nonuniform across 
the semiconductor, that is, n = n(x). What will be the potential difference between two points 
in the semiconductor where the electron concentrations are n1 and n2? If the donor profile in 
an n-type semiconductor is Nd(x) = Ndo exp(−x∕b), where b is a characteristic of the expo-
nential doping profile, evaluate the built-in field Ex. What is your conclusion?

SOLUTION

Consider a nonuniformly doped n-type semiconductor in which immediately after doping the 
donor concentration, and hence the electron concentration, decreases toward the right. Ini-
tially, the sample is neutral everywhere. The electrons will immediately diffuse from higher- 
to lower-concentration regions. But this diffusion accumulates excess electrons in the right 
region and exposes the positively charged donors in the left region, as depicted in Figure 5.33. 

 EXAMPLE 5.17

Vo

Ex

Exposed
As+ donor

Net current = 0

Diffusion flux
Drift

n2 n1Figure 5.33 Nonuniform doping profile results in 

electron diffusion toward the less concentrated  

regions.

This exposes positively charged donors and sets up 

a built-in field Ex. In the steady state, the diffusion of 

electrons toward the right is balanced by their drift 

toward the left.
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The electric field between the accumulated negative charges and the exposed donors prevents 
further accumulation. Equilibrium is reached when the diffusion toward the right is just bal-
anced by the drift of electrons toward the left. The total current in the sample must be zero 
(it is an open circuit),

 Je = enμeEx + eDe 

dn

dx
= 0

 But the field is related to the potential difference by Ex = −(dV∕dx), so

 −enμe 

dV

dx
+ eDe 

dn

dx
= 0

 We can now use the Einstein relation De∕μe = kT∕e to eliminate De and μe and then 
cancel dx and integrate the equation,

 ∫
V2

V1

dV =
kT

e
∫

n2

n1

 
dn

n

Integrating, we obtain the potential difference between points 1 and 2,

 V2 − V1 =
kT

e
 ln(n2

n1) [5.41]

 To find the built-in field, we will assume that (and this is a reasonable assumption) the 
diffusion of electrons toward the right has not drastically upset the original n(x) = Nd(x) 
variation because the field builds up quickly to establish equilibrium. Thus

 n(x) ≈ Nd(x) = No exp(−
x

b)
Substituting into the equation for Je = 0, and again using the Einstein relation, we obtain Ex as

 Ex =
kT

be
 [5.42]

 Note: As a result of the fabrication process, the base region of a bipolar transistor has 
nonuniform doping, which can be approximated by an exponential Nd(x). The resulting elec-
tric field Ex in Equation 5.42 acts to drift minority carriers faster and therefore speeds up the 
transistor operation as discussed in Chapter 6.

5.7  CONTINUITY EQUATION8

5.7.1 TIME-DEPENDENT CONTINUITY EQUATION

Many semiconductor devices operate on the principle that excess charge carriers are 
injected into a semiconductor by external means such as illumination or an applied 
voltage. The injection of carriers upsets the equilibrium concentration. To determine 
the carrier concentration at any point at any instant we need to solve the continuity 

equation, which is based on accounting for the total charge within a small volume 

Built-in 

potential and 

concentration

Built-in field

 8 This section may be skipped without loss of continuity. (No pun intended.)
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at that location in the semiconductor. Consider an n-type semiconductor slab as 
shown in Figure 5.34 in which the hole concentration has been upset along the x 
axis from its equilibrium value pno by some external means.
 Consider an infinitesimally thin elemental volume A δx as in Figure 5.34 in 
which the instantaneous hole concentration is pn(x, t). The current density at x due 
to holes flowing into the volume is Jh and that due to holes flowing out at x + δx 
is Jh + δJh. There is a change in the hole current density Jh; that is, Jh(x, t) is not 
uniform along x. (Recall that the total current will also have a component due to 
electrons.) We assume that Jh(x, t) and pn(x, t) do not change across the cross section 
along the y or z directions. If δJh is negative, then the current leaving the volume is 
less than that entering the volume, which leads to an increase in the hole concentration 
in A δx. Thus,

 
1

A δx(−A δJh

e ) =
Rate of increase in hole concentration

due to the change in Jh

 [5.43]

The negative sign ensures that negative δJh leads to an increase in pn. Recombination 
taking place in A δx removes holes from this volume. In addition, there may also be 
photogeneration at x at time t. Thus,

The net rate of increase in the hole concentration pn in A δx

=  Rate of increase due to decrease in Jh − Rate of recombination + Rate of 
photogeneration

 
∂pn

∂t
= −

1
e(∂Jh

∂x ) −
pn − pno

τh

+ Gph [5.44]

where τh is the hole recombination time (lifetime), Gph is the photogeneration rate 
at x at time t, and we used ∂Jh∕∂x for δJh∕δx since Jh depends on x and t.
 Equation 5.44 is called the continuity equation for holes. The current density 
Jh is given by diffusion and drift components in Equation 5.38. There is a similar 
expression for electrons as well, but the negative sign multiplying ∂Je∕∂x is changed 
to positive because the electron charge is negative. Put differently, the electron flow 
is in the opposite direction to the conventional current flow. (The decrease in the 
current density actually decreases the electron concentration in Aδx.)
 The solutions of the continuity equation depend on the initial and boundary 
conditions. Many device scientists and engineers have solved Equation 5.44 for var-
ious semiconductor problems to characterize the behavior of devices. In most cases 
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numerical solutions are necessary as analytical solutions are not mathematically trac-
table. As a simple example, consider uniform illumination of the surface of a semi-
conductor with suitable electrodes at its end as in Figure 5.29. Photogeneration and 
current density do not vary with distance along the sample length, so ∂Jh∕∂x = 0. 
If Δpn is the excess concentration, Δpn = pn − pno, then the time derivative of pn in 
Equation 5.44 is the same as Δpn. Thus, the continuity equation becomes

 
∂Δpn

∂t
= −

Δpn

τh

+ Gph [5.45]

which is identical to the semiquantitatively derived Equation 5.27 from which pho-
toconductivity was calculated in Example 5.14.

5.7.2 STEADY-STATE CONTINUITY EQUATION

For certain problems, the continuity equation can be further simplified. Consider, 
for example, the continuous illumination of one end of an n-type semiconductor slab 
by light that is absorbed in a very small thickness xo at the surface as depicted in 
Figure 5.35a.9 There is no bulk photogeneration, so Gph = 0. Suppose we are inter-
ested in the steady-state behavior; then the time derivative would be zero in Equa-
tion 5.44 to give,

 
1

e(∂Jh

∂x ) = −
pn − pno

τh

 [5.46]
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 9 One can take xo to be very roughly the absorption depth of the incident light in the semiconductor. For 
simplicity, we will assume uniform photogeneration within xo.
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Figure 5.35 (a) Steady-state excess carrier concentration profiles in an n-type semiconductor that is continuously 

illuminated at one end. (b) Majority and minority carrier current components in open circuit. Total current is zero.
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 The hole current density Jh would have diffusion and drift components. If we 
assume that the electric field is very small, we can use Equation 5.38 with E ≈ 0 in 
Equation 5.46. Further, since the excess concentration Δpn(x) = pn(x) − pno, we 
obtain,

 
d 

2Δpn

dx2
=

Δpn

L2
h

 [5.47]

where, by definition, Lh = √Dhτh and is called the diffusion length of holes. Equa-
tion 5.47 describes the steady-state behavior of minority carrier concentration in a 
semiconductor under time-invariant excitation. When the appropriate boundary con-
ditions are also included, its solution gives the spatial dependence of the excess 
minority carrier concentration Δpn(x).
 In Figure 5.35a, both excess electrons and holes are photogenerated at the sur-
face, but the percentage increase in the concentration of holes is much more dramatic 
since pno ≪ nno. We will assume weak injection, that is, Δpn ≪ nno. Suppose that 
illumination is such that it causes the excess hole concentration at x = 0 to be Δpn(0). 
As holes diffuse toward the right, they meet electrons and recombine as a result of 
which the hole concentration pn(x) decays with distance into the semiconductor. If 
the bar is very long, then far away from the injection end we would expect pn to be 
equal to the thermal equilibrium concentration pno. The solution of Equation 5.47 
with these boundary conditions shows that Δpn(x) decays exponentially as

 Δpn(x) = Δpn(0) exp(−
x

Lh
) [5.48]

 This decay in the hole concentration results in a hole diffusion current ID,h(x) 
that has the same spatial dependence. Thus, if A is the cross-sectional area, the hole 
current is

 Ih ≈ ID,h = −AeDh 

dpn(x)
dx

=
AeDh

Lh

Δpn(0) exp(−
x

Lh
) [5.49]

 We find Δpn(0) as follows. Under steady state, the holes generated per unit time 
in xo must be removed by the hole current (at x = 0) at the same rate. Thus,

 AxoGph =
1

e
 ID,h(0) =

ADh

Lh

Δpn(0)

or

 Δpn(0) = xoGph( τh

Dh
)

1∕2

 [5.50]

 Similarly, electrons photogenerated in xo diffuse toward the bulk, but their diffu-
sion coefficient De and length Le are larger than those for holes. The excess electron 
concentration Δnn decays as

 Δnn(x) = Δnn(0) exp(−
x

Le
) [5.51]
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where Le = √Deτh and Δnn(x) decays more slowly than Δpn(x) as Le > Lh. (Note 
that τe = τh.) The electron diffusion current ID,e is

 ID,e = AeDe

dnn(x)

dx
= −

AeDe

Le

Δnn(0) exp(−
x

Le
) [5.52]

 The field at the surface is zero. Under steady state, the electrons generated per 
unit time in xo must be removed by the electron current at the same rate. Thus, 
similarly to Equation 5.50,

 Δnn(0) = xoGph( τh

De
)

1∕2

 [5.53]

so that

 
Δpn(0)

Δnn(0)
= (De

Dh
)

1∕2

 [5.54]

which is greater than unity for Si.
 It is apparent that the hole and electron diffusion currents are in opposite direc-
tions. At the surface, the electron and hole diffusion currents are equal and opposite, 
so the total current is zero. As apparent from Equations 5.49 and 5.52, the hole 
diffusion current decays more rapidly than the electron diffusion current, so there 
must be some electron drift to keep the total current zero. The electrons are major-
ity carriers which means that even a small field can cause a marked majority carrier 
drift current. If Idrift,e is the electron drift current, then in an open circuit the total 
current I = ID,h + ID,e + Idrift,e = 0, so

 Idrift,e = −ID,h − ID,e [5.55]

 The electron drift current increases with distance, so the total current I at every 
location is zero. It must be emphasized that there must be some field E in the 
sample, however small, to provide the necessary drift to balance the currents to zero. 
The field can be found from Idrift,e ≈ AennoμeE, inasmuch as nno does not change 
significantly (weak injection),

 E =
Idrift,e

Aenno μe

 [5.56]

The hole drift current due to this field is

 Idrift,h = Aeμhpn(x)E [5.57]

and it will be negligibly small as pn ≪ nno.
 We can use actual values to gauge magnitudes. Suppose that A = 1 mm2 and 
Nd = 1016 cm−3 so that nno = Nd = 1016 cm−3 and pno = n2

i∕Nd = 1 × 104 cm−3. The 
light intensity is adjusted to yield Δpn(0) = 0.05nno = 5 × 1014 cm−3: weak injection. 
Typical values at 300 K for the material properties in this Nd-doped n-type Si 
would be τh = 480 ns, μe = 1350 cm2 V−1 s−1, De = 34.9 cm2 s−1, Le = 0.0041 cm = 
41 μm, μh = 450 cm2 V−1 s−1, Dh = 11.6 cm2 s−1, Lh = 0.0024 cm = 24 μm. We 
can now calculate each current term using the Equations 5.49, 5.52, 5.55, and 5.57 
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INFINITELY LONG SEMICONDUCTOR ILLUMINATED AT ONE END Find the minority car-
rier concentration profile pn(x) in an infinite n-type semiconductor that is illuminated con-
tinuously at one end as in Figure 5.35. Assume that photogeneration occurs near the surface. 
Show that the mean distance diffused by the minority carriers before recombination is Lh.

SOLUTION

Continuous illumination means that we have steady-state conditions and thus Equation 5.47 
can be used. The general solution of this second-order differential equation is

 Δpn(x) = A exp(−
x

Lh
) + B exp( x

Lh
) [5.58]

where A and B are constants that have to be found from the boundary conditions. For an 
infinite bar, at x = ∞, Δpn(∞) = 0 gives B = 0. At x = 0, Δpn = Δpn(0); so A = Δpn(0). 
Thus, the excess (photoinjected) hole concentration at position x is

 Δpn(x) = Δpn(0) exp(−
x

Lh
) [5.59]

which is shown in Figure 5.35a. To find the mean position of the photoinjected holes, we 
use the definition of the “mean,” that is,

 x =
∫ ∞
0 x Δpn(x) dx

∫ ∞
0

Δpn(x) dx

 Substituting for Δpn(x) from Equation 5.59 and carrying out the integration gives x = Lh. 
We conclude that the diffusion length Lh is the average distance diffused by the minority 
carriers before recombination. As a corollary, we should infer that 1∕Lh is the mean probability 
per unit distance that the hole recombines with an electron.

 EXAMPLE 5.18

 10 Remember that the analysis here is only approximate and, further, it was based on neglecting the hole drift 
current and taking the field as nearly zero to use Equation 5.47 in deriving the carrier concentration profiles. 
Note that hole drift current is much smaller than the other current components.

Table 5.3 Currents in an infinite slab illuminated at one end for weak injection near the surface

  Minority  Minority 

  Diffusion Minority Drift Diffusion Majority Drift Field E 

Currents at ID,h (mA) Idrift,h (mA) ID,e (mA) Idrift,e (mA) (V cm−1)

 x = 0 3.94 0 −3.94 0 0
 x = Le 0.70 0.0022 −1.45 0.75 0.035

above as shown in Figure 5.35b. The actual values at two locations, x = 0 and 
x  = Le = 41 μm, are shown in Table 5.3.10 The photoinduced charge separation 
and  hence the generation of a potential difference as in Figure 5.35 is called the 
photo-Dember effect.
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5.8  OPTICAL ABSORPTION

We have already seen that a photon of energy hf  greater than Eg can be absorbed in 
a semiconductor, resulting in the excitation of an electron from the valence band to 
the conduction band, as illustrated in Figure 5.36. The average energy of electrons 
in the conduction band is 3

2 kT  above Ec (average kinetic energy is 3
2 kT ), which means 

that the electrons are very close to Ec. If the photon energy is much larger than the 
bandgap energy Eg, then the excited electron is not near Ec and has to lose the extra 
energy hf  − Eg to reach thermal equilibrium. The excess energy hf  − Eg is lost to 
lattice vibrations as heat as the electron is scattered from one atomic vibration to 
another. This process is called thermalization. If, on the other hand, the photon 
energy hf  is less than the bandgap energy, the photon will not be absorbed and we 
can say that the semiconductor is transparent to wavelengths longer than hc∕Eg pro-
vided that there are no energy states in the bandgap. There, of course, will be reflec-
tions occurring at the air/semiconductor surface due to the change in the refractive 
index.
 The excitation of the electron in Figure 5.35 occurs from the top of the valence 
band to an energy hf  − Eg above Ec, that is, the photogenerated hole is almost at 
Ev. This is not generally true and the example shown assumes that the effective 
mass of the electron is much lighter than that of the hole so that all the excess energy 
(hf  − Eg) goes to the KE of the electron as in the case of Ge, Si, and GaAs. The 
electron receives much higher kinetic energy than the hole. (See Question 5.30.)
 Suppose that Io is the intensity of a beam of photons incident on a semiconductor 
material. Thus, Io is the energy incident per unit area per unit time. If Γph is the 
photon flux density, then

 Io = hf Γph

When the photon energy is greater than Eg, photons from the incident radiation will 
be absorbed by the semiconductor. The absorption of photons requires the excitation 
of valence band electrons, and there are only so many of them with the right energy 
per unit volume. Consequently, absorption depends on the thickness of the semicon-
ductor. Suppose that I(x) is the light intensity at x and δI is the change in the light 
intensity in the small elemental volume of thickness δx at x due to photon absorption, 
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as illustrated in Figure 5.37. Then δI will depend on the number of photons arriving 
at this volume I(x) and the thickness δx. Thus

 δI = −αI δx

where α is a proportionality constant that depends on the photon energy and hence 
wavelength, that is, α = α(λ). The negative sign ensures that δI is a reduction. The 
constant α as defined by this equation is called the absorption coefficient of the 
semiconductor. It is therefore defined by

 α = −
δI

I δx
 [5.60]

which has the dimensions of length−1 (m−1).
 When we integrate Equation 5.60 for illumination with a constant wavelength 
light, we get the Beer–Lambert law, the transmitted intensity decreases exponen-
tially with the thickness,

 I(x) = Io exp(− αx) [5.61]

 As apparent from Equation 5.61, over a distance x = 1∕α, the light intensity 
falls to a value 0.37Io; that is, it decreases by 63 percent. This distance over which 
67 percent of the photons are absorbed is called the penetration depth, denoted by 
δ = 1∕α.
 The absorption coefficient depends on the photon absorption processes occurring 
in the semiconductor. In the case of band-to-band (interband) absorption, α 
increases rapidly with the photon energy hf above Eg as shown for Si (Eg = 1.1 eV) 
and GaAs (Eg = 1.42 eV) in Figure 5.38. Notice that α is plotted on a logarithmic 
scale. The general trend of the α versus hf behavior can be intuitively understood 
from the density of states diagram also shown in the same figure.
 Density of states g(E)  represents the number of states per unit energy per unit 
volume. We assume that the VB states are filled and the CB states are empty since 
the number of electrons in the CB is much smaller than the number of states in this 
band (n ≪ Nc). The photon absorption process increases when there are more VB 
states available as more electrons can be excited. We also need available CB states 
into which the electrons can be excited, otherwise the electrons cannot find empty 
states to fill. The probability of photon absorption depends on both the density of 
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VB states and the density of CB states. For photons of energy hfA = Eg, the absorp-
tion can only occur from Ev to Ec where the VB and CB densities of states are low 
and thus the absorption coefficient is small, which is illustrated as A in Figure 5.38. 
For photon energies hfB, which can take electrons from very roughly the middle 
region of the VB to the middle of the CB, the densities of states are large and α is 
also large as indicated by B in Figure 5.38. Furthermore, there are more choices of 
excitation for the hfB photon as illustrated by the three arrows in the figure. At even 
higher photon energies, photon absorption can of course excite electrons from the 
VB into vacuum. In reality, the density of states g(E)  of a real crystalline semicon-
ductor is much more complicated with various sharp peaks and troughs on the den-
sity of states function, shown as dashed curves in g(E)  in Figure 5.38, particularly 
away from the band edges. In addition, the absorption process has to satisfy the 
conservation of momentum and quantum mechanical transition rules which means 
that certain transitions from the CB to the VB will be more favorable than others. 
For example, GaAs is a direct bandgap semiconductor, so photon absorption can 
lead directly to the excitation of an electron from the CB to the VB for photon ener-
gies just above Eg just as direct recombination of an electron and hole results in 
photon emission. Si is an indirect bandgap semiconductor. Just as direct electron 
and hole recombination is not possible in silicon, the electron excitation from states 
near Ev to states near Ec must be accompanied by the emission or absorption of lat-
tice vibrations, and hence the absorption is less efficient; α versus hf  for GaAs rises 
more sharply than that for Si above Eg as apparent in Figure 5.38. At sufficiently 
high photon energies, it is possible to excite electrons directly from the VB to the 
CB in Si and this gives the sharp rise in α versus hf  before B in Figure 5.38. (Band-
to-band absorption is further discussed in Chapter 9.)
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Figure 5.38 The absorption coefficient α depends on the photon energy hf and hence on the wavelength.
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photon energy greater than Eg because more energetic photons can excite electrons from populated regions of the VB 

to numerous available (empty) states deep in the CB.



472 C H A P T E R  5  ∙ SEMICONDUCTORS

PHOTOCONDUCTIVITY OF A THIN SLAB Modify the photoconductivity expression

 Δσ =
eηIoλτ(μe + μh)

hcD

derived for a semiconductor slab in Figure 5.29 to take into account that some of the light 
intensity is transmitted through the material.

SOLUTION

If we assume that all the photons are absorbed (there is no transmitted light intensity), then 
the photoconductivity expression in Example 5.14 is

 Δσ =
eηIoλτ(μe + μh)

hcD

But, in reality, Io exp(−αD) is the transmitted intensity through the specimen with thickness 
D, so absorption is determined by the intensity lost in the material Io[1 − exp(−αD)], which 
means that Δσ must be accordingly scaled down to

 Δσ =
eηIo[1 − exp(−αD) ]λτ(μe + μh)

hcD

 EXAMPLE 5.19

PHOTOGENERATION IN GaAs AND THERMALIZATION Suppose that a GaAs sample is 
illuminated with a 50mW HeNe laser beam (wavelength 632.8 nm) on its surface. Calculate 
how much power is dissipated as heat in the sample during thermalization. Give your answer 
as mW. The energy bandgap Eg of GaAs is 1.42 eV.

SOLUTION

Suppose PL is the power in the laser beam; then PL = IA, where I is the intensity of the beam 
and A is the area of incidence. The photon flux density, photons arriving per unit area per unit 
time, is

 Γph =
I

hf
=

PL

Ahf

so the number of EHPs generated per unit time is

 
dN

dt
= Γph A =

PL

hf

 These carriers thermalize—lose their excess energy as lattice vibrations (heat) via colli-

sions with the lattice—so eventually their average kinetic energy becomes 3
2 kT  above Eg as 

depicted in Figure 5.36. Remember that we assume that electrons in the CB are nearly free, 

so they must obey the kinetic theory and hence have an average kinetic energy of 3
2 kT . The 

average energy of the electron is then Eg + 3
2 kT ≈ 1.46 eV. The excess energy

 ΔE = hf − (Eg +
3

2
 kT)

is lost to the lattice as heat, that is, lattice vibrations. Since each electron loses an amount of 

energy ΔE as heat, the heat power generated is

 PH = (dN

dt )ΔE = (PL

hf )(ΔE)

 EXAMPLE 5.20
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 The incoming photon has an energy hf  = hc∕λ = 1.96 eV, so

 PH =
(50 mW)(1.96 eV − 1.46 eV)

1.96 eV
= 12.76 mW

 Notice that in this example, and also in Figure 5.36, we have assigned the excess energy 
ΔE = hf − Eg − 3

2kT  to the electron rather than share it between the electron and the hole 
that is photogenerated. This assumption depends on the ratio of the electron and hole effective 
masses, and hence depends on the semiconductor material. It is approximately true in GaAs 
because the electron is much lighter than the hole, almost 10 times, and consequently the 
absorbed photon is able to “impart” a much higher kinetic energy to the electron than to the 
hole; hf  − Eg is used in the photogeneration, and the remainder goes to impart kinetic energy 
to the photogenerated electron hole pair.

5.9  PIEZORESISTIVITY

When a mechanical stress is applied to a semiconductor sample, as shown in Figure 
5.39a, it is found that the resistivity of the semiconductor changes by an amount that 
depends on the stress.11 Piezoresistivity is the change in the resistivity of a semi-
conductor (indeed, any material), due to an applied stress. Elastoresistivity refers to 
the change in the resistivity due to an induced strain in the substance. Since the 
application of stress invariably leads to strain, piezoresistivity and elastoresistivity 
refer to the same phenomenon. Piezoresistivity is fruitfully utilized in a variety of 
useful sensor applications such as force, pressure and strain gauges, accelerometers, 
and microphones.
 The change in the resistivity may be due to a change in the concentration of 
carriers or due to a change in the drift mobility of the carriers, both of which can 
be modified by a strain in the crystal. Typically, in an extrinsic or doped semicon-
ductor, the concentration of carriers does not change as significantly as the drift 
mobility; the piezoresistivity is then associated with the change in the mobility. For 
example, in an n-type Si, the change in the electron mobility μe with mechanical 
strain εm, dμe∕dεm, is of the order of 105 cm2 V−1 s−1, so that a strain of 0.015 per-
cent will result in a change in the mobility that is about 1 percent, and a similar 
change in the resistivity, which is readily measurable. In this case, the change in the 
mobility μe is due to the induced strain changing the effective mass m*e  which then 
modifies μe. (Recall that μe = eτ∕m*e , where τ is the mean scattering time.)
 The change in the resistivity δρ has been shown to be proportional to the induced 
strain in the crystal and hence proportional to the applied stress σm. The fractional 
change δρ∕ρ can be written as

 
δρ

ρ
= πσm [5.62]

 11 Mechanical stress is defined as the applied force per unit area, σm = F∕A, and the resulting strain εm is the 
fractional change in the length of a sample caused by σm; εm = δL∕L, where L is the sample length. The two are 
related through the elastic modulus Y; σm = Yεm. Subscript m is used to distinguish the stress σm and strain εm 
from the conductivity σ and permittivity ε.
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where π is a constant called the piezoresistive coefficient; π has the units of 1/stress, 
e.g., m2∕N or 1∕Pa. The piezoresistive coefficient π depends on the type of doping, 
p- or n-type; the dopant concentration; the temperature; and the crystallographic 
direction. A stress along a certain direction in a crystal, for example, along the length 
of a semiconductor crystal, will change the resistivity not only in the same direction 
but also in transverse directions. We know from elementary mechanics that a strain 
in one direction is accompanied by a transverse strain, as implied by the Poisson 
ratio, so it is not unexpected that a stress in one direction will also modify the resis-
tivity in a transverse direction. Thus, the change in the resistivity of a semiconduc-
tor in a “longitudinal” direction, taken as the direction of current flow, is due to 
stresses in the longitudinal and transverse directions. If σL is the stress along a 
longitudinal direction, the direction of current flow, and σT is the stress along a 
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Figure 5.39 Piezoresistivity and its applications. (a) Stress σm along the current (longitudinal) 

direction changes the resistivity by δρ. (b) Stresses σL and σT cause a resistivity change. (c) A 

force applied to a cantilever bends it. A piezoresistor at the support end (where the stress is 

large) measures the stress, which is proportional to the force. (d) A pressure sensor has four 

piezoresistors R1, R2, R3, R4 embedded in a diaphragm. The pressure bends the diaphragm, 

which generates stresses that are sensed by the four piezoresistors.
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transverse direction, as in Figure 5.39b, then, generally, the fractional change in the 
resistivity along the current flow direction (longitudinal direction) is given by

 
δρ

ρ
= πLσL + πT σT  [5.63]

where πL is the piezoresistive coefficient along a longitudinal direction (different for 
p- and n-type Si), and πT is the piezoresistive coefficient in the transverse direction.
 The piezoresistive effect is actually more complicated than what we have implied. 
In reality, we have to consider six types of stresses, three uniaxial stresses along the 
x, y, and z directions (e.g., trying to pull the crystal along in three independent direc-
tions) and three shear stresses (e.g., trying to shear the crystal in three independent 
ways). In very simple terms, a change in the resistivity (δρ∕ρ)i along a particular 
direction i (an arbitrary direction) can be induced by a stress σj along another direc-
tion j (which may or may not be identical to i). The two, (δρ∕ρ)i and σj, are then 
related through a piezoresistivity coefficient denoted by πij. Consequently, the full 
description of piezoresistivity involves tensors, and the piezoresistivity coefficients 
πij form the elements of this tensor; a treatment beyond the scope of this book. 
Nonetheless, it is useful to be able to calculate πL and πT from various tabulated 
piezoresistivity coefficients πij, without having to learn tensors. It turns out that it is 
sufficient to identify three principal piezoresistive coefficients to describe the piezo-
resistive effect in cubic crystals, which are denoted as π11, π12, and π44. From the 
latter set we can easily calculate πL and πT for a crystallographic direction of interest; 
the relevant equations can be found in advanced textbooks.
 Advances in silicon fabrication technologies and micromachining (ability to fab-
ricate micromechanical structures) have now enabled various piezoresistive silicon 
microsensors to be developed that have a wide range of useful applications. Figure 
5.39c shows a very simple Si microcantilever in which an applied force F to the free 
end bends the cantilever; the tip of the cantilever is deflected by a distance h. Accord-
ing to elementary mechanics, this deflection induces a maximum stress σm that is at 
the surface, at the support end, of the cantilever. A properly placed piezoresistor at 
this end can be used to measure this stress σm, and hence the deflection or the force. 
The piezoresistor is implanted by selectively diffusing dopants into the Si cantilever 
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at the support end. Obviously, we need to relate the deflection h of the cantilever 
tip to the stress σm, which is well described in mechanics. In addition, h is propor-
tional to the applied force F through a factor that depends on the elastic modulus 
and the geometry of the cantilever. Thus, we can measure both the displacement (h) 
and force (F ).
 Another useful application is in pressure sensors, which are commercially avail-
able. Again, the structure is fabricated from Si. A very thin elastic membrane, called 
a diaphragm, has four piezoresistors embedded, by appropriate dopant diffusion, on 
its surface as shown in Figure 5.39d. Under pressure, the Si diaphragm deforms 
elastically, and the stresses that are generated by this deformation cause the resistance 
of the piezoresistors to change. There are four piezoresistors because the four are 
connected in a Wheatstone bridge arrangement for better signal detection. The dia-
phragm area is typically 1 mm × 1 mm, and the thickness is 20 μm. There is no 
doubt that recent advances in micromachining have made piezoresistivity an impor-
tant topic for a variety of sensor applications.

PIEZORESISTIVE STRAIN GAUGE Suppose that we apply a stress σL along the length, taken 
along the [110] direction, of a p-type silicon crystal sample. We will measure the resistivity 
along this direction by passing a current along the length and measuring the voltage drop 
between two fixed points as in Figure 5.39a. The stress σL along the length will result in a 
strain εL along the same length given by εL = σL∕Y, where Y is the elastic modulus. From 
Equation 5.63 the change in the resistivity is

 
Δρ

ρ
= πLσL + πT σT = πLYεL

where we have ignored the presence of any transverse stresses; σT ≈ 0. These transverse 
stresses depend on how the piezoresistor is used, that is, whether it is allowed to contract 
laterally. If the resistor cannot contract, it must be experiencing a transverse stress. In any 
event, for the particular direction of interest, [110], the Poisson ratio is very small (less than 
0.1), and we can simply neglect any σT. Clearly, we can find the strain εL from the measure-
ment of Δρ∕ρ, which is the principle of the strain gauge. The gauge factor G of a strain 
gauge measures the sensitivity of the gauge in terms of the fractional change in the resistance 
per unit strain,

 G =
(ΔR

R )
(ΔL

L )
≈

(Δρ

ρ )
εL

≈ YπL

where we have assumed that ΔR is dominated by Δρ, since the effects from geometric changes 
in the sample shape can be ignored compared with the piezoresistive effect in semiconductors. 
Using typical values for a p-type Si piezoresistor which has a length along [110], Y ≈ 170 GPa, 
πL ≈ 72 × 10−11 Pa−1, we find G ≈ 122. This is much greater than G ≈ 1.7 for metal resistor–
based strain gauges. In most metals, the fractional change in the resistance ΔR∕R is due to 
the geometric effect, the sample becoming elongated and narrower, whereas in semiconductors 
it is due to the piezoresistive effect.

 EXAMPLE 5.21
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5.10  SCHOTTKY JUNCTION

5.10.1 SCHOTTKY DIODE

We consider what happens when a metal and an n-type semiconductor are brought 
into contact. In practice, this process is frequently carried out by the evaporation of 
a metal onto the surface of a semiconductor crystal in vacuum.
 The energy band diagrams for the metal and the semiconductor are shown in 
Figure 5.40. The work function, denoted as Φ, is the energy difference between the 
vacuum level and the Fermi level. The vacuum level defines the energy where the 
electron is free from that particular solid and where the electron has zero KE.
 For the metal, the work function Φm is the minimum energy required to remove 
an electron from the solid. In the metal there are electrons at the Fermi level EFm, 
but in the semiconductor there are none at EFn. Nonetheless, the semiconductor work 
function Φn still represents the energy required to remove an electron from the semi-
conductor. It may be thought that the minimum energy required to remove an elec-
tron from the semiconductor is simply the electron affinity χ, but this is not so. 
Thermal equilibrium requires that only a certain fraction of all the electrons in the 
semiconductor should be in the CB at a given temperature. When an electron is 
removed from the conduction band, then thermal equilibrium can be maintained only 
if an electron is excited from the VB to CB, which involves absorbing heat (energy) 

John Bardeen, Walter Schottky, and Walter Brattain. Walter H. Schottky 
(1886–1976) obtained his PhD from the University of Berlin in 1912. 
He made many distinct contributions to physical electronics. He 
invented the screen grid vacuum tube in 1915, and the tetrode 
vacuum tube in 1919 while at Siemens. The Schottky junction theory 
was formulated in 1938. He also made distinct contributions to 
thermal and shot noise in devices. His book Thermodynamik was 
published in 1929 and included an explanation of the Schottky 
defect (Chapter 1).

  © Brattain Collection/AIP/Science Source.
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from the environment; thus it takes more energy than simply χ. We will not derive 
the effective thermal energy required to remove an electron but state that, as for a 
metal, this is equal to Φn, even though there are no electrons at EFn. In fact, the 
thermionic emission of electrons from a heated semiconductor is also described by 
the Richardson–Dushman expression in Equation 4.39 but with Φ representing the 
work function of the semiconductor, Φn in the present n-type case. (In contrast, the 
minimum photon energy required to remove an electron from a semiconductor above 
absolute zero would be the electron affinity.)
 We assume that Φm > Φn, the work function of the metal is greater than that of 
the semiconductor. When the two solids come into contact, the more energetic elec-
trons in the CB of the semiconductor can readily tunnel into the metal in search of 
lower empty energy levels ( just above EFm) and accumulate near the surface of the 
metal, as illustrated in Figure 5.40. Electrons tunneling from the semiconductor leave 
behind an electron-depleted region of width W in which there are exposed positively 
charged donors, in other words, net positive space charge. The contact potential, 
called the built-in potential Vo, therefore develops between the metal and the semi-
conductor. There is obviously also a built-in electric field Eo from the positive 
charges to the negative charges on the metal surface. Eventually this built-in poten-
tial reaches a value that prevents further accumulation of electrons at the metal 
surface and an equilibrium is reached. The value of the built-in voltage Vo is the 
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same as that in the metal–metal junction case in Chapter 4, namely, (Φm − Φn)∕e. 
The depletion region has been depleted of free carriers (electrons) and hence con-
tains the exposed positive donors. This region thus constitutes a space charge layer 
(SCL) in which there is a nonuniform internal field directed from the semiconductor 
to the metal surface. The maximum value of this built-in field is denoted as Eo and 
occurs right at the metal–semiconductor junction (this is where there are a maximum 
number of field lines from positive to negative charges).
 The Fermi level throughout the whole solid, the metal and semiconductor in 
contact, must be uniform in equilibrium. Otherwise, a change in the Fermi level 
ΔEF going from one end to the other end will be available to do external (electrical) 
work. Thus, EFm and EFn line up. The W region, however, has been depleted of 
electrons, so in this region Ec − EFn must increase so that n decreases. The bands 
must bend to increase Ec − EFn toward the junction, as depicted in Figure 5.40. Far 
away from the junction, we, of course, still have an n-type semiconductor. The bend-
ing is just enough for the vacuum level to be continuous and changing by Φm − Φn 
from the semiconductor to the metal, as this much energy is needed to take an 
electron across from the semiconductor to the metal. The PE barrier for electrons 
moving from the metal to the semiconductor is called the Schottky barrier height 
ΦB, which is given by

 ΦB = Φm − χ = eVo + (Ec − EFn) [5.64]

which is greater than eVo.
 Under open circuit conditions, there is no net current flowing through the metal–
semiconductor junction. The number of electrons thermally emitted over the PE 
barrier ΦB from the metal to the semiconductor is equal to the number of electrons 
thermally emitted over eVo from the semiconductor to the metal. Emission probabil-
ity depends on the PE barrier for emission through the Boltzmann factor. There are 
two current components due to electrons flowing through the junction. The current 
due to electrons being thermally emitted from the metal to the CB of the semicon-
ductor is

 J1 = C1 exp(−
ΦB

kT ) [5.65]

where C1 is some constant, whereas the current due to electrons being thermally 
emitted from the CB of the semiconductor to the metal is

 J2 = C2 exp(−
eVo

kT ) [5.66]

where C2 is some constant different from C1.
 In equilibrium, that is, open circuit conditions in the dark, the currents are equal 
but in the reverse directions:

 Jopen circuit = J2 − J1 = 0

 Under forward bias conditions, the semiconductor side is connected to the neg-
ative terminal, as depicted schematically in Figure 5.41a. Since the depletion region 

Schottky 
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W has a much larger resistance than the neutral n-region (outside W) and the metal 
side, nearly all the voltage drop is across the depletion region. The applied bias is 
in the opposite direction to the built-in voltage Vo. Thus Vo is reduced to Vo − V. ΦB 
remains unchanged. The semiconductor band diagram outside the depletion region 
has been effectively shifted up with respect to the metal side by an amount eV because

 PE = Charge × Voltage

The charge is negative but so is the voltage connected to the semiconductor, as shown 
in Figure 5.41a.
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 The PE barrier for thermal emission of electrons from the semiconductor to the 
metal is now e(Vo − V ). The electrons in the CB can now readily overcome the PE 
barrier to the metal.
 The current J2

for, due to the electron emission from the semiconductor to the 
metal, is now

 J 
for
2 = C2 exp[−

e(Vo − V)
kT ] [5.67]

 Since ΦB is the same, J1 remains unchanged. The net current is then

 J = J 
for
2 − J1 = C2 exp[−

e(Vo − V)
kT ] − C2 exp(−

eVo

kT )
or

 J = C2 exp(−
eVo

kT )[exp(eV

kT) − 1]
giving

 J = Jo[exp(eV

kT) − 1] [5.68]

where Jo is a constant that depends on the material and surface properties of the two 
solids. In fact, examination of the above steps shows that Jo is also J1 in Equation 5.65.
 When the Schottky junction is reverse biased, then the positive terminal is con-
nected to the semiconductor, as illustrated in Figure 5.41b. The applied voltage Vr 
drops across the depletion region since this region has very few carriers and is highly 
resistive. The built-in voltage Vo thus increases to Vo + Vr. Effectively, the semicon-
ductor band diagram is shifted down with respect to the metal side because the 
charge is negative but the voltage is positive and PE = Charge × Voltage. The PE 
barrier for thermal emission of electrons from the CB to the metal becomes e(Vo + Vr), 
which means that the corresponding current component becomes

 J 
rev
2 = C2 exp[−

e(Vo + Vr)
kT ] ≪ J1 [5.69]

 Since generally Vo is typically a fraction of a volt and the reverse bias is more 
than a few volts, J2

rev ≪ J1 and the reverse bias current is essentially limited by J1 
only and is very small. Thus, under reverse bias conditions, the current is primarily 
due to the thermal emission of electrons over the barrier ΦB from the metal to the 
CB of the semiconductor as determined by Equation 5.65. Figure 5.41c illustrates 
the I–V characteristics of a typical Schottky junction. The I–V characteristics exhibit 
rectifying properties, and the device is called a Schottky diode. The reverse current 
saturates quickly with increasing reverse bias and becomes Jo, which is also known 
as the reverse saturation current.12

Schottky 

junction

 12 Jo does have some dependence on the reverse bias Vr. Recall from Chapter 4 that the barrier ΦB will be 
reduced by the applied field due to the Schottky effect.
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 Equation 5.68, which is derived for forward bias conditions, is also valid under 
reverse bias by making V negative, that is, V = −Vr. Furthermore, it turns out to be 
applicable not only to Schottky-type metal–semiconductor junctions but also to 
junctions between a p-type and an n-type semiconductor, pn junctions, as we will 
show in Chapter 6. Under a forward bias V, which is greater than 25 mV at room 
temperature, the forward current is simply

 J = Jo exp(eV

kT)  V >
kT

e
 [5.70]

in which Jo = BeT
2 where Be is the effective thermionic emission constant from the 

metal into the semiconductor.
 It should be mentioned that it is also possible to obtain a Schottky junction 
between a metal and a p-type semiconductor. This arises when Φm < Φp, where Φp 
is the work function for the p-type semiconductor. The reader may have noticed that 
the Schottky diode is a majority carrier device, that is, the current depends on the 
diffusion of majority carriers; electrons in the n-type semiconductor over onto the 
metal side. (In contrast, as explained in Chapter 6, the pn junction diode is a minor-
ity carrier device.) Schottky diodes are widely used in high frequency communica-
tions, photodiodes, power electronics, and photovoltaics.

5.10.2 SCHOTTKY JUNCTION SOLAR CELL AND PHOTODIODE

The built-in field in the depletion region of the Schottky junction allows this type 
of device to function as a photovoltaic device and also as a photodetector. Consider 
a Schottky device as in Figure 5.42 in which the metal electrode allows the light to 
pass through and enter the semiconductor. The metal contact may be finger  
electrodes on the semiconductor, an annular electrode or a sufficiently thin semi-
transparent electrode. The energy band diagram is shown in Figure 5.42.
 For photon energies greater than Eg, EHPs are generated in the depletion region 
in the semiconductor, as indicated in Figure 5.42. The field in this region separates 

The three inventors of the transistor: William Shockley 
(seated left), Walter Brattain (middle), and John Bardeen 
(right). The three inventors shared the Nobel prize in 
1956. What is the diagram on the chalkboard?

 © Photo12/The Image Works.
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the EHPs and drifts the electrons toward the semiconductor and holes toward the 
metal. The drift of these photogenerated carriers gives rise to a photocurrent in the 
external circuit. Some of these photogenerated electrons shield the positive donors 
near the depletion region boundary, which therefore reduces Eo and hence Vo; shown 
as E'o and V'o in Figure 5.42. The semiconductor end therefore becomes a bit more 
negative with respect to the situation in the dark or the equilibrium situation. When 
a hole reaches the metal, it recombines with an electron and reduces the effective 
charge there by one electron, thus making it more positive relative to its dark state. 
Thus, a voltage develops across the Schottky junction device with the metal end 
positive and semiconductor end negative.
 Normally, the device is connected to an external load as in Figure 5.42. The pho-
togenerated electrons that drift and reach the neutral n-region are conducted through the 
external leads, through the load, toward the metal side, where they replenish the lost 
electrons in the metal. As long as photons are generating EHPs, the flow of electrons 
around the external circuit will continue and there will be photon energy to electrical 
energy conversion. Sometimes it is useful to think of the neutral n-type semiconductor 
region as a “conductor,” an extension of the external wire (except that the n-type semi-
conductor has a higher resistivity). As soon as the photogenerated electrons cross the 
depletion region, they reach the end electrode and are conducted around the external 
circuit to the metal side to replenish the lost electron there. The internal field is critical 
to the operation because it separates and drifts the photogenerated EHPs.
 The photovoltaic explanation in terms of the energy band diagram is simple. At 
the point of photogeneration, the electron finds itself at a PE slope as Ec is decreas-
ing toward the semiconductor, as shown in Figure 5.42. It has no option but to roll 
down the slope just as a ball that is let go on a slope would roll down the slope to 
decrease its gravitational PE. Recall that there are many more empty states in the 
CB than electrons, so there is nothing to prevent the electron from rolling down the 
CB in search of lower energy. Thus, photogenerated electrons roll down the PE hill 
and reach the neutral region whereupon other electrons from the neutral region enter 
the external circuit to flow through the load and replenish the lost electrons in the 

Figure 5.42 The principle of the Schottky junction solar cell. The built-in field and built-in voltage 

are reduced under illumination.
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metal. If we remember that hole energy increases downward on the energy band 
diagram, then similar arguments also apply to the photogenerated hole in the VB, 
which rolls down its own PE slope to reach the surface of the metal and recombine 
with an electron there.
 For photon energies less than Eg, the device can still respond, as long as hf  can 
excite an electron from EFm in the metal over the PE barrier ΦB into the CB, from 
where the electron will roll down toward the neutral n-region. In this case, hf  must 
only be greater than ΦB.
 If the Schottky junction diode is reverse-biased, as shown in Figure 5.43, then the 
reverse bias Vr increases the built-in potential Vo to Vo + Vr (Vr ≫ Vo). The internal field 
increases to substantially high values. This has the advantage of increasing the drift 
velocity of the EHPs (vd = μdE) in the depletion region and therefore shortening the 
transit time required to cross the depletion width. The device responds faster and is 
useful as a fast photodetector. The photocurrent iphoto in the external circuit is due to 
the drift of photogenerated carriers in the depletion region and can be readily measured.

E >> Eo

Vr

hf > Eg

W

Vo+Vr

iphoto

Sampling
resistor, R

Metal n-Si

Figure 5.43 Reverse-biased 

Schottky photodiodes are frequently 

used as fast photodetectors.

THE SCHOTTKY DIODE The reverse saturation current Jo in the Schottky junction, as 
expressed in Equation 5.68, is the same current that is given by the Richardson–Dushman 
equation for thermionic emission over a potential barrier Φ (= ΦB) derived in Chapter 4. Jo is 
given by

 Jo = BeT 
2 exp(−

ΦB

kT )
where Be is the effective Richardson constant that depends on the characteristics of the metal–
semiconductor junction. Be for metal–semiconductor junctions, among other factors, depends 
on the density of states related effective mass of the thermally emitted carriers in the semi-
conductor. For example, for a metal to n-Si junction, Be is about 110 A cm−2 K−2, and for a 
metal to p-Si junction, which involves holes, Be is about 30 A cm−2 K−2.

a. Consider a Schottky junction diode between (tungsten) and n-Si, doped with 1016 donors 
cm−3. The cross-sectional area is 1 mm2. Given that the electron affinity χ of Si is 
4.01 eV and the work function of W is 4.55 eV, what is the theoretical barrier height 
ΦB from the metal to the semiconductor?

 EXAMPLE 5.22
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b. What is the built-in voltage Vo with no applied bias?
c. Given that the experimental barrier height ΦB is about 0.66 eV, what is the reverse 

saturation current and the current when there is a forward bias of 0.2 V across the 
diode?

SOLUTION

a. From Figure 5.40, it is clear that the barrier height ΦB is

 ΦB = Φm − χ = 4.55 eV − 4.01 eV = 0.54 eV

 The experimental value is around 0.66 eV, which is greater than the theoretical value 
due to various effects at the metal–semiconductor interface arising from dangling bonds, 
defects, and so forth. For example, dangling bonds give rise to what are called surface 

states within the bandgap of the semiconductor that can capture electrons and modify 
the Schottky energy band diagram. (The energy band diagram in Figure 5.40 represents 
an ideal junction with no surface states.) Further, in some cases, such as Pt on n-Si, the 
experimental value can be lower than the theoretical value.

b. We can find Ec − EFn in Figure 5.40 from

  n = Nd = Nc exp(−
Ec − EFn

kT )
  1016 cm−3 = (2.8 × 1019 cm−3) exp(−

Ec − EFn

0.026 eV)
 which gives ΔE = Ec − EFn = 0.206 eV. Thus, the built-in potential Vo can be found 

from Equation 5.64,

 Vo =
ΦB

e
−

Ec − EFn

e
= 0.54 V − 0.206 V = 0.33 V

c. If A is the cross-sectional area, 0.01 cm2, taking Be to be 110 A K−2 cm−2, and using 
the experimental value for the barrier height ΦB, the reverse saturation current is

  Io = ABeT 
2 exp(−

ΦB

kT ) = (0.01)(110)(3002) exp(−
0.66 eV
0.026 eV)

  = 9.36 × 10−7 A  or  0.94 μA

 Clearly, the reverse current density Jo is very roughly ∼1 μA mm−2, which is typical for 
Si-Schottky diodes. When the applied voltage is V, the forward current I is

 I = Io[exp( V

kT) − 1] = (0.94 μA)[exp( 0.2
0.026) − 1] = 2.0 mA

DEPLETION LAYER WIDTH Consider a metal to n-type semiconductor Schottky junction as 
shown in Figure 5.40. Suppose that the donor concentration in the n-side is constant and Nd. 
The net positive space charge density ρnet in this region is therefore eNd. We know from basic 
electrostatics that the derivative of the field dE∕dx = ρnet∕ε, where ε = εoεr is the permittiv-
ity of the medium, and εo and εr are the absolute permittivity and relative permittivity (11.9 for 
Si), respectively. We can hence integrate ρnet and find the field in the depletion region. The field 
E is in the −x direction and its magnitude decreases with distance x into the semiconductor 

 EXAMPLE 5.23
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and vanishes at the end of the depletion region. The maximum field is right at the metal–
semiconductor junction with all positive charges on the right and all negative charges (elec-
trons on the metal surface) on the left. Further, the derivative of the potential V′ at any point 
in the depletion region gives the field E = −dV′∕dx so that we integrate E and find the 
voltage as well. (Since V is used for the applied voltage, V′ is used for the potential at an 
arbitrary point in the depletion region.) At x = W, the field should be zero, E = 0 and the 
potential should be V′ = Vo − V. Thus, we can readily find the width of the depletion region 
and the maximum field as13

 W = [2εoεr(Vo − V)
eNd

]
1∕2

and

 Emax = −
eNdW

εoεr

Consider the Schottky junction in Example 5.22 in which the n-side has Nd = 1016 cm−3 and 
the built-in voltage Vo = 0.33 V. Find the width of the depletion region in open circuit, under 
a forward bias of 0.2 V and a reverse bias of −5 V. Find also the maximum field in each 
case. What is your conclusion?

SOLUTION

Taking εr = 11.9, we can find W under open circuit (V = 0), denoted as Wo, by

 W0 = [2εoεr(Vo − V)
eNd

]
1∕2

= [2(8.854 × 10−12 F m−1) (11.9)(0.33 V − 0 V)

(1.602 × 10−19 C)(1 × 1022 m−3) ]
1∕2

= 0.21 μm

If the applied voltage is 0.2 V, then we need to use (0.33 − 0.2 V) instead of just 0.33 V in 
the above calculation, and the new depletion layer width W = 0.13 μm (narrower). With the 
reverse bias V = −5 V, we need to use 0.33 V + 5 V, and the recalculation of the depletion 
layer width gives W = 0.84 μm, significantly wider.
 The maximum field Eo under open circuit can be found by using Wo = 0.21 μm in

 ∣Eo∣ = ∣Emax∣ =
eNdWo

εoεr

=
(1.602 × 10−19 C)(1 × 1022 m−3) (0.21 × 10−6 m)

(8.854 × 10−12 F m−1) (11.9)
= 3.2 × 106 V m−1.

 Under forwards bias, the width is 0.13 μm and the corresponding field is ∣Emax∣ = 
2.0  ×  106 V m−1, smaller as we expect. Under reverse bias, using W = 0.84 μm, we find 
∣Emax∣ = 12.7 × 106 V m−1, significantly larger. We need more donors to generate the required 
field in the depletion region and this means the depletion layer must extend further into the 
semiconductor.
 Notice that in all cases ∣Emax∣ = 2(Vo − V )∕W. Indeed, the latter equation comes out 
directly from the integration of ∣E(x)∣ across W, which should be (Vo − V ). Schottky photo-
detectors are normally reverse biased to increase the field in the depletion region, which 
increases the drift velocity of photogenerated carriers and hence the speed of the response as 
well as the photocurrent.

Depletion 

layer width 

with bias V

Highest 

electric field 

magnitude

 13 The two equations are not difficult to derive from the basic principle mentioned above. See Question 5.37 on 
how to derive these two equations.
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5.11   OHMIC CONTACTS AND  

THERMOELECTRIC COOLERS

An ohmic contact is a junction between a metal and a semiconductor that does 
not limit the current flow. The current is essentially limited by the resistance of 
the semiconductor outside the contact region rather than the thermal emission 
rate of carriers across a potential barrier at the contact. In the Schottky diode, the 
I–V characteristics were determined by the thermal emission rate of carriers 
across  the contact. It should be mentioned that, contrary to intuition, when we 
talk about an ohmic contact, we do not generally infer a linear I–V characteristic 
for the ohmic contact itself. We only imply that the contact does not limit the 
current flow.
 Figure 5.44 shows the formation of an ohmic contact between a metal and an 
n-type semiconductor. The work function of the metal Φm is smaller than the work 
function Φn of the semiconductor. There are more energetic electrons in the metal 
than in the CB, which means that the electrons (around EFm) tunnel into the semi-
conductor in search of lower energy levels, which they find around Ec, as indicated 
in Figure 5.44. Consequently, many electrons pile in the CB of the semiconductor 
near the junction. Equilibrium is reached when the accumulated electrons in the CB 
of the semiconductor prevent further electrons tunneling from the metal. Put more 
rigorously, equilibrium is reached when the Fermi level is uniform across the whole 
system from one end to the other.
 The semiconductor region near the junction in which there are excess electrons 
is called the accumulation region. To show the increase in n, we draw the semicon-
ductor energy bands bending downward to decrease Ec − EFn, which increases n. Going 
from the far end of the metal to the far end of the semiconductor, there are always 
conduction electrons. In sharp contrast, the depletion region of the Schottky junction 
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separates the conduction electrons in the metal from those in the semiconductor. 
It can be seen from the contact in Figure 5.44 that the conduction electrons imme-
diately on either side of the junction (at EFm and Ec) have about the same energy 
and therefore there is no barrier involved when they cross the junction in either 
direction under the influence of an applied field.
 It is clear that the excess electrons in the accumulation region increase the con-
ductivity of the semiconductor in this region. When a voltage is applied to the 
structure, the voltage drops across the higher resistance region, which is the bulk 
semiconductor region. Both the metal and the accumulation region have compara-
tively high concentrations of electrons compared with the bulk of the semiconductor. 
The current is therefore determined by the resistance of the bulk region. The current 
density is then simply J = σE where σ is the conductivity of the semiconductor in 
the bulk and E is the applied field in this region.
 One of the interesting and important applications of semiconductors is in 
thermoelectric, or Peltier, devices, which enable small volumes to be cooled by 
direct currents. Whenever a dc current flows through a contact between two dissimi-
lar materials, heat is either released or absorbed in the contact region, depending on 
the direction of the current. Suppose that there is a dc current flowing from an n-type 
semiconductor to a metal through an ohmic contact, as depicted in Figure 5.45a. 
Then electrons are flowing from the metal to the CB of the semiconductor. We only 
consider the contact region where the Peltier effect occurs. Current is carried by 
electrons near the Fermi level EFm in the metal. These electrons then cross over into 
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the CB of the semiconductor and when they reach the end of the contact region, 
their energy is Ec plus average KE (which is 3

2 kT). There is therefore an increase in the 
average energy (PE + KE)  per electron in the contact region. The electron must 
therefore absorb heat from the environment (lattice vibrations) to gain this energy 
as it drifts through the junction. Thus, the passage of an electron from the metal to 
the CB of an n-type semiconductor involves the absorption of heat at the junction.
 When the current direction is from the metal to the n-type semiconductor, the 
electrons flow from the CB of the semiconductor to the Fermi level of the metal as 
they pass through the contact. Since EFm is lower than Ec, the passing electron has 
to lose energy, which it does to lattice vibrations as heat. Thus, the passage of a CB 
electron from the n-type semiconductor to the metal involves the release of heat at 
the junction, as indicated in Figure 5.45b.
 It is apparent that depending on the direction of the current flow through a junc-
tion between a metal and an n-type semiconductor, heat is either absorbed or released 
at the junction. Although we considered current flow between a metal and an n-type 
semiconductor through an ohmic contact, this thermoelectric effect is a general phe-
nomenon that occurs at a junction between any two dissimilar materials. It is called 
the Peltier effect after its discoverer. In the case of metal–p-type semiconductor 
junctions, heat is absorbed for current flowing from the metal to the p-type semi-
conductor and heat is released in the other direction. Thermoelectric effects occur-
ring at metal–semiconductor junctions are summarized in Figure 5.46. It is important 
not to confuse the Peltier effect with the Joule heating of the semiconductor and the 
metal. Joule heating, which we simply call I 2R (or J 2ρ) heating, arises from the finite 
resistivity of the material. It is due to the conduction electrons losing their energy 
gained from the field to lattice vibrations when they become scattered by such vibra-
tions, as discussed in Chapter 2.
 It is self-evident that when a current flows through a semiconductor sample with 
metal contacts at its ends, as depicted in Figure 5.46, one of the contacts will always 
absorb heat and the other will always release heat. The contact where heat is absorbed 
will be cooled and is called the cold junction, whereas the other contact, where heat 
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is released, will warm up and is called the hot junction. One can use the cold junction 
to cool another body, providing that the heat generated at the hot junction can be 
removed from the semiconductor sufficiently quickly to reduce its conduction through 
the semiconductor to the cold junction. Furthermore, there will always be the Joule 
heating (I 2R) of the whole semiconductor sample since the bulk will always have a 
finite resistance.
 A simplified schematic diagram of a practical single-element thermoelectric 
cooling device is shown in Figure 5.47. It uses two semiconductors, one n-type and 
the other p-type, each with ohmic contacts. The current direction therefore has oppo-
site thermoelectric effects. On one side, the semiconductors share the same metal 
electrode. Effectively, the structure is an n-type and a p-type semiconductor con-
nected in series through a common metal electrode. Typically, either Bi2Te3, Bi2Se3, 
or Sb2Te3 is used as the semiconductor material with copper usually as the metal 
electrode.
 The current flowing through the n-type semiconductor to the common metal 
electrode causes heat absorption, which cools this junction and hence the metal. The 
same current then enters the p-type semiconductor and causes heat absorption at this 
junction, which cools the same metal electrode. Thus, the common metal electrode 
is cooled at both ends. The other ends of the semiconductors are hot junctions. They 
are connected to a large heat sink to remove the heat and thus prevent heat conduc-
tion through the semiconductors toward the cold junctions. The other face of the 
common metal electrode is in contact, through a thin ceramic plate (electrical insu-
lator but thermal conductor), with the body to be cooled. In commercial Peltier 
devices, many of these elements are connected in series, as illustrated in Figure 5.48, 
to increase the cooling efficiency.
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Figure 5.47 Cross section of a typical thermoelectric cooler.
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Figure 5.48 Typical structure of a commercial thermoelectric cooler.

THE PELTIER COEFFICIENT Consider the motion of electrons across an ohmic contact 
between a metal and an n–type semiconductor and hence show that the rate of heat generation 
Q′ at the contact is approximately

 Q′ = ±Π I [5.71]

where Π, called the Peltier coefficient between the two materials. Consider the motion of 
electrons across the junction in Figure 5.45a and show that

 Π =
1

e[(Ec − EFn) +
3

2
kT] [5.72]

where Ec − EFn is the energy separation of Ec from the Fermi level in the n-type semicon-
ductor. The sign depends on the convention used for heat liberation or absorption. What is 
the Peltier cofficient for between a metal and an n-type Si doped with 1016 cm−3 donors?

SOLUTION

Consider Figure 5.45a, which shows only the ohmic contact region between a metal and an 
n-type semiconductor when a current is passing through it. The majority of the applied volt-
age drops across the bulk of the semiconductor because the contact region, or the accumula-
tion region, has an accumulation of electrons in the CB. The current is limited by the bulk 
resistance of the semiconductor. Thus, in the contact region we can take the Fermi level to 
be almost undisturbed and hence uniform, EFm ≈ EFn. In the bulk of the metal, a conduction 
electron is at around EFm (same as EFn), whereas just at the end of the contact region in the 
semiconductor it is at Ec plus an average KE of 3

2 kT . The energy difference is the heat 
absorbed per electron going through the contact region. Since I∕e is the rate at which electrons 
are flowing through the contact,

 Rate of energy absorption = [(Ec +
3

2
kT) − EFm]( I

e)
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or

 Q′ = [ (Ec − EFn) + 3
2kT

e ]I = ΠI  [5.73]

so the Peltier coefficient is given by the term in the square brackets. For n type Si that has 
Nd = 1016 cm−3, from Equation 5.6 with n = Nd, Ec − EFn = (kT/e)ln(n/Nc) = 0.205 eV, and 
Equation 5.72, gives Π = 0.24 W A−1. Thus, a current of 1 A through this metal/n-Si junction 
as in Figure 5.45a will lead to the absorption of heat at a rate of 240 mW.
 We can increase (Ec − EFn) and hence Π by decreasing the donor concentration Nd. But, 
we also need a reasonable amount of doping to increase the conductivity of the bulk to reduce 
the Joule heating arising from the current through the semiconductor; Joule heating per unit 
volume is ρJ 2, where ρ is the resistivity.

ADDITIONAL TOPICS

5.12   SEEBECK EFFECT IN SEMICONDUCTORS  

AND VOLTAGE DRIFT

Consider an n-type semiconductor that has a temperature gradient across it. The right 
end is hot and the left end is cold as depicted in Figure 5.49a. The majority carriers 
are electrons. We will ignore the few minority carriers. There are more energetic 
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temperature difference. (b) In the presence of a temperature gradient in a p-type semiconductor, holes 

diffuse from the hot to cold region. The Seebeck coefficient is now positive; the cold end is positive with 

respect to the hot end. 
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electrons with greater mean speeds in the hot region than in the cold region. The 
average KE of electrons in the conduction band is 1

2m*e v 
2 = 3

2 kT , where v is the root 
mean square speed of the electron, m*e  is the effective mass of the electron. Conse-
quently, electrons diffuse from hot to cold regions, which immediately exposes pos-
itively charged donors (e.g., As+) in the hot region and therefore builds up an 
internal field and a built-in voltage, as shown in Figure 5.49a. Eventually, an equi-
librium is reached when the diffusion of electrons from hot to cold regions is bal-
anced by their reverse drift (from cold to hot), driven by the built-in field. The net 
current must be zero. The Seebeck coefficient S measures this effect in terms of the 
voltage developed as a result of an applied temperature gradient as14

 S =
dV

dT
 [5.74a]

 S = { Positive if cold is positive wrt hot end
Negative if cold is negative wrt hot end

 [5.74b]

 The sign of S, by convention, is the sign of the voltage developed at the cold 
end with respect to (wrt) the hot end. Thus, S is negative for this n-type semiconductor 
because electrons accumulate in the cold region as shown in Figure 5.49a.
 In a p-type semiconductor, we can assume that we only have holes as the mobile 
charge carriers. The acceptors are negatively charged. The same temperature gradient 
as in Figure 5.49a results in the diffusion of holes (instead of electrons) from the 
hot to cold end as in Figure 5.49b. This diffusion process exposes negative acceptors 
in the hot region (instead of positive charge as in the n-type semiconductor). Thus, 
in a p-type semiconductor, the Seebeck effect has the reverse sign, or the polarity 
of the Seebeck voltage is reversed with respect to that for an n-type for the same 
temperature gradient. This effect provides a convenient way to identify whether a 
semiconductor is doped n-type or p-type. The simplest test is to touch the test leads 
of a voltmeter (1−10 mV range) to a semiconductor with one lead made hot. The 
polarity of the cold lead identifies whether it is n- or p-type. In reality, the semicon-
ductor and the copper lead form a thermocouple but the Seebeck coefficient of the 
semiconductor is much greater than that of the metal lead.
 We can derive the Seebeck coefficient for an n-type semiconductor as follows. 
The total current for electrons in Figure 5.49a should be zero, that is, Je = Jdrift + 
Jdiffusion = 0. The drift component is simply

 Jdrift = enμeEx = enμe(−
dV

dx ) [5.75]

 The diffusion current is more complicated because not only n changes along x 
but also De inasmuch as there is a temperature variation along x. We can go back 
to Section 5.6 and rederive the net diffusion flux density Γe in which ℓ and τ depend 

Seebeck 

coefficient

Sign of 

Seebeck 

coefficient

Drift of 

electrons

 14 Although the Seebeck effect was introduced in Chapter 4, it was essentially for metals only. The sign of the 
Seebeck effect for semiconductors however follows our intuition that the mobile carriers diffuse away from the 
hot region and hence determine the polarity of the Seebeck voltage. The Seebeck voltage is also called the 
thermoelectric power (a misnomer). Note that “wrt” in Equation 5.74b is “with respect to”.
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on energy. The final result is

 Diffusion flux density of electrons = Γe = −
d(Den)

dx
 [5.76]

 In many cases, De is constant and is taken outside the derivative, which then 
leads to the usual form of Fick’s law in Equation 5.34. The total current density Je 
due to electrons drifting and diffusing is then

 Je = enμe(−
dV

dx ) + e 

d(Den)
dx

= 0 [5.77]

 Suppose dV is the voltage change across dx and hence across a temperature 
increment dT as shown in Figure 5.49a. We can multiply Equation 5.77 through by 
dx and divide by dT, to get

 
dV

dT
=

1
nμe

 
d(Den)

dT
 [5.78]

 The above equation is basically the magnitude of the Seebeck coefficient for an 
n-type semiconductor. Suppose that we write μe = AT r where r is some index that 
characterizes the temperature dependence of the drift mobility, then De = μekT∕e = 

AkT r+1∕e. Further, we let ΔE = Ec − EF, so that n = Ncexp(−ΔE∕kT ) = BT 3∕2 
exp(−ΔE∕kT ), where B is a temperature independent constant; that is, we assume a 
nondegenerate semiconductor. We can now substitute all these into Equation 5.78 
and differentiate with respect to temperature and hence obtain −dV∕dT for Sn as

 Sn = −
dV

dT
= −

k

e[Ec − EF

kT
+ (5

2
+ r) −

ΔE′

k ] [5.79]

where ΔE′ = dΔE∕dT. The term ΔE′ is actually small compared to others, and can 
be neglected. Thus, Equation 5.79 leads to

 Sn = −
k

e[Ec − EF

kT
+

5
2

+ r] [5.80]

Clearly Sn depends on the donor concentration (Nd) through (Ec − EF)∕kT in Equa-
tion 5.80.
 Using similar arguments for holes in a p-type semiconductors, the Seebeck coef-
ficient Sp is

 Sp = +
k

e[EF − Ev

kT
+

5
2

+ r] [5.81]

 Both Equations 5.80 and 5.81 contain the index parameter r in μe ∝ T r but this 
r is not the same for holes and electrons. Further r can be different over different 
temperature ranges. From very simple theoretical arguments we would expect r ≈ 
−3∕2 for lattice scattering, and r = +3∕2 for impurity scattering under sufficiently 
heavy doping as discussed in Section 5.3.2.
 There is one additional factor, called the phonon drag, that increases the mag-
nitude of the Seebeck coefficient in Equations 5.80 and 5.81, that has been neglected 
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in the above derivation. There is a net phonon flux from the hot to cold region. As 
these phonons collide with electrons (or holes) they scatter the electrons towards the 
cold side. Thus, the phonon flux can drag carriers towards the cold side and hence 
increase the magnitude of both Sn and Sp.
 Voltage drifts in various semiconductor devices most commonly arise from tem-
perature gradients generating a net Seebeck voltage that appears as a drift voltage. 
Any voltage drift at the input of an operational amplifier would become amplified 
and give rise to a drift voltage in the output of the device.

TEMPERATURE GRADIENTS AND DRIFT IN SEMICONDUCTOR DEVICES Consider a 
Schottky junction between a metal and an n-type Si. In most cases the metal is a thin film 
deposited on a semiconductor crystal to form the junction. The depletion region is very thin 
(fraction of a micron). The main device thickness is therefore the n-type Si. Suppose that the 
n-side is doped with 1015 donors cm−3 and its thickness is 100 μm or more. What will be the 
voltage developed across this device if a temperature fluctuation (for example, during equip-
ment warm up) gives rise to a 0.1 °C temperature difference across the device? Assume that 
r = −2 for this n-type Si.

SOLUTION

We can neglect any temperature drop across the metal and the depletion region. The tem-
perature difference ΔT = 0.1 °C therefore develops fully across the n-type Si. Sn in Equation 
5.80 depends on (Ec − EF) which depends on the doping concentration Nd. From n = Nd = 
Nc exp[−(Ec − EF)∕kT] we have

 Ec − EF = kT ln(Nd∕Nc) = (0.0259 eV)ln(1 × 1015∕2.8 × 1019) = 0.265 eV

Equation 5.80 with r = −2 gives

 Sn = −
(1.381 × 10−23)

(1.602 × 10−19)[ (0.265)(1.602 × 10−19)

(1.381 × 10−23) (300)
+

5
2

− 2] = −0.926 mV K−1.

with the cold side being negative. The Seebeck voltage that appears across the device is

 ΔV = SnΔT = (−0.926 mV K−1)(0.1 K) = −0.093 mV

which is not a negligible offset voltage, especially if we are looking for small signals. The same 
arguments can be also applied to pn junctions. Consider a pn junction in which the p-side is 
very thin, the n-side is much thicker than the p-side, the n-side has the same donor concentra-
tion as above, and a depletion region that is very thin. This pn junction would give rise to the 
same Seebeck voltage as the Schottky device above. Seebeck effects in electronic devices arise 
from temperature gradients; and with careful design, they can be reduced to innocuous levels.

5.13   DIRECT AND INDIRECT BANDGAP 

SEMICONDUCTORS

E–k Diagrams We know from quantum mechanics that when the electron is 
within a potential well of size L, its energy is quantized and given by

 En =
(ħkn)2

2me

 EXAMPLE 5.25
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where the wavevector kn is essentially a quantum number determined by

 kn =
nπ

L

where n = 1, 2, 3, . . . The energy increases parabolically with the wavevector kn. 
We also know that the electron momentum is given by ħkn. This description can be 
used to represent the behavior of electrons in a metal within which their average 
potential energy can be taken to be roughly zero. In other words, we take V(x) = 0 
within the metal crystal and V(x) to be large [e.g., V(x) = Vo] outside so that the elec-
tron is contained within the metal. This is the nearly free electron model of a metal 
that has been quite successful in interpreting many of the properties. Indeed, we were 
able to calculate the density of states g(E)  based on the three-dimensional potential 
well problem. It is quite obvious that this model is too simple since it does not take 
into account the actual variation of the electron potential energy in the crystal.
 The potential energy of the electron depends on its location within the crystal 
and is periodic due to the regular arrangement of the atoms. How does a periodic 
potential energy affect the relationship between E and k? It will no longer simply be 
En = (ħkn)

2∕2me.
 To find the energy of the electron in a crystal, we need to solve the Schrödinger 
equation for a periodic potential energy function in three dimensions. We first con-
sider the hypothetical one-dimensional crystal shown in Figure 5.50. The electron 

r

Surface SurfaceCrystal

x

x = Lx = 0 a

0

a a

PE of the electron around an isolated

atom.
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Figure 5.50 The electron potential energy (PE ), V(x), inside the crystal is periodic with the same periodicity a as that of 

the crystal. Far away outside the crystal, by choice, V = 0 (the electron is free and PE = 0).
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potential energy functions for each atom add to give an overall potential energy func-
tion V(x), which is clearly periodic in x with the periodicity of the crystal a. Thus,

 V(x) = V(x + a) = V(x + 2a) = · · · [5.82]

and so on. Our task is therefore to solve the Schrödinger equation

 
d 

2ψ

dx2 +
2me

ħ2 [E − V(x) ]ψ = 0 [5.83]

subject to the condition that the potential energy V(x) is periodic in a, that is,

 V(x) = V (x + ma)  m = 1, 2, 3, . . . [5.84]

 The solution of Equation 5.83 will give the electron wavefunction in the crys-
tal and hence the electron energy. Since V(x) is periodic, we should expect, by 
intuition at least, the solution ψ (x) to be periodic. It turns out that the solutions to 
Equation 5.83, which are called Bloch wavefunctions, are of the form

 ψk(x) = Uk(x) exp( jkx) [5.85]

where Uk(x) is a periodic function that depends on V(x) and has the same periodicity 
a as V(x). The term exp( jkx), of course, represents a traveling wave. We should 
remember that we have to multiply this by exp(−jEt∕ħ), where E is the energy, to 
get the overall wavefunction Ψ(x, t). Thus the electron wavefunction in the crystal 
is a traveling wave that is modulated by Uk(x).
 There are many such Bloch wavefunction solutions to the one-dimensional crys-
tal, each identified with a particular k value, say kn, which acts as a kind of quantum 
number. Each ψk(x) solution corresponds to a particular kn and represents a state with 
an energy Ek. The dependence of the energy Ek on the wavevector k is what we call 
the E−k diagram. Figure 5.51 shows a typical E−k diagram for the hypothetical 
one-dimensional solid for k values in the range −π∕a to +π∕a. Just as ħk is the 
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momentum of a free electron, ħk for the Bloch electron is the momentum involved 
in its interaction with external fields, for example, those involved in the photon 
absorption process. Indeed, the rate of change of ħk is the externally applied force 
Fext on the electron such as that due to an electric field (Fext = eE ). Thus, for the 
electron within the crystal,

 
d(ħk)

dt
= Fext

and consequently we call ħk the crystal momentum of the electron.15

 Inasmuch as the momentum of the electron in the x direction in the crystal is 
given by ħk, the E–k diagram is an energy versus crystal momentum plot. The 
states ψk(x) in the lower E–k curve constitute the wavefunctions for the valence 
electrons and thus correspond to the states in the VB. Those in the upper E–k curve, 
on the other hand, correspond to the states in the conduction band (CB) since they 
have higher energies. All the valence electrons at absolute zero of temperature there-
fore fill the states, particular kn values, in the lower E–k diagram.
 It should be emphasized that an E–k curve consists of many discrete points, each 
corresponding to a possible state, wavefunction ψk(x), that is allowed to exist in the 
crystal. The points are so close that we draw the E–k relationship as a continuous 
curve. It is clear from the E–k diagram that there is a range of energies, from Ev to 
Ec, for which there are no solutions to the Schrödinger equation and hence there are 
no ψk(x) with energies in Ev to Ec. Furthermore, we also note that the E–k behavior 
is not a simple parabolic relationship except near the bottom of the CB and the top 
of the VB.
 Above absolute zero of temperature, due to thermal excitation, however, some 
of the electrons from the top of the valence band will be excited to the bottom of 
the conduction band. According to the E–k diagram in Figure 5.51, when an electron 
and hole recombine, the electron simply drops from the bottom of the CB to the top 
of the VB without any change in its k value, so this transition is quite acceptable in 
terms of momentum conservation. We should recall that the momentum of the emit-
ted photon is negligible compared with the momentum of the electron. The E–k 
diagram in Figure 5.51 is therefore for a direct bandgap semiconductor.

 The simple E–k diagram sketched in Figure 5.51 is for a hypothetical one-
dimensional crystal in which each atom simply bonds with two neighbors. In real 
crystals, we have a three-dimensional arrangement of atoms with V(x, y, z) showing 
periodicity in more than one direction. The E–k curves are then not as simple as that 
in Figure 5.51 and often show unusual features. The E–k diagram for GaAs, which 

 15 The actual momentum of the electron, however, is not ħk because

d(ħk)

dt
≠ Fexternal + Finternal

 where Fexternal + Finternal are all forces acting on the electron. The true momentum pe satisfies

dpe

dt
= Fexternal + Finternal

 However, as we are interested in interactions with external forces such as an applied field, we treat ħk as if it 
were the momentum of the electron in the crystal and use the name crystal momentum.
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is shown in Figure 5.52a, as it turns out, has main features that are quite similar to 
that sketched in Figure 5.51. GaAs is therefore a direct bandgap semiconductor in 
which electron–hole pairs can recombine directly and emit a photon. It is quite 
apparent that light emitting devices use direct bandgap semiconductors to make use 
of direct recombination.
 In the case of Si, the diamond crystal structure leads to an E–k diagram that has 
the essential features depicted in Figure 5.52b. We notice that the minimum of the 
CB is not directly above the maximum of the VB. An electron at the bottom of the 
CB therefore cannot recombine directly with a hole at the top of the VB because, 
for the electron to fall down to the top of the VB, its momentum must change from 
kcb to kvb, which is not allowed by the law of conservation of momentum. Thus 
direct electron–hole recombination does not take place in Si and Ge. The recombina-
tion process in these elemental semiconductors occurs via a recombination center at 
an energy level Er. The electron is captured by the defect at Er, from where it can 
fall down into the top of the VB. The indirect recombination process is illustrated 
in Figure 5.52c. The energy of the electron is lost by the emission of phonons, that 
is, lattice vibrations. The E–k diagram in Figure 5.52b for Si is an example of an 
indirect bandgap semiconductor.

 In some indirect bandgap semiconductors such as GaP, the recombination of the 
electron with a hole at certain recombination centers results in photon emission. The 
E–k diagram is similar to that shown in Figure 5.52c except that the recombination 
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centers at Er are generated by the purposeful addition of nitrogen impurities to GaP. 
The electron transition from Er to Ev involves photon emission.

Electron Motion and Drift We can understand the response of a conduction 
band electron to an applied external force, for example, an applied field, by examin-
ing the E–k diagram. Again, for simplicity, we consider the one-dimensional crystal. 
The electron is wandering around the crystal quite randomly due to scattering from 
lattice vibrations. Thus the electron moves with a certain k value in the +x direction, 
say k+, as illustrated in the E–k diagram of Figure 5.53a. When it is scattered by 
a lattice vibration, its k value changes, perhaps to k−, which is also shown in Fig-
ure 5.53a. This process of k changing randomly from one scattering to another 
scattering process continues all the time, so over a long time the average value of k 
is zero; that is, average k+ is the same as average k−.
 When an electric field is applied, say in the −x direction, then the electron gains 
momentum in the +x direction from the force of the field eEx. With time, while the 
electron is not scattered, it moves up in the E–k diagram from k1+ to k2+ to k3+ and 
so on until a lattice vibration randomly scatters the electron to say k1− (or to some 
other random k value) as shown in Figure 5.53b. Over a long time, the average of 
all k+ is no longer equal to the average of all k− and there is a net momentum in the 
+x direction, which is tantamount to a drift in the same direction.

Effective Mass The usual definition of inertial mass of a particle in classical 
physics is based on

 Force = Mass × Acceleration

 F = ma
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Figure 5.53 (a) In the absence of a field, over a long time, the average of all k values is zero; there 

is no net momentum in any one particular direction. (b) In the presence of a field in the −x direction, 
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When we treat the electron as a wave within the semiconductor crystal, we have to 
determine whether we can still, in some way, use the convenient classical F = ma 
relation to describe the motion of an electron under an applied force such as eEx 
and, if so, what the apparent mass of the electron in the crystal should be.
 We will evaluate the velocity and acceleration of the electron in the CB in 
response to an electric field Ex along −x that imposes an external force Fext = eEx 
in the +x direction, as shown in Figure 5.53b. Our treatment will make use of the 
quantum mechanical E–k diagram.
 Since we are treating the electron as a wave, we have to evaluate the group 
velocity vg, which, by definition, is vg = dω∕dk. We know that the time dependence 
of the wavefunction is exp(−jEt∕ħ) where the energy E = ħω (ω is an “angular 
frequency” associated with the wave motion of the electron). Both E and ω depend 
on k. Thus, the group velocity is

 vg =
1
ħ

 
dE

dk
 [5.86]

 Thus the group velocity is determined by the gradient of the E–k curve. In 
the presence of an electric field, the electron experiences a force Fext = eEx from 
which it gains energy and moves up in the E–k diagram until, later on, it collides 
with a lattice vibration, as shown in Figure 5.53b. During a small time interval 
δt between collisions, the electron moves a distance vg δt and hence gains energy 
δE, which is

 δE = Fextvg δt [5.87]

 To find the acceleration of the electron and the effective mass, we somehow 
have to put this equation into a form that looks like Fext = mea, where a is the 
acceleration. From Equation 5.87, the relationship between the external force and 
energy is

 Fext =
1
vg

 
dE

dt
= ħ 

dk

dt
 [5.88]

where we used Equation 5.86 for vg in Equation 5.87. Equation 5.88 is the reason 
for interpreting ħk as the crystal momentum inasmuch as the rate of change of ħk 
is the externally applied force.
 The acceleration a is defined as dvg∕dt. We can use Equation 5.86,

 a =
dvg

dt
=

d[1
ħ

 
dE

dk ]
dt

=
1
ħ

 
d 

2E

dk2  
dk

dt
 [5.89]

 From Equation 5.89, we can substitute for dk∕dt in Equation 5.88, which is then 
a relationship between Fext and a of the form

 Fext =
ħ2

[d 
2E

dk2 ]
a [5.90]
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 We know that the response of a free electron to the external force is Fext = mea, 
where me is its mass in vacuum. Therefore, it is quite clear from Equation 5.90 that 
the effective mass of the electron in the crystal is

 m*e = ħ2[d 
2E

dk2 ]
−1

 [5.91]

 Thus, the electron responds to an external force and moves as if its mass were 
given by Equation 5.91. The effective mass obviously depends on the E–k relation-
ship, which in turn depends on the crystal symmetry and the nature of bonding 
between the atoms. Its value is different for electrons in the CB and for those in the 
VB, and moreover, it depends on the energy of the electron since it is related to the 
curvature of the E–k behavior (d 2E∕dk2). Further, it is clear from Equation 5.91 that 
the effective mass is a quantum mechanical quantity inasmuch as the E–k behavior 
is a direct consequence of the application of quantum mechanics (the Schrödinger 
equation) to the electron in the crystal.
 It is interesting that, according to Equation 5.91, when the E–k curve is a down-
ward concave as at the top of a band (e.g., Figure 5.51), the effective mass of an 
electron at these energies in a band is then negative. What does a negative effective 
mass mean? When the electron moves up on the E–k curve by gaining energy from 
the field, it actually decelerates, that is, moves more slowly. Its acceleration is there-
fore in the opposite direction to an electron at the bottom of the band. Electrons in 
the CB are at the bottom of a band, so their effective masses are positive quantities. 
At the top of a valence band, however, we have plenty of electrons. These electrons 
have negative effective masses and under the action of a field, they decelerate. Put 
differently, they accelerate in the opposite direction to the applied external force Fext. 
It turns out that we can describe the collective motion of these electrons near the 
top of a band by considering the motion of a few holes with positive masses.
 It should be mentioned that Equation 5.91 defines the meaning of the effective 
mass in quantum mechanical terms. Its usefulness as a concept lies in the fact that 
we can measure it experimentally, for example, by cyclotron resonance experi-
ments, and have actual values for it. This means we can simply replace me by m*e 
in equations that describe the effect of an external force on electron transport in 
semiconductors.

Holes To understand the concept of a hole, we consider the E–k curve correspond-
ing to energies in the VB, as shown in Figure 5.54a. If all the states are filled, then 
there are no empty states for the electrons to move into and consequently an electron 
cannot gain energy from the field. For each electron moving in the positive x direc-
tion with a momentum ħk+, there is a corresponding electron with an equal and 
opposite momentum ħk−, so there is no net motion. For example, the electron at b 
is moving toward the right with k+b, but its effect is canceled by that at b′ moving 
toward the left with k−b′. This cancellation of momenta by electron pairs applies to 
all the electrons since the VB is assumed to be full. Thus, a full VB cannot contrib-
ute to the electric current.
 Suppose that one of the states, labeled as b in Figure 5.54b, near the top of the 
valence band has a missing electron, or a hole, because the electron normally at b 

Effective 

mass
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has been removed by some means of excitation to the conduction band. It is imme-
diately obvious that the motion of the electron at b′ toward the left, that is, k−b′, is 
now not canceled, which means that this electron makes a net contribution to the 
current. We realize that the reason the presence of a hole makes conduction possible 
is the fact that the momenta of all the VB electrons are canceled except that at b′. 
It is also clear that in reaching this conclusion, we had to consider all the electrons 
in the valence band.
 Let us maintain strict sign rules so that quantities such as the field (Ex), group 
velocity (vg), and acceleration (a) along the +x direction are positive and those along 
the −x direction are negative. If Ex is along the +x direction, then the acceleration 
of a free electron from force/mass is [(−e)(Ex)]∕me, which is negative and along −x 
as we expect. Similarly, an electron at the bottom of the CB has a positive effective 
mass and an acceleration that is also negative. Our treatment of conduction in met-
als by electrons in Chapter 2 inherently assumed that electrons accelerated in the 
opposite direction to the applied field, that is, positive effective mass.
 However, the electrons at the top of the VB have a negative effective mass, 
which we can write as −∣m*e ∣. The acceleration a of the electron at b′ contributing 

to the current is

 a =
−eEx

−∣m*e 
∣

=
+eEx

+∣m*e 
∣

which is positive, a along Ex. This means that the acceleration of an electron with 

a negative effective mass at the top of a VB is equivalent to the acceleration of a 

positive charge +e with an effective mass ∣m*e ∣. Put differently, we therefore can 

equivalently describe current conduction by the motion of the hole alone by assign-

ing to it a positive charge and a positive effective mass.

 “The hole is really an abstraction which gives a convenient way of describing 

the behavior of the electrons. The behavior of the holes is essentially a shorthand 

way of describing the behavior of all the electrons.” Willian Shockley. (Electrons 

and Holes in Semiconductors, Van Nostrand Company Inc., New York, 1950; Sections 7.6 

and 7.7.)
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bb′
Figure 5.54 (a) In a full valence band, there is no net  

contribution to the current. There are equal numbers of 

electrons (e.g., at b and b′) with opposite momenta. (b) If 

there is an empty state (hole) at b at the top of the band, 

then the electron at b′ contributes to the current.
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EFFECTIVE MASS Show that the effective mass of a free electron is the same as its mass 
in vacuum.

SOLUTION

The expression for the energy of a free electron is

 E =
(ħk)2

2me

 The effective mass, by definition, is given by

 m*e 
= ħ2[d 

2E

dk2 ]
−1

 Substituting E = (ħk)2∕2me we get m*e  = me. Since the energy of a conduction electron 
in a metal, within the nearly free electron model, will also have an energy E = (ħk)2∕2me, 
we can surmise that the effective mass of the electron in a metal is the same as the mass in 
vacuum. (However, as soon as we introduce a periodic PE variation inside a crystal as in 
Figure 5.50, in general, the effective mass is not the same as the mass in vacuum.)

 EXAMPLE 5.26

CURRENT DUE TO A MISSING ELECTRON IN THE VB First, let us consider a completely 
full valence band that contains, say, N electrons. N∕2 of these are moving with momentum 
in the +x, and N∕2 in the −x direction. Suppose that the crystal is unit volume. An electron 
with charge −e moving with a group velocity vgi contributes to the current by an amount −evgi. 
We can determine the current density JN due to the motion of all the electrons (N of them) 
in the band,

 JN = −e∑
N

i=1
vgi = 0

 JN is zero because for each value of vgi, there is a corresponding velocity equal in mag-
nitude but opposite in direction (b and b′ in Figure 5.54a). Our conclusion from this is that 
the contribution to the current density from a full valence band is nil, as we expect.
 Suppose now that the jth electron is missing (b in Figure 5.54b). The net current density 
is due to N − 1 electrons in the band, so

 JN−1 = −e ∑
N

i=1,i≠j

vgi [5.92]

where the summation is for i = 1 to N and i ≠ j ( jth electron is missing). We can write the sum 
as summation to N including the jth electron and minus the missing jth electron contribution,

 JN−1 = −e∑
N

i=1
vgi − (−evg j)

that is,

 JN−1 = +evgj [5.93]

where we used JN = 0. We see that when there is a missing electron, there is a net current 
due to that empty state ( jth). The current appears as the motion of a charge +e with a velocity 
vgj, where vgj is the group velocity of the missing electron. In other words, the current is due 
to the motion of a positive charge +e at the site of the missing electron at kj, which is what 

 EXAMPLE 5.27
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we call a hole. One should note that Equation 5.92 describes the current by considering the 
motions of all the N − 1 electrons, whereas Equation 5.93 describes the same current by 
simply considering the missing electron as if it were a positively charged particle (+e) mov-
ing with a velocity equal to that of the missing electron. Equation 5.93 is the convenient 
description universally adopted for a valence band containing missing electrons.

5.14  INDIRECT RECOMBINATION

We consider the recombination of minority carriers in an extrinsic indirect bandgap 
semiconductor such as Si or Ge. As an example, we consider the recombination of 
electrons in a p-type semiconductor. In an indirect bandgap semiconductor, the 
recombination mechanism involves a recombination center, a third body that may be 
a crystal defect or an impurity, in the recombination process to satisfy the require-
ments of conservation of momentum. We can view the recombination process as 
follows. Recombination occurs when an electron is captured by the recombination 
center at the energy level Er. As soon as the electron is captured, it will recombine 
with a hole because holes are abundant in a p-type semiconductor. In other words, 
since there are many majority carriers, the limitation on the rate of recombination 
is the actual capture of the minority carrier by the center. Thus, if τe is the electron 
recombination time, since the electrons will have to be captured by the centers, τe 
is given by

 τe =
1

Sr Nrvth
 [5.94]

where Sr is the capture (or recombination) cross section of the center, Nr is the 
concentration of centers, and vth is the mean speed of the electron that you may take 
as its effective thermal velocity.
 Equation 5.94 is valid under small injection conditions, that is, ppo ≫ np. There 
is a more general treatment of indirect recombination called the Shockley–Read–Hall 
statistics of indirect recombination and generation, which is treated in more advanced 
semiconductor physics textbooks. That theory eventually arrives at Equation 5.94 for 
low-level injection conditions. We derived Equation 5.94 from a purely physical 
reasoning.
 Gold, for example, is sometimes added to silicon to aid recombination in fast 
switching devices. It is found that the minority carrier recombination time is inversely 
proportional to the gold concentration, following Equation 5.94.

5.15  AMORPHOUS SEMICONDUCTORS

Up to now we have been dealing with crystalline semiconductors, those crystals that 
have perfect periodicity and are practically flawless unless purposefully doped for 
use in device applications. They are used in numerous solid-state devices including 
large-area solar cells. Today’s microprocessor uses a single crystal of silicon that con-
tains several billion transistors. There are, however, various applications in electronics 
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that require inexpensive large-area devices to be fabricated and hence require a semi-
conductor material that can be prepared in a large area. In other applications, the 
semiconductor material is required to be deposited as a film on a flexible substrate 
for use as a sensor. Best known examples of large-area devices are flat panel displays 
based on thin-film transistors (TFTs), inexpensive solar cells, photoconductor drums 
(for printing and photocopying), image sensors, and newly developed X-ray image 
detectors. Many of these applications typically use hydrogenated amorphous silicon, 
a-Si:H.
 A distinctive property of an electron in a crystalline solid is that its wavefunction 
is a traveling wave, a Bloch wave, ψk, as in Equation 5.85. The Bloch wavefunction 
is a consequence of the periodicity of an electron’s potential energy PE, V(x), within 
the crystal. One can view the electron’s motion as tunneling through the periodic 
potential energy hills. The wavefunctions ψk form extended states because they 
extend throughout the whole crystal. The electron belongs to the whole crystal, and 
there is an equal probability of finding an electron in any unit cell. The wavevector 
k in this traveling wave ψk acts as a quantum number. There are many discrete kn 
values, which form a nearly continuous set of k values (see Figure 5.51). We can 
describe the interaction of the electron with an external force, or with photons and 
phonons, by assigning a momentum ħk to the electron, which is called the electron’s 
crystal momentum. The electron’s wavefunction ψk is frequently scattered by lattice 
vibrations (or by defects or impurities) from one k-value to another, e.g., from ψk to 
ψk′. The scattering of the wavefunction imposes a mean free path ℓ on the electron’s 
motion, that is, a mean distance over which a wave can travel without being scatter-
ing. Over the distance ℓ, the wavefunction is coherent, that is, well defined and 
predictable as a traveling Bloch wave; ℓ is also known as the coherence length of 
the wavefunction. The mobility is determined by the mean free path ℓ, which at room 
temperature is typically of the order of several hundreds of mean interatomic separa-
tions. The crystal periodicity and the unit cell atomic structure control the types of 
Bloch wave solutions one can obtain to the Schrödinger equation. The solutions allow 
the electron energy E to be examined as a function of k (or momentum ħk) and these 
E − k diagrams categorize crystalline semiconductors into two classes: direct band-
gap (GaAs type) and indirect bandgap (Si type) semiconductors.
 Hydrogenated amorphous silicon (a-Si:H) is the noncrystalline form of silicon 
in which the structure has no long-range order but only short-range order; that is, 
we can only identify the nearest neighbors of a given atom. Each Si atom has four 
neighbors as in the crystal, but there is no periodicity or long-range order as illus-
trated in Figure 1.61. Without the hydrogen, pure a-Si would have dangling bonds. 
In such a structure sometimes a Si atom would not be able to find a fourth neighbor-
ing Si atom to bond with and will be left with a dangling bond as in Figure 1.61b. 
The hydrogen in the structure (∼10 percent) passivates (i.e., neutralizes) the unsatis-
fied (“dangling”) bonds inherent in a noncrystalline structure and so reduces the 
density of dangling bonds or defects. a-Si:H belongs to a class of solids called 
amorphous semiconductors that do not follow typical crystalline concepts such as 
Bloch wavefunctions. First, due to the lack of periodicity, we cannot describe the 
electron as a Bloch wave. Consequently, we cannot use a wavevector k, and hence ħk, 
to describe the electron’s motion. These semiconductors however do have a short-range 
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order and also possess an energy bandgap that separates a conduction band and a 
valence band. A window glass has a noncrystalline structure but also has a bandgap, 
which makes it transparent. Photons with energies less than the bandgap energy can 
pass through the window glass.
 The examination of the structure of a-Si:H in Figure 1.61c should make it appar-
ent that the potential energy V(x) of the electron in this noncrystalline structure 
fluctuates randomly from site to site. In some cases, the local changes in V(x) can 
be quite strong, forming effective local PE wells (obviously finite wells). Such fluc-
tuations in the PE within the solid can capture or trap electrons, that is, localize 
electrons at certain spatial locations. A localized electron will have a wavefunction 
that resembles the wavefunction in the hydrogen atom, so the probability of finding 
the electron is localized to the site. Such locations that can trap electrons, give them 
localized wavefunctions, are called localized states. The amorphous structure also 
has electrons that possess extended wavefunctions; that is, they belong to the whole 
solid. These extended wavefunctions are distinctly different than those in the crystal 
because they have very short coherence lengths due to the random potential fluc-
tuations; the electron is scattered from site to site and hence the mean free path is 
of the order of a few atomic spacings. The extended wavefunction has random phase 
fluctuations. Figure 5.55 compares localized and extended wavefunctions in an amor-
phous semiconductor.
 Electronic properties of all amorphous semiconductors can be explained in terms 
of the energy distribution of their density of states (DOS) function, g(E) . The DOS 
function has well-defined energies Ev and Ec that separate extended states from local-
ized states as in Figure 5.55. There is a distribution of localized states, called tail 

states below Ec and above Ev. The usual bandgap Ec − Ev is called the mobility 

gap. The reason is that there is a change in the character of charge transport, and 
hence in the carrier mobility, in going from extended states above Ec to localized 
states below Ec.

E

Extended states

Localized states

Tail states

Defects

Tail states

Extended states
VB

CB

Ev

ψlocalized

ψlocalized

ψextended

x

x

x

Envelope

Mobility
gap

Ec

g(E)

Figure 5.55 Schematic representation of the density of states g(E ) versus energy E for an amorphous  

semiconductor and the associated electron wavefunctions for an electron in the extended and localized states.



508 C H A P T E R  5  ∙ SEMICONDUCTORS

 Electron transport above Ec in the conduction band is dominated by scattering 
from random potential fluctuations arising from the disordered nature of the struc-
ture. The electrons are scattered so frequently that their effective mobility is much 
less than what it is in crystalline Si: μe in a-Si:H is typically 5–10 cm2 V−1 s−1 
whereas it is 1400 cm2 V−1 s−1 in a single crystal Si. Electron transport below Ec, 
on the other hand, requires an electron to jump, or hop, from one localized state to 
another, aided by thermal vibrations of the lattice, in an analogous way to the dif-
fusion of an interstitial impurity in a crystal. We know from Chapter 1 that the jump 
or diffusion of the impurity is a thermally activated process because it relies on the 
thermal vibrations of all the crystal atoms to occasionally give the impurity enough 
energy to make that jump. The electron’s mobility associated with this type of hop-
ping motion among localized states is thermally activated, and its value is small. 
Thus, there is a change in the electron mobility across Ec, which is called the con-
duction band mobility edge.

 The localized states (frequently simply called traps) between Ev and Ec have a 
profound effect on the overall electronic properties. The tail localized states are a 
direct result of the structural disorder that is inherent in noncrystalline solids, varia-
tions in the bond angles and length. Various prominent peaks and features in the 
DOS within the mobility gap have been associated with possible structural defects, 
such as under- and overcoordinated atoms in the structure, dangling bonds, and dop-
ants. Electrons that drift in the conduction band can fall into localized states and 
become immobilized (trapped) for a while. Thus, electron transport in a-Si:H occurs 
by multiple trapping in shallow localized states. The effective electron drift mobility 
in a-Si:H is therefore reduced to ∼1 cm2 V−1 s−1. Low drift mobilities obviously 
prevent the use of amorphous semiconductor materials in high-speed or high-gain 
electronic applications. Nonetheless, low-speed electronics is just as important as 
high-speed electronics in the electronics market in such applications as flat panel 
displays, solar cells, and image sensors. A low-speed flat panel display made from 
hydrogenated amorphous silicon (a-Si:H) TFTs costs very roughly the same as a 
high-speed crystalline Si microchip that runs the CPU.

DEFINING TERMS

consequence of the periodicity of an electron’s poten-
tial energy within the crystal.

Compensated semiconductor contains both donors 
and acceptors in the same crystal region that compen-
sate for each other’s effects. For example, if there are 
more donors than acceptors, Nd > Na, then some of the 
electrons released by donors are captured by acceptors 
and the net effect is that Nd − Na number of electrons 
per unit volume are left in the CB.

Conduction band (CB) is a band of energies for the 
electron in a semiconductor where it can gain energy 

Acceptor atoms are dopants that have one less valency 
than the host atom. They therefore accept electrons 
from the VB and thereby create holes in the VB, which 
leads to a p > n and hence to a p-type semiconductor.

Average energy of an electron in the CB is 32 kT  as if the 
electrons were obeying Maxwell–Boltzmann statistics. 
This is only true for a nondegenerate semiconductor.

Bloch wave refers to an electron wavefunction of the 
form ψk = Uk(x) exp(jkx), which is a traveling wave 
that is modulated by a function Uk(x) that has the peri-
odicity of the crystal. The Bloch wavefunction is a 



 DEFINING TERMS 509

(ħk)2∕m*e  where ħk is the momentum and m*e  is the ef-
fective mass of the electron, which is determined from 
the E–k behavior.
Excess carrier concentration is the excess concen-
tration above the thermal equilibrium value. Excess 
carriers are generated by an external excitation such as 
photogeneration.
Extended state refers to an electron wavefunction ψk 
whose magnitude does not decay with distance; that is, 
it is extended in the crystal. An extended wavefunction 
of an electron in a crystal is a Bloch wave, that is,  
ψk = Uk(x) exp( jkx), which is a traveling wave that is 
modulated by a function Uk(x) that has the periodicity 
of the crystal. There is an equal probability of finding 
an electron in any unit cell of the crystal. Scattering of 
an electron in the crystal by lattice vibrations or impu-
rities, etc., corresponds to the electron being scattered 
from one ψk to another ψk′, i.e., a change in the wave-
vector from k to k′. Valence and conduction bands in a 
crystal have extended states.
Extrinsic semiconductor is a semiconductor that has 
been doped so that the concentration of one type of 
charge carrier far exceeds that of the other. Adding do-
nor impurities releases electrons into the CB and n far 
exceeds p; thus, the semiconductor becomes n-type.
Fermi energy or level (EF) may be defined in several 
equivalent ways. The Fermi level is the energy level 
corresponding to the energy required to remove an 
electron from the semiconductor; there need not be any 
actual electrons at this energy level. The energy needed 
to remove an electron defines the work function Φ. We 
can define the Fermi level to be Φ below the vacuum 
level. EF can also be defined as that energy value below 
which all states are full and above which all states are 
empty at absolute zero of temperature. EF can also be 
defined through a difference. A difference in the Fermi 
energy ΔEF in a system is the external electrical work 

done per electron either on the system or by the system 

such as electrical work done when a charge e moves 

through an electrostatic PE difference is eΔV. It can be 

viewed as a fundamental material property.

Intrinsic carrier concentration (ni) is the electron 

concentration in the CB of an intrinsic semiconductor. 

The hole concentration in the VB is equal to the elec-

tron concentration.

from an applied field and drift and thereby contribute 
to electrical conduction. The electron in the CB be-
haves as if it were a “free” particle with an effective 
mass m*e .

Degenerate semiconductor has so many dopants that 

the electron concentration in the CB, or hole concen-

tration in the VB, is comparable with the density of 

states in the band. Consequently, the Pauli exclusion 

principle is significant and Fermi–Dirac statistics 

must be used. The Fermi level is either in the CB for a 
n+-type degenerate or in the VB for a p+-type degenerate 
semiconductor. The superscript + indicates a heavily 
doped semiconductor.

Diffusion is a random process by which particles move 
from high-concentration regions to low-concentration 
regions.

Donor atoms are dopants that have a valency one more 
than the host atom. They therefore donate electrons to 
the CB and thereby create electrons in the CB, which 
leads to n > p and hence to an n-type semiconductor.

Effective density of states (Nc) at the CB edge is a 
quantity that represents all the states in the CB per unit 
volume as if they were all at Ec. Similarly, Nv at the VB 
edge is quantity that represents all the states in the VB 
per unit volume as if they were all at Ev.

Effective mass (m*e ) of an electron is a quantum me-
chanical quantity that behaves like the inertial mass in 
classical mechanics, F = ma, in that it measures the 
object’s inertial resistance to acceleration. It relates the 
acceleration a of an electron in a crystal to the applied 
external force Fext by Fext = m*e a. The external force is 
most commonly the force of an electric field eE and 
excludes all internal forces within the crystal.

Einstein relation relates the diffusion coefficient D 
and the drift mobility μ of a given species of charge 
carriers through (D∕μ) = (kT∕e).

Electron affinity ( χ) is the energy required to remove 
an electron from Ec to the vacuum level.

Energy of the electron in the crystal, whether in the 
CB or VB, depends on its momentum ħk through the 
E–k behavior determined by the Schrödinger equa-
tion. E–k behavior is most conveniently represented 
graphically through E–k diagrams. For example, for an 
electron at the bottom of the CB, E increases as 
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Minority carrier lifetime (τ) is the mean time for a 
minority carrier to disappear by recombination. 1∕τ is 
the mean probability per unit time that a minority car-
rier recombines with a majority carrier.

Minority carriers are electrons in a p-type and holes 
in an n-type semiconductor.

Nondegenerate semiconductor has electrons in the 
CB and holes in the VB that obey Boltzmann statistics. 
Put differently, the electron concentration n in the CB 
is much less than the effective density of states Nc and 
similarly p ≪ Nv. It refers to a semiconductor that has 
not been heavily doped so that these conditions are 
maintained; typically, doping concentrations are less 
than 1018 cm−3.

Ohmic contact is a contact that can supply charge 
carriers to a semiconductor at a rate determined by 
charge transport through the semiconductor and not by 
the contact properties itself. Thus the current is limited 
by the conductivity of the semiconductor and not by 
the contact.

Peltier effect is the phenomenon of heat absorption or 
liberation at the contact between two dissimilar materi-
als as a result of a dc current passing through the junc-
tion. The rate of heat generation Q′ is proportional to 

the dc current I passing through the contact so that 

Q′  = +Π I, where Π is called the Peltier coefficient 
and  the sign depends on whether heat is absorbed or 
released.

Phonon is a quantum of energy associated with the 
vibrations of the atoms in the crystal, analogous to 
the photon. A phonon has an energy ħω where ω is the 
frequency of the lattice vibration.

Photoconductivity is the change in the conductivity 
from dark to light, σlight − σdark.

Photogeneration is the excitation of an electron into 
the CB by the absorption of a photon. If the photon is 
absorbed by an electron in the VB, then its excitation to 
the CB will generate an EHP.

Photoinjection is the photogeneration of carriers in 
the semiconductor by illumination. Photogeneration 
may be VB to CB excitation, in which case electrons 
and holes are generated in pairs.

Piezoresistivity is the change in the resistivity of a 
semiconductor due to an applied mechanical stress σm. 

Intrinsic semiconductor has an equal number of 
electrons and holes due to thermal generation across 
the bandgap Eg. It corresponds to a pure semiconduc-
tor crystal in which there are no impurities or crystal 
defects.

Ionization energy is the energy required to ionize an 
atom, for example, to remove an electron.

Ionized impurity scattering limited mobility is the 
mobility of the electrons when their motion is limited 
by scattering from the ionized impurities in the semi-
conductor (e.g., donors and acceptors).

k is the wavevector of the electron’s wavefunction. In 
a crystal the electron wavefunction, ψk(x) is a modulated 

traveling wave of the form

ψk(x) = Uk(x) exp( jkx)

where k is the wavevector and Uk(x) is a periodic func-
tion that depends on the PE of interaction between the 
electron and the lattice atoms. k identifies all possible 
states ψk(x) that are allowed to exist in the crystal. ħk is 
called the crystal momentum of the electron as its rate 
of change is the externally applied force to the electron, 
d(ħk)∕dt = Fexternal.

Lattice-scattering-limited mobility is the mobility 
of the electrons when their motion is limited by scatter-
ing from thermal vibrations of the lattice atoms.

Localized state refers to an electron wavefunction 
ψlocalized whose magnitude, or the envelope of the wave-
function, decays with distance, which localizes the 
electron to a spatial region in the semiconductor. For 
example, a 1s-type wavefunction of the form ψlocalized ∝ 
exp(−αr), where r is the distance measured from some 
center at r = 0, and α is a positive constant, would rep-
resent a localized state centered at r = 0.

Majority carriers are electrons in an n-type and holes 
in a p-type semiconductor.

Mass action law in semiconductor science refers to 
the law np = n2

i, which is valid under thermal equilib-
rium conditions and in the absence of external biases 
and illumination.

Minority carrier diffusion length (L) is the mean 
distance a minority carrier diffuses before recombina-
tion, L = √Dτ, where D is the diffusion coefficient 
and τ is the minority carrier lifetime.
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encourages electron emissions over the barrier e(Vo − V). 
Under reverse bias, electrons have to overcome ΦB and 
the current is very small.

Thermal equilibrium carrier concentrations are 
those electron and hole concentrations that are solely 
determined by the statistics of the carriers and the den-
sity of states in the band. Thermal equilibrium concen-
trations obey the mass action law, np = n2

i.

Thermal velocity (vth) of an electron in the CB is its 
mean (or effective) speed in the semiconductor as it 
moves around in the crystal. For a nondegenerate semi-
conductor, it can be obtained simply from 12 m*e v 

2
th = 3

2 kT.

Vacuum level is the energy level where the PE of the 
electron and the KE of the electron are both zero. It 
defines the energy level where the electron is just free 
from the solid.

Valence band (VB) is a band of energies for the elec-
trons in bonds in a semiconductor. The valence band is 
made of all those states (wavefunctions) that constitute 
the bonding between the atoms in the crystal. At abso-
lute zero of temperature, the VB is full of all the bond-
ing electrons of the atoms. When an electron is excited 
to the CB, this leaves behind an empty state, which is 
called a hole. It carries a positive charge and behaves 
as if it were a “free” positively charged entity with an 
effective mass of m*h . It moves around the VB by having 
a neighboring electron tunnel into the unoccupied 
state.

Work function (Φ) is the energy required to remove 
an electron from the solid to the vacuum level.

Elastoresistivity refers to the change in the resistivity 
due to an induced strain in the substance. Application 
of stress normally leads to strain, so piezoresistivity 
and elastoresistivity refer to the same phenomenon. In 
simple terms, the change in the resistivity may be due 
to a change in the concentration of carriers or due to a 
change in the drift mobility of the carriers. The frac-
tional change in the resistivity δρ∕ρ is proportional to 
the applied stress σm, and the proportionality constant 
is called the piezoresistive coefficient π (1/Pa units), 
which is a tensor quantity because a stress in one direc-
tion in a crystal can alter the resistivity in another 
 direction.

Recombination of an electron–hole pair involves 
an electron in the CB falling down in energy into an 
empty state (hole) in the VB to occupy it. The result is 
the annihilation of an EHP. Recombination is direct 
when the electron falls directly down into an empty 
state in the VB as in GaAs. Recombination is indirect 
if the electron is first captured locally by a defect or an 
impurity, called a recombination center, and from there 
it falls down into an empty state (hole) in the VB as in 
Si and Ge.

Schottky junction is a contact between a metal and a 
semiconductor that has rectifying properties. For a 
metal/n-type semiconductor junction, electrons on the 
metal side have to overcome a potential energy barrier 
ΦB to enter the conduction band of the semiconductor, 
whereas the conduction electrons in the semiconductor 
have to overcome a smaller barrier eVo to enter the 
metal. Forward bias decreases eVo and thereby greatly 

QUESTIONS AND PROBLEMS

5.1 Bandgap and photodetection

a. Determine the maximum value of the energy gap that a semiconductor, used as a photoconductor, 
can have if it is to be sensitive to yellow light (600 nm).

b. A photodetector whose area is 5 × 10−2 cm2 is irradiated with yellow light whose intensity is 
2 mW cm−2. Assuming that each photon generates one electron–hole pair, calculate the number 
of pairs generated per second.

c. From the known energy gap of the semiconductor GaAs (Eg = 1.42 eV), calculate the primary 
wavelength of photons emitted from this crystal as a result of electron–hole recombination.

d. Is the above wavelength visible?
e. Will a silicon photodetector be sensitive to the radiation from a GaAs laser? Why?
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5.2 Intrinsic Ge Using the values of the density of states effective masses m*e and m*
h in Table 5.1, 

calculate the intrinsic concentration in Ge. What is ni if you use Nc and Nv from Table 5.1? Calculate 
the intrinsic resistivity of Ge at 300 K.

5.3 Fermi level in intrinsic semiconductors Using the values of the density of states effective masses 
m*e and m*

h in Table 5.1, find the position of the Fermi energy in intrinsic Si, Ge, and GaAs with 
respect to the middle of the bandgap (Eg∕2).

5.4 Extrinsic Si A Si crystal has been doped with P. The donor concentration is 1015 cm−3. Find the 
conductivity and resistivity of the crystal.

5.5 Extrinsic Si Find the concentration of acceptors required for a p-type Si crystal to have a resistivity 
of 1 Ω cm.

5.6 Minimum conductivity

a. Consider the conductivity of a semiconductor, σ = enμe + epμh. Will doping always increase the 
conductivity?

b. Show that the minimum conductivity for Si is obtained when it is p-type doped such that the 
hole concentration is

 pm = ni√ μe

μh

 and the corresponding minimum conductivity (maximum resistivity) is

 σmin = 2eni √μeμh

c. Calculate pm and σmin for Si and compare with intrinsic values.

5.7 Ionized impurity scattering and extrinsic Si The drift mobility of electrons and holes due to 
scattering from ionized impurities such as donors or acceptors at room temperature can be empirically 
represented by a simple equation of the form

 μ ≈ μmin +
μmax − μmin

1 + (Nd∕Nref)
α  [5.95]

 in which Nd is the total ionized dopant concentration (ionized donors and acceptors summed together), 
and μmin, μmax, Nref, and a set of parameters that depend on whether μ is for electrons or holes, the 
semiconductor material and the dopant type. Table 5.4 lists typical values. Equation 5.95 is usually 
restricted to the range Nd < 1019 cm−3. (Note that the scattering by thermal vibrations is also included 
in Equation 5.95 through μmax.)
a. Find the donor (P) concentration for an n-type Si crystal whose resistivity should be 0.1 Ω cm.
b. Find the acceptor (B) concentration for an p-type Si crystal whose resistivity should be  

0.1 Ω cm.

Ionized dopant 

scattering 

limited mobility

Table 5.4  Ionized dopant scattering controlled drift mobility parameters in  

μ ≈ μmin + (μmax − μmin)∕[1 + (Nd∕Nref)
α]

Material μmin (cm2 V−1 s−1) μmax (cm2 V−1 s−1) Nref cm−3 α

Si electrons 68.5 1414 9.2 × 1016 0.711
Si holes 44.9 470.5 2.23 × 1017 0.719
GaAs electrons 500 9400 6.0 × 1016 0.394
GaAs holes 20 491.5 1.48 × 1017 0.38
InP electrons 0 5000 4.0 × 1017 0.45
InP holes 10 170 4.87 × 1018 0.62

 NOTE: Data selectively combined from various sources. Room temperature values.
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5.8 Intrinsic and Extrinsic III–V semiconductors InP is a III–V semiconductor. Calculate the intrin-
sic concentration ni from Nc, Nv, and Eg in Table 5.1. What is the intrinsic conductivity? Consider a 
p-type InP crystal has been doped with Zn (acceptors) with concentration 2 × 1017 cm−3. Find the 
conductivity of this p-InP. If instead of Zn we had used Te (donors) with the same concentration, 
what would be the conductivity? Use Table 5.4 for the electron and hole drift mobilities in InP.

5.9 Extrinsic III–V semiconductors GaAs is a III–V semiconductor. Suppose an p-type GaAs crystal has 
been doped with Zn acceptor atoms in the amount 1017 cm−3. Find the resistivity of this p-GaAs. Con-
sider now an n-type GaAs dope with Se donor atoms. What should be the Se concentration so that 
n-GaAs and p-GaAs have the same resistivity? Use Table 5.4 for the electron drift mobility in GaAs.

5.10 Thermal velocity and mean free path in GaAs Given that the electron effective mass m*e  for the 
GaAs is 0.067me, calculate the thermal velocity of the electrons in the conduction band (CB). The 
electron drift mobility μe depends on the mean free time τe between electron scattering events (between 
electrons and lattice vibrations). Given μe = eτe∕m*e , and μe = 8500 cm2 V−1 s−1 for GaAs, calculate 
τe, and hence the mean free path ℓ of CB electrons. How many unit cells is ℓ if the lattice constant 
a of GaAs is 0.565 nm? Calculate the drift velocity vd = μeE of the CB electrons in an applied field 
E of 104 V m−1. What is your conclusion?

5.11 Compensation doping in Si

a. A Si wafer has been doped n-type with 1017 As atoms cm−3.
1. Calculate the conductivity of the sample at 27 °C.
2. Where is the Fermi level in this sample at 27 °C with respect to the Fermi level (EFi) in 

intrinsic Si?
3. Calculate the conductivity of the sample at 127 °C.

b. The above n-type Si sample is further doped with 9 × 1016 boron atoms (p-type dopant) per 
centimeter cubed.
1. Calculate the conductivity of the sample at 27 °C.
2. Where is the Fermi level in this sample with respect to the Fermi level in the sample in (a) 

at 27 °C? Is this an n-type or p-type Si?

5.12 Temperature dependence of conductivity An n-type Si sample has been doped with 1015 phospho-
rus atoms cm−3. The donor energy level for P in Si is 0.045 eV below the conduction band edge energy.
a. Calculate the room temperature conductivity of the sample.
b. Estimate the temperature above which the sample behaves as if intrinsic.
c. Estimate to within 20 percent the lowest temperature above which all the donors are ionized.
d. Sketch schematically the dependence of the electron concentration in the conduction band on the 

temperature as log(n) versus 1∕T, and mark the various important regions and critical tempera-
tures. For each region draw an energy band diagram that clearly shows from where the electrons 
are excited into the conduction band.

e. Sketch schematically the dependence of the conductivity on the temperature as log(σ) versus 1∕T 
and mark the various critical temperatures and other relevant information.

*5.13 Ionization at low temperatures in doped semiconductors Consider an n-type semiconductor. The 
probability that a donor level Ed is occupied by an electron is

 fd =
1

1 +
1
g

 exp(Ed − EF

kT )
 [5.96]

 where k is the Boltzmann constant, T is the temperature, EF is the Fermi energy, and g is a constant 
called the degeneracy factor; in Si, g = 2 for donors, and for the occupation statistics of acceptors 
g = 4. Show that

 n2 +
nNc

g exp(ΔE

kT )
−

Nd Nc

g exp(ΔE

kT )
= 0 [5.97]
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 where n is the electron concentration in the conduction band, Nc is the effective density of states at 
the conduction band edge, Nd is the donor concentration, and ΔE = Ec − Ed is the ionization energy 
of the donors. Show that Equation 5.96 at low temperatures is equivalent to Equation 5.19. Consider 
a p-type Si sample that has been doped with 1015 gallium (Ga) atoms cm−3. The acceptor energy level 
for Ga in Si is 0.065 eV above the valence band edge energy, Ev. Estimate the lowest temperature 
(°C) above which 90 percent of the acceptors are ionized by assuming that the acceptor degeneracy 
factor g = 4.

5.14 Compensation doping in n-type Si An n-type Si sample has been doped with 1 × 1017 phosphorus 
(P) atoms cm−3. The drift mobilities of holes and electrons in Si at 300 K depend on the total con-
centration of dopants Ndopant (cm−3) approximately as follows:

 μe ≈ 88 +
1252

1 + 6.984 × 10−18 Ndopant
 cm2 V−1 s−1

 and

 μh ≈ 54.3 +
407

1 + 3.745 × 10−18 Ndopant
 cm2 V−1 s−1

a. Calculate the room temperature conductivity of the sample.
b. Calculate the necessary acceptor doping (i.e., Na) that is required to make this sample p-type 

with approximately the same conductivity.
 Note that the above empirical drift mobility expressions in which Nd in the denominator is linear (not 

raised to any power) enables the calculation of the dopant concentration needed for a given conduc-
tivity analytically straightforward.

5.15 GaAs Ga has a valency of III and As has V. When Ga and As atoms are brought together to form 
the GaAs crystal, as depicted in Figure 5.56, the three valence electrons in each Ga and the five 
valence electrons in each As are all shared to form four covalent bonds per atom. In the GaAs crys-
tal with some 1023 or so equal numbers of Ga and As atoms, we have an average of four valence 
electrons per atom, whether Ga or As, so we would expect the bonding to be similar to that in the 
Si crystal: four bonds per atom. The crystal structure, however, is not that of diamond but rather that 
of zinc blende (Chapter 1).
a. What is the average number of valence electrons per atom for a pair of Ga and As atoms and 

in the GaAs crystal?
b. What will happen if Se or Te, from Group VI, are substituted for an As atom in the GaAs crystal?
c. What will happen if Zn or Cd, from Group II, are substituted for a Ga atom in the GaAs crystal?
d. What will happen if Si, from Group IV, is substituted for an As atom in the GaAs crystal?
e. What will happen if Si, from Group IV, is substituted for a Ga atom in the GaAs crystal? What 

do you think amphoteric dopant means?
f. Based on the discussion of GaAs, what do you think the crystal structures of the III–V compound 

semiconductors AlAs, GaP, InAs, InP, and InSb will be?
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5.16 Doped GaAs Consider the GaAs crystal at 300 K.
a. Calculate the intrinsic conductivity and resistivity.
b. In a sample containing only 1015 cm−3 ionized donors, where is the Fermi level? What is the 

conductivity of the sample?
c. In a sample containing 1015 cm−3 ionized donors and 9 × 1014 cm−3 ionized acceptors, what is 

the free hole concentration? Where is the Fermi level?

5.17 Extrinsic III–V semiconductor GaAs is a III–V semiconductor. Suppose a GaAs crystal has been 
doped with Te atoms in the amount 1 × 1017 donors cm−3 and Zn atoms in the amount 7 × 1015 cm−3. 
Is this an n or and p-type GaAs? The electron and hole drift mobilities in GaAs are given in Table 5.4. 
Find its resistivity.

5.18 Compensation doping in GaAs Consider an n-type GaAs crystal that has been doped with 1 × 1016 
donors cm−3. Find the acceptor concentration you need to turn this n-type GaAs to p-type with the 
same resistivity as the n-GaAs. Use Table 5.4 for the electron and hole drift mobilities in GaAs.

5.19 Varshni equation and the change in the bandgap with temperature The Varshni equation 
describes the change in the bandgap Eg of a semiconductor with temperature T in terms of

 Eg = Ego −
AT 

2

B + T

 where Ego is the bandgap at T = 0 K, and A and B are material-specific constants. For example, for 
GaAs, Ego = 1.519 eV, A = 5.405 × 10−4 eV K−1, B = 204 K, so that at T = 300 K, Eg = 1.42 eV. 
Show that

 
dEg

dT
= −

AT(T + 2B)

(B + T)2 = −
(Ego − Eg)

T (T + 2B

T + B )
 What is dEg∕dT for GaAs? The Varshni equation can be used to calculate the shift in the peak emis-

sion wavelength of a light emitting diode (LED) with temperature or the cutoff wavelength of a 
detector. If the emitted photon energy from an electron and hole recombination is hf  ≈ Eg + (1∕2)kT, 
find the shift in the emitted wavelength from 27 °C down to −30 °C from a GaAs LED.

5.20 Varshni equation and the intrinsic concentration The intrinsic concentration ni as a function of 
temperature can be calculated from Equation 5.11 but we have to remember that Nc, Nv and Eg actually 
depend on the temperature. The Varshni equation in Question 5.19 with coefficient A and B can be 
used to find the bandgap Eg at any temperature.
a. Given ni = 1 × 1010 cm−3 for Si, calculate ni at 400 °C by assuming first a constant bandgap  

of 1.11 eV. Then recalculate ni by using Eg at 400 °C. For Si, the Varshi parameters are:  
Ego = 1.169 eV, A = 4.9 × 10−4 eV K−1, B = 655 K.

b. Given that electron and hole drift mobility follow μe ∝ T−2.4 and μh ∝ T−2.2 type of behavior, 
what is the intrinsic resistivity of Si at 400 °C?

5.21 Degenerate semiconductor Consider the general exponential expression for the concentration of 
electrons in the CB,

 n = Nc exp[−
(Ec − EF)

kT ]
 and the mass action law, np = n2

i. What happens when the doping level is such that n approaches Nc 
and exceeds it? Can you still use the above expressions for n and p?

  Consider an n-type Si that has been heavily doped and the electron concentration in the CB is 
1020 cm−3. Where is the Fermi level? Can you use np = n2

i to find the hole concentration? What is 
its resistivity? How does this compare with a typical metal? What use is such a semiconductor?

5.22 Degenerate semiconductors and the Fermi level Consider a degenerate n-Si doped with a donor 
concentration Nd = 3 × 1020 cm−3. Where is the Fermi level with respect to the bottom of the conduc-
tion band at room temperature? Where is the Fermi level in a similar degenerate p-Si doped with 
acceptors in the amount Na = 3 × 1020 cm−3? What use are such semiconductors?

Varshni 

equation

Bandgap shift 

with temperature
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5.23 Photoconductivity and speed Consider two p-type Si samples both doped with 1015 B atoms cm−3. 
Both have identical dimensions of length L (1 mm), width W (1 mm), and depth (thickness) D (0.1 mm). 
One sample, labeled A, has an electron lifetime of 1 μs whereas the other, labeled B, has an electron 
lifetime of 5 μs.
a. At time t = 0, a laser light of wavelength 750 nm is switched on to illuminate the surface (L × W) 

of both the samples. The incident laser light intensity on both samples is 10 mW cm−2. At time 
t = 50 μs, the laser is switched off. Sketch the time evolution of the minority carrier concentra-
tion for both samples on the same axes.

b. What is the photocurrent (current due to illumination alone) if each sample is connected to a 
1 V battery?

5.24 Einstein relation The Fermi level EF for a semiconductor in equilibrium and in the dark is uniform 
through the crystal, that is dEF∕dx = 0. Consider a semiconductor in open circuit and the total current 
due to electrons, which must be zero

 Je = en(x)μeE + eDe

dn(x)
dx

= 0 [5.98]

 where n = n(x) is the electron concentration at a point x. Given that, by definition, the field  
E = −dV∕dx, show that

 De

d ln n

dx
= μe

dV

dx
 [5.99]

 A small change δV in voltage across δx means a change δEc = −eδV in Ec. For a nondegenerate 

semiconductor, we can write,

 Ec(x) − EF = −kT ln(n∕Nc) [5.100]

 Differentiate Ec with respect to x, and substitute into Equation 5.99 to derive the Einstein relation. 

(Remember that dEF∕dx = 0 in equilibrium.) What is your conclusion?

5.25 Diffusion length and coefficient Let 1∕L be the mean probability per unit distance that an electron 

disappears by recombination in a semiconductor. Then the probability that an electron recombines with 

a hole in a small distance δx is δx∕L. The change δn in the electron concentration is −nδx∕L. Thus, 

δn = −nδx∕L, or δn∕n = −δx∕L. We can integrate this from n = no at x = 0 to n = n(x) at x to find,

 n(x) = no exp(−x∕L) [5.101]

 Suppose that the total number of electrons per unit area, N = noL. Show that

 x = < x> =
∫ ∞
0 xn(x)dx

N
= L  and  x2 = < x2> =

∫ ∞
0 x2n(x)dx

N
= 2L2 [5.102]

 What is your conclusion? What is L? Usually, the diffusion coefficient D is written as D = L2∕τ, 
whereas the derivation in Section 5.6 has D = L2∕2τ. Can you explain the difference?

5.26 Hall effect in semiconductors Consider a slab of length l, width w and thickness t as shown in 
Figure 5.57. We pass a current Ix along the length of the slab, taken along x from 1 to 4. In Hall 
effect experiments, we need to measure the voltage difference between two points on opposite faces 
(top and bottom) of the slab under an applied magnetic field Bz along z. Before we apply the field, 
the Hall voltage should be zero, which is achieved by using a potentiometer between 2 and 3 so that 
the voltage difference between 5 and 6 can be set to zero before the application of Bz. (The potenti-
ometer places point 6 electrically opposite point 5.) When Bz is applied, V65 gives the Hall voltage 
VH and is measured using a voltmeter with a high input resistance. For an n-type semiconductor V65 
is negative (6 is negative with respect to 5). Show that the Hall coefficient is given by

 RH =
V65t

IxBz

 Consider an n-type Si doped with 1014 donor cm−3 (Nd). Calculate the Hall voltage if t = 500 μm, 
the magnetic field is 0.01 T and the current is 0.1 mA. What is the voltage drop between 1 and 4 if 
l = 5 mm and w = 2 mm and what is the power dissipated in the semiconductor? Is there any advantage 
in increasing the dopant concentration to reduce the voltage drop and power dissipated in the sample?
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  Consider a Hall effect sensor. The sensitivity SH is the magnitude of the Hall voltage per unit 
magnetic field, SH = VH∕Bz. Power dissipated within the semiconductor is Ix

2R, which we would like 

to keep as low as possible. A figure of merit MH can be defined for a Hall effect sensor as the Hall 

sensitivity per unit power dissipated,

 MH =
VH∕Bz

I 
2
xR

 Show that

 MH =
wμe

Ixl

 What is your conclusion? If the Hall sensor is integrated into an integrated circuit, there is a further 

limitation. Can the voltage drop along l (between 1 and 2 in Figure 5.57) be of any magnitude?

*5.27 Hall effect in semiconductors The Hall effect in a semiconductor sample involves not only the 

electron and hole concentrations n and p, respectively, but also the electron and hole drift mobilities 

μe and μh. The Hall coefficient of a semiconductor is (see Chapter 2)

 RH =
p − nb2

e(p + nb)2  [5.103]

 where b = μe∕μh.

a. Given the mass action law np = n2
i, find n for maximum ∣RH∣ (negative and positive RH). Assume 

that the drift mobilities remain relatively unaffected as n changes (due to doping). Given the 

electron and hole drift mobilities μe = 1400 cm2 V−1 s−1 and μh = 450 cm2 V−1 s−1 for silicon, 
determine n for maximum ∣RH∣ in terms of ni. Find the maximum magnitude of RH.

b. Taking b = 3.1, plot RH as a function of electron concentration n∕ni from 0.01 to 10.

c. Show that, when n ≫ ni, RH = −1∕en and when n ≪ ni, RH = +1∕ep.

5.28 Hall effect in semiconductors Most Hall-effect high-sensitivity sensors typically use III–V semi-

conductors, such as GaAs, InAs, InSb. Hall-effect integrated circuits with integrated amplifiers, on 

the other hand, use Si. Consider nearly intrinsic samples in which n ≈ p ≈ ni, and calculate RH for 

each using the data in Table 5.5. What is your conclusion? Which sensor would exhibit the worst 

temperature drift? (Consider the bandgap, and drift in ni.)
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Table 5.5 Hall effect in selected semiconductors

 Eg(eV) ni(cm−3) μe(cm2 V−1 s−1) μh(cm2 V−1 s−1) b RH(m3 A−1 s−1)

Si 1.10 1 × 1010  1,400 450 3.1 −320

GaAs 1.42 2 × 106  8,500 400 ? ?

InAs 0.36 1 × 1015 33,000 460 ? ?

InSb 0.17 2 × 1016 78,000 850 ? ?
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*5.29 Compound semiconductor devices Silicon and germanium crystalline semiconductors are what are 
called elemental Group IV semiconductors. It is possible to have compound semiconductors from 
atoms in Groups III and V. For example, GaAs is a compound semiconductor that has Ga from Group 
III and As from Group V, so in the crystalline structure we have an “effective” or “mean” valency 
of IV per atom and the solid behaves like a semiconductor. Similarly GaSb (gallium antimonide) 
would be a III–V type semiconductor. Provided we have a stoichiometric compound, the semiconduc-
tor will be ideally intrinsic. If, however, there is an excess of Sb atoms in the solid GaSb, then we 
will have nonstoichiometry and the semiconductor will be extrinsic. In this case, excess Sb atoms will 
act as donors in the GaSb structure. There are many useful compound semiconductors, the most 
important of which is GaAs. Some can be doped both n- and p-type, but many are one type only. 
For example, ZnO is a II–VI compound semiconductor with a direct bandgap of 3.2 eV, but unfor-
tunately, due to the presence of excess Zn, it is naturally n-type and cannot be doped to p-type.
a. GaSb (gallium antimonide) is an interesting direct bandgap semiconductor with an energy band-

gap Eg = 0.67 eV, almost equal to that of germanium. It can be used as a light emitting diode 
(LED) or laser diode material. What would be the wavelength of emission from a GaSb LED? 
Will this be visible?

b. Calculate the intrinsic conductivity of GaSb at 300 K taking Nc = 2.3 × 1019 cm−3, Nv =  
6.1 × 1019 cm−3, μe = 5000 cm2 V−1 s−1, and μh = 1000 cm2 V−1 s−1. Compare with the intrin-
sic conductivity of Ge.

c. Excess Sb atoms will make gallium antimonide nonstoichiometric, that is, GaSb1+δ, which will result 
in an extrinsic semiconductor. Given that the density of GaSb is 5.4 g cm−3, calculate δ (excess 
Sb) that will result in GaSb having a conductivity of 100 Ω−1 cm−1. Will this be an n- or p-type 
semiconductor? You may assume that the drift mobilities are relatively unaffected by the doping.

5.30 Excess minority carrier concentration Consider an n-type semiconductor and weak injection con-
ditions. Assume that the minority carrier recombination time τh is constant (independent of injection—
hence the weak injection assumption). The rate of change of the instantaneous hole concentration 
∂pn∕∂t due to recombination is given by

 
∂pn

∂t
= −

pn

τh

 [5.104]

  The net rate of increase (change) in pn is the sum of the total generation rate G and the rate of 
change due to recombination, that is,

 
dpn

dt
= G −

pn

τh

 [5.105]

  By separating the generation term G into thermal generation Go and photogeneration Gph and 
considering the dark condition as one possible solution, show that

 
dΔpn

dt
= Gph −

Δpn

τh

 [5.106]

  How does your derivation compare with Equation 5.27? What are the assumptions inherent in 

Equation 5.106?

*5.31 Direct recombination and GaAs Consider recombination in a direct bandgap p-type semiconduc-

tor, e.g., GaAs doped with an acceptor concentration Na. The recombination involves a direct meeting 

of an electron–hole pair as depicted in Figure 5.22. Suppose that excess electrons and holes have been 

injected (e.g., by photoexcitation), and that Δnp is the excess electron concentration and Δpp is the 

excess hole concentration. Assume Δnp is controlled by recombination and thermal generation only; 

that is, recombination is the equilibrium storing mechanism. The recombination rate will be propor-

tional to nppp, and the thermal generation rate will be proportional to npoppo. In the dark, in equilib-

rium, thermal generation rate is equal to the recombination rate. The latter is proportional to nnoppo. 

The rate of change of Δnp is

 
∂Δnp

∂t
= −B[nppp − npo ppo]  [5.107]
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 where B is a proportionality constant, called the direct recombination capture coefficient. The 
recombination lifetime τr is defined by

 
∂Δnp

∂t
= −

Δnp

τr

 [5.108]

a. Show that for low-level injection, npo ≪ Δnp ≪ ppo, τr is constant and given by

 τr =
1

Bppo

=
1

BNa

 [5.109]

b. Show that under high-level injection, Δnp ≫ ppo,

 
∂Δnp

∂t
≈ −BΔppΔnp = −B(Δnp)2 [5.110]

so that the recombination lifetime τr is now given by

 τr =
1

BΔpp

=
1

BΔnp

 [5.111]

that is, the lifetime τr is inversely proportional to the injected carrier concentration.

c. Consider what happens in the presence of photogeneration at a rate Gph (electron–hole pairs per 

unit volume per unit time). Steady state will be reached when the photogeneration rate and 

recombination rate become equal. That is,

 Gph = (∂Δnp

∂t )
recombination

= B[npPp − npoppo]  [5.112]

 A photoconductive film of n-type GaAs doped with 1013 cm−3 donors is 2 mm long (L), 1 mm 
wide (W), and 5 μm thick (D). The sample has electrodes attached to its ends (electrode area 
is therefore 1 mm × 5 μm) which are connected to a 1 V supply through an ammeter. The 
GaAs photoconductor is uniformly illuminated over the surface area 2 mm × 1 mm with a 1 mW 
laser radiation of wavelength λ = 840 nm (infrared). The recombination coefficient B for GaAs 
is 7.21 × 10−16 m3 s−1. At λ = 840 nm, the absorption coefficient is about 5 × 103 cm−1. The 
internal quantum efficiency is the number of electron and hole pairs photogenerated per absorbed 
photon. Assume that this is unity. Calculate the photocurrent Iphoto and the electrical power dis-
sipated as Joule heating in the sample. What will be the power dissipated as heat in the sample 
in an open circuit, where I = 0?

5.32 Piezoresistive strain gauge factor Piezoresistive coefficients for an n-type Si along [110] are πL = 
−31.2 × 10−11 Pa−1, and πT = −17.6 × 10−11 Pa−1 whereas for p-type Si along the same crystal direc-
tion, πL = 71.8 × 10−11 Pa−1, and πT = −66.3 × 10−11 Pa−1. Given the elastic modulus Y ≈ 170 GPa, 
calculate the gauge factors for these n-type and p-type Si piezoresistors. What is your conclusion?

5.33 Piezoresistivity application to deflection and force measurement Consider the cantilever in 
Figure 5.39c. Suppose we apply a force F to the free end, which results in a deflection h of the tip 
of the cantilever from its horizontal equilibrium position. The maximum stress σm is induced at the 
support end of the cantilever, at its surface where the piezoresistor is embedded to measure the stress. 
When the cantilever is bent, there is a tensile or longitudinal stress σL on the surface because the top 
surface is extended and the bottom surface is contracted. If L, W, and D are, respectively, the length, 
width, and thickness of the cantilever (see Figure 5.39c), then the relationships between the force F 
and deflection h and the maximum stress σL are

 σL(max) =
3YDh

2L2   and  F =
WD3Y

4L3 h

 where Y is the elastic (Young’s) modulus. A particular Si cantilever has a length (L) of 500 μm, width 
(W) of 100 μm, and thickness (D) of 10 μm. Given Y = 170 GPa, and that the piezoresistor embed-
ded in the cantilever is along the [110] direction with πL ≈ 72 × 10−11 Pa−1, find the percentage 
change in the resistance, ΔR∕R, of the piezoresistor when the deflection is 0.1 μm. What is the force 
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that would give this deflection? (Neglect the transverse stresses on the piezoresistor.) How does the 
design choice for the length L of the cantilever depend on whether one is interested in measuring the 
deflection h or the force F? (Note: σL depends on the distance x from the support end; it decreases 
with x. Assume that the length of the piezoresistor is very short compared with L so that σL does not 
change significantly along its length.)

5.34 Schottky junction

a. Consider a Schottky junction diode between Au and n-Si, doped with 1016 donors cm−3. The 
cross-sectional area is 1 mm2. Given the work function of Au as 5.1 eV, what is the theoretical 
barrier height ΦB from the metal to the semiconductor?

b. Given that the experimental barrier height ΦB is about 0.8 eV, what is the reverse saturation cur-
rent and the current when there is a forward bias of 0.3 V across the diode? (Use Equation 4.39.)

5.35 Schottky junction Consider a Schottky junction diode between Al and n-Si, doped with 5 × 1016 
donors cm−3. The cross-sectional area is 1 mm2. Given that the electron affinity χ of Si is 4.01 eV 
and the work function of Al is 4.28 eV, what is the theoretical barrier height ΦB from the metal to 
the semiconductor? What is the built-in voltage? If the experimental barrier height ΦB is about 0.6 eV, 
what is the reverse saturation current and the current when there is a forward bias of 0.2 V across the 
diode? Take Be = 110 A cm−2 K−2.

5.36 Schottky and ohmic contacts Consider an n-type Si sample doped with 1016 donors cm−3. The 
length L is 100 μm; the cross-sectional area A is 10 μm × 10 μm. The two ends of the sample are 
labeled as B and C. The electron affinity (χ) of Si is 4.01 eV and the work functions Φ of four 
potential metals for contacts at B and C are listed in Table 5.6.

Table 5.6 Work functions in eV

Cs Mg Al Au

2.14 3.66 4.28 5.1

a. Ideally, which metals will result in a Schottky contact?
b. Ideally, which metals will result in an ohmic contact?
c. Sketch the I–V characteristics when both B and C are ohmic contacts. What is the relationship 

between I and V?
d. Sketch the I–V characteristics when B is ohmic and C is a Schottky junction. What is the rela-

tionship between I and V?
e. Sketch the I–V characteristics when both B and C are Schottky contacts. What is the relationship 

between I and V?

5.37 Depletion region width in a Schottky junction Consider a metal to n-type semiconductor Schottky 
junction as shown in Figure 5.58. Suppose that the donor concentration in the n-side is constant and 
Nd. There is a net positive space charge density ρnet in this region, as shown in Figure 5.58, which is 
eNd. The gradient of the field, dE∕dx = ρnet∕εoεr where εr is the relative permittivity of the medium 
(Si). Integrate ρnet and then use the condition that at x = W, the field should be zero, E = 0, and 
show that

 E = −
eNd(W − x)

εoεr

 which is negative because it is in the −x direction. Show that this has a maximum amplitude at the 
interface (x = 0) and is given by

 Emax = −
eNdW

εoεr

Electric field in 

depletion region

Highest electric 

field magnitude
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  If V′ is the potential at any point x in Figure 5.58, then E = −dV′∕dx. Show that

 V′ = −
eNd x2

2εoεr

+
eNdWx

εoεr

  At x = W, V′ = Vo − V. Show that

 W = [2εoεr(Vo − V)
eNd

]
1∕2

  Show further that the maximum filed can also be written as

 Emax = −
2(Vo − V)

W

  Consider the Schottky junction between tungsten and an n-type Si in which Nd = 1017 cm−3. Find 
the depletion layer width under no applied bias, a forward bias of 0.2 V and a reverse bias of −5 V.

5.38 A practical Schottky diode A general equation for describing the I–V characteristics of semicon-
ductor diodes is

 I = Io[exp( eV

ηkT) − 1]
 in which η is called the ideality factor,16 and is unity for an ideal Schottky junction. The derivation 

leading to Equation 5.68 for an ideal Schottky junction under forward bias assumes that electrons 
(majority carriers) diffuse over the reduced built-in voltage (Vo − V ) and are replenished by the 
external current bringing electrons. But, if electrons are lost by recombination during diffusion, then 
the external current will also have to replenish those recombined electrons, not only those that diffuse 
over to the metal. A Schottky contact to a semiconductor as shown in Figure 5.58 has a neutral 
semiconductor region, which has a certain bulk resistance Rs. In modeling a practical Schottky diode 
we need to include Rs in series with a Schottky junction. The actual voltage across the junction is 
then the voltage across V across the whole diode minus the voltage drop across Rs so that the I–V 
behavior under forward bias (typically V > 3kT∕e) for the diode is

 I = Io exp[e(V − IRs)
ηkT ]

x

x

V

0 x

E❿➀➁
E(x)

Neutral

➂➃➄➅➆➇➈➉➋➆➌➇➍

region

x = Wx ➎ ➏

V➐ ➎ Vo ➑ VV➐ ➎ ➏

Metal

ρnet(x)

Depletion
region

V′(x)

Vo – V

Figure 5.58 A Schottky junction that has been forward 

biased. The depletion region width is W. x is measured 

from the metal into the semiconductor. The voltage 

across the depletion layer is Vo − V. There is a constant 

net space charge density ρ(x) = eNd in the depletion layer. 

The field at any point is E(x) and the voltage is V ′(x).

Depletion layer 

width with bias V

Highest electric 

field magnitude

General diode 

equation

General diode 

equation with a 

series resistance

 16 Many books use n for η, but n can easily be confused with the electron concentration.
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 Table 5.7 gives the I–V data on a commercial Schottky diode (CDF7621) at room temperature. Find 
Io, η, and Rs. What is your conclusion?

5.39 Peltier effect and electrical contacts Consider the Schottky junction and the ohmic contact shown 
in Figures 5.40 and 5.44 between a metal and n-type semiconductor.
a. Is the Peltier effect similar in both contacts?
b. Is the sign in Q′ = ±ΠI the same for both contacts?

c. Which junction would you choose for a thermoelectric cooler? Give reasons.

*5.40 Peltier coolers and figure of merit (FOM) Consider the thermoelectric effect shown in Figure 5.46 

in which a semiconductor has two contacts at its ends and is conducting an electric current I. We 

assume that the cold junction is at a temperature Tc and the hot junction is at Th and that there is a 

temperature difference of ΔT = Th − Tc between the two ends of the semiconductor. The current I 
flowing through the cold junction absorbs Peltier heat at a rate Q′P, given by

 Q′P = ΠI [5.113]

 Where Π is the Peltier coefficient for the junction between the metal and semiconductor. The current 

I flowing through the semiconductor generates heat due to the Joule heating of the semiconductor. 

The rate of Joule heat generated through the bulk of the semiconductor is

 Q′J = ( L

σA)I 
2 [5.114]

 We assume that half of this heat flows to the cold junction.

  In addition there is heat flow from the hot to the cold junction through the semiconductor, given 

by the thermal conduction equation

 Q′TC = (Aκ

L )ΔT  [5.115]

  The net rate of heat absorption (cooling rate) at the cold junction is then

 Q′net = Q′P −
1
2

 Q′J − Q′TC  [5.116]

 By substituting from Equations 5.113 to 5.115 into Equation 5.116, obtain the net cooling rate in 

terms of the current I. Then by differentiating Q′net with respect to current, show that maximum  cooling 

is obtained when the current is

 Im = (A

L)Πσ  [5.117]

 and the maximum cooling rate is

 Q′max =
A

L[1

2
Π2σ − κΔT] [5.118]

  Under steady-state operating conditions, the temperature difference ΔT reaches a steady-state 

value and the net cooling rate at the junction is then zero (ΔT is constant). From Equation 5.118 show 

that the maximum temperature difference achievable is

 ΔTmax =
1

2
 
Π2σ

κ
 [5.119]

Table 5.7 Characteristics of a commercial Schottky diode (CDF7621)

V(V) 0.079 0.135 0.189 0.244 0.297 0.342 0.386 0.515 0.699

I(mA) 0.00102 0.0065 0.036 0.25 1.74 4.65 9.06 29.6 67.8

Definition  

of Peltier 

coefficient

Maximum 

temperature 

difference

Figure of merit 

for Peltier 

coolers

Maximum 

cooling rate
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  The quantity Π2σ∕κ is defined as the figure of merit (FOM) for the semiconductor as it deter-

mines the maximum ΔT achievable. The same expression also applies to metals, though we will not 

derive it here.

  Use Table 5.8 to determine the FOM for various materials listed therein and discuss the signifi-

cance of your calculations. Would you recommend a thermoelectric cooler based on a metal-to-metal 

junction?

5.41 Seebeck coefficient of n-Si Thermoelectric power (Seebeck) measurements on an n-type Si crystal 

doped with donors generate the results shown in Table 5.9. What can you do with this data and how 

would you interpret the experiment? Consider also whether Equation 5.79 can be used for degenerately 

doped semiconductors.

Table 5.8

Material Π (V) ρ (Ω m) κ (W m−1 K−1) FOM

n-Bi2 Te3 6.0 × 10−2 10−5 1.70

p-Bi2 Te3 7.0 × 10−2 10−5 1.45

Cu 5.5 × 10−4 1.7 × 10−8 390

W 3.3 × 10−4 5.5 × 10−8 167

5.42 Seebeck coefficient of Si and phonon drag Seebeck experiments on a p-type Si crystal doped with 

2 × 1017 cm−3 of B atoms indicate that Sp = +1.13 mV K−1 at room temperature (300 K) for this 

sample. If the B doping is increased to 2 × 1018 cm−3, Sp = +0.98 mV K−1. Assume that r = 1 and 

calculate the expected Sp for these two p-type samples. What r values that would make the theoreti-

cal Sp agree with experiments? Phonon drag increases the magnitude of the Seebeck coefficient 

expected from the diffusion of carriers alone in Equations 5.80 and 5.81. What is the contribution of 

phonon drag to Sp?

5.43 Seebeck coefficient and pn junction drift Consider a pn junction Si device (a diode) which has 

the p-side doped with 2 × 1017 acceptors cm−3 and the n-side with doped 1014 cm−3. What will be 

the voltage developed across this device if a temperature fluctuation gives rise to a 0.1 °C temperature 

difference across the pn junction? Assume the p-side and the n-side have the same width. Neglect 

phonon drag. What would be the voltage if the p-side was very thin compared with the n-side? What 

is your conclusion? Assume that r = −2 for the n-side and r = +1 for the p-side.

5.44 Photogeneration and carrier kinetic energies Figure 5.36 shows what happens when a photon 

with energy hf  > Eg is absorbed in GaAs to photogenerate an electron and a hole. The figure shows 

that the electron has a higher kinetic energy (KE ), which is the excess energy above Ec than the hole, 

since the hole is almost at Ev The reason is that the electron effective mass in GaAs is almost 10 

times less than the hole effective mass, so the photogenerated electron has a much higher KE. When 

an electron and hole are photogenerated in a direct bandgap semiconductor, they have the same k 

vector. Energy conservation requires that the photon energy hf  divides according to

 hf = Eg +
(ħk)2

2m*e
+

(ħk)2

2m*
h

Table 5.9 Experimental Seebeck coefficients for an n-type Si

Nd (cm−3) 2.75 × 1014 3.70 × 1014 2.60 × 1015 2.20 × 1016 2.20 × 1018 2.70 × 1019

∣Sn∣ (mV K−1) 1.60 1.55 1.31 1.20 0.724 0.28

 Data extracted from Geballe, T.H., and Hull, G.W., Physical Review, 98, 940, 1955.

Photogeneration
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 where k is the wavevector of the electron and hole and m*e and m*
h are the effective masses of the 

electron and hole, respectively.
a. What is the ratio of the electron to hole KEs right after photogeneration?
b. If the incoming photon has an energy of 2.0 eV, and Eg = 1.42 eV for GaAs, calculate the KEs 

of the electron and the hole in eV, and calculate to which energy levels they have been excited 
with respect to their band edges.

c. Explain why the electron and hole wavevector k should be approximately the same right after 
photogeneration. Consider kphoton for the photon, and the momentum conservation.

*5.45 The Four Probe Resistivity Measurement The four probe resistivity measurement allows the resis-
tivity of a semiconductor crystal to be conveniently measured without complications arising from 
contacts effects and without the need for samples of known geometry. It is widely used in the semi-
conductor industry to measure the resistivity of Si wafers. The technique is illustrated in Figure 5.59a. 
Four collinear and equally separated sharp probes (needles) are placed on the surface of the sample. 
The probes are spring pressured to make good contact. A current I is passed through the sample via 
the outer probes A and D. The applied voltage to A and D is not relevant to the measurement as long 
as a known current is passed through the sample. Indeed, the contacts at A and D may be Schottky 
contacts and the current may be limited by the Schottky junctions. The voltage drop between the two 
inner probes B and C are read with a digital voltmeter which takes a negligible input current. Thus, 
the current paths in the semiconductor and also the voltage drop along BC are not upset by the volt-
meter connected between B and C. Within the semiconductor, the current I and voltage drop along 
the current between B and C, that is VBC, are related by the resistivity of the semiconductor and some 
geometric factor taking into account various possible current paths from A to D and the locations of 
the points B and C. At any point in the sample where the current density is J and the electric field 
is E, we must have J = E∕ρ. Consider point A as an independent point current source and point D as 
an independent point current sink. We can find the potential drop between BC for the two independent 
currents and then add them up.

  Suppose that the sample dimensions are much larger than the separation s of the needles. Consider 
the currents emanating from point A as shown in Figure 5.59b. Current density at radius r is

 J =
I

2πr2

  The surface area through which current flows is half of 4πr2 because current flows only below 

A. Using E = −
dV

dr
 and J = E∕ρ, show that the potential drop between B and C (r = s and r = 2s) 

due to currents from A is

 VBC =
Iρ

4πs

A B C D

I

A

r

t

s

V

(b)(a)

Si wafer

Amps Volts

Figure 5.59 (a) The four probe resistivity 

measurement. A current I is passed through 

the probes A and D and the voltage drop V 

along BC is read on a high resistivity voltmeter. 

(b) We consider point A as an independent 

current source and similarly point D as an  

independent current sink.
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Andrew S. Grove (1936–2016) played a 
key and influential role in the development 
of the microprocessor technology at Intel. 
When Robert Noyce and Gordon Moore 
founded Intel in 1968, they hired Andrew 
Grove to lead the technology develop-
ment. The well-known 386 and Pentium 
PC chips were actually developed at Intel 
under Andrew Grove’s leadership. He 
became Intel’s President in 1979 and CEO 
in 1987 until 1998, which was followed by 
his position as Chair of the board until 
2005. His book Physics and Technology of 
Semiconductor Devices published in 1967 
by Wiley is still among the best reads in 
understanding the fundamentals of semi-
conductor materials and devices. In this 
photo, Andrew Grove is holding an Intel 
0386 microprocessor at Intel headquarters 
in Santa Clara, California.

 © Paul Sakuma/AP Photo.

  There will be a similar potential drop between B and C when we consider point D as an inde-
pendent point sink. Thus, by the principle of superposition, the total voltage drop between B and C 
must be

 VBC =
ρ

2πs
 I

 What are some of the important assumptions in the derivation?
  A particular four-probe instrument has s = 1.5 mm. Measurements on an n-Si wafer give a 

voltage (VBC) of 0.27 mV at a current of 0.1 mA. What are the wafer resistivity and donor 
 concentration?

Four-probe 

resistivity 

measurement



Nick Holonyak Jr carried out the early work in the 
development of practical light emitting diodes (LEDs) 
in the visible spectrum during the 1960s while working 
as a consulting research scientist for General Electric 
Co. in Syracuse. He made his first visible laser-LED 
in 1962, which emitted red light. In the February 
1963 issue of Readers Digest, Nick Holonyak Jr  
suggested that the incandescent light bulb will  
eventually be replaced by the LED. Since 1963,  
he has been at the University of Illinois at Urbana-
Champaign where he currently holds the John  
Bardeen Endowed Chair. This photo was taken  
circa 1970–1975.

 Courtesy of University of Illinois at Urbana- 
Champaign.

Zhores Alferov carried out some of the early pioneering work on hetero-
structure semiconductor devices that lead to the development of a number 
of important optoelectronic devices, including the heterostructure laser. Since 
1953, he has been at the Ioffe Physico-Technical Institute in St. Petersburg, 
Russia. Zhores Alferov and Herbert Kroemer shared the Nobel Prize in 
Physics (2000) with Jack Kilby. See Zhores I. Alferov, “Nobel Lecture: The 
double heterostructure concept and its applications in physics, electronics, 
and technology”, Rev. Mod. Phys. 73, 767, 2000

 © ITAR-TASS Photo Agency/Alamy Stock Photo.
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Semiconductor Devices

Most diodes are essentially pn junctions fabricated by forming a contact between a 
p-type and an n-type semiconductor. The junction possesses rectifying properties in 
that a current in one direction can flow quite easily whereas in the other direction 
it is limited by a leakage current that is generally very small. A transistor is a three-
terminal solid-state device in which a current flowing between two electrodes is 
controlled by the voltage between the third and one of the other terminals. Transis-
tors are capable of providing current and voltage gains thereby enabling weak signals 
to be amplified. Transistors can also be used as switches just like electromagnetic 
relays. Indeed, the whole microcomputer industry is based on transistor switches. 
The majority of the transistors in microelectronics are of essentially two types: bipolar 

junction transistors (BJTs) and field effect transistors (FETs). The appreciation of 
the underlying principles of the pn junction is essential to understanding the opera-
tion of not only the bipolar transistor but also a variety of related devices. The 
central fundamental concept is the minority carrier injection as purported by William 
Shockley in his explanations of the transistor operation. Field effect transistors operate 
on a totally different principle than BJTs. Their characteristics arise from the effect 
of the applied field on a conducting channel between two terminals. The last two 
decades have seen enormous advances and developments in optoelectronic and pho-
tonic devices which we now take for granted, the best examples being light emitting 

diodes (LEDs), semiconductor lasers, photodetectors, and solar cells. Nearly all 
these devices are based on pn junction principles. The present chapter takes the 
semiconductor concepts developed in Chapter 5 to device level applications, from 
the basic pn junction to heterojunction laser diodes.
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6.1  IDEAL pn JUNCTION

6.1.1 NO APPLIED BIAS: OPEN CIRCUIT

Consider what happens when one side of a sample of Si is doped n-type and the 
other p-type, as shown in Figure 6.1a. We assume that there is an abrupt discontinu-
ity between the p- and n-regions, which we call the metallurgical junction and label 
as M in Figure 6.1a, where the fixed (immobile) ionized donors and the free electrons 
(in the conduction band, CB) in the n-region and fixed ionized acceptors and holes 
(in the valence band, VB) in the p-region are also shown.

nno

x
x = 0 

pno

ppo

npo

log(n), log(p)

– eNa

  eNd

M

x
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h+

p n

M
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Space charge region Vo
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x
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Figure 6.1 Properties of the pn junction.
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 Due to the hole concentration gradient from the p-side, where p = ppo, to 
the  n-side, where p = pno, holes diffuse toward the right. Similarly the electron 
concentration gradient drives the electrons by diffusion toward the left. Holes dif-
fusing and entering the n-side recombine with the electrons in the n-side near the 
junction. Similarly, electrons diffusing and entering the p-side recombine with holes 
in the p-side near the junction. The junction region consequently becomes depleted 
of free carriers in comparison with the bulk p- and n-regions far away from the 
junction. Note that we must, under equilibrium conditions (e.g., no applied bias or 
photoexcitation), have pn = n2

i everywhere. Electrons leaving the n-side near the 
junction M leave behind exposed positively charged donor ions, say As+, of concen-
tration Nd. Similarly, holes leaving the p-region near M expose negatively charged 
acceptor ions, say B−, of concentration Na. There is therefore a space charge layer 

(SCL) around M. Figure 6.1b shows the depletion region, or the space charge layer, 
around M, whereas Figure 6.1c illustrates the hole and electron concentration pro-
files in which the vertical concentration scale is logarithmic. Notice that the deple-
tion region in Figure 6.1c has been depleted of its normal concentration of carriers, 
which exposes the donor and acceptor ions. The carrier concentrations are not 
zero. The depletion region is also called the depletion layer or, less commonly, the 
transition region.
 It is clear that there is an internal electric field Eo from positive ions to negative 
ions, that is, in the −x direction, that tries to drift the holes back into the p-region 
and electrons back into the n-region. This field drives the holes in the opposite 
direction to their diffusion. As shown in Figure 6.1b, Eo imposes a drift force on 
holes in the −x direction, whereas the hole diffusion flux is in the +x direction. A 
similar situation also applies for electrons with the electric field attempting to drift 
the electrons against diffusion from the n-region to the p-region. It is apparent that 
as more and more holes diffuse toward the right, and electrons toward the left, the 
internal field around M will increase until eventually an “equilibrium” is reached 
when the rate of holes diffusing toward the right is just balanced by holes drifting 
back to the left, driven by the field Eo. The electron diffusion and drift fluxes will 
also be balanced in equilibrium.
 For uniformly doped p- and n-regions, the net space charge density ρnet(x) across 
the semiconductor will be as shown in Figure 6.1d. (Why are the edges rounded?) 
The net space charge density ρnet is negative and equal to −eNa in the SCL from 
x = −Wp to x = 0 (where we take M to be) and then positive and equal to +eNd 
from x = 0 to Wn. The total charge on the left-hand side must be equal to that on 
the right-hand side for overall charge neutrality, so

 NaWp = NdWn [6.1]

 In Figure 6.1, we arbitrarily assumed that the donor concentration is less than 
the acceptor concentration, Nd < Na. From Equation 6.1 this implies that Wn > Wp; 
that is, the depletion region penetrates the n-side, the lightly doped side, more than 
the p-side, the heavily doped side. Indeed, if Na ≫ Nd, then the depletion region is 
almost entirely on the n-side. We generally indicate heavily doped regions with the 
plus sign as a superscript, that is, p+.

Depletion 

widths
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 The electric field E(x) and the net space charge density ρnet(x) at a point are 
related in electrostatics1 by

 
dE

dx
=

ρnet(x)
ε

where ε = εoεr is the permittivity of the medium and εo and εr are the absolute 
permittivity and relative permittivity of the semiconductor material. We can thus 
integrate ρnet(x) across the diode and thus determine the electric field E(x),  
that is,

 E(x) =
1
ε ∫

x

−Wp

 ρnet(x) dx [6.2]

 The variation of the electric field across the pn junction is shown in Figure 6.1e. 
The negative field means that it is in the −x direction. Note that E(x) reaches a 
maximum value Eo at the metallurgical junction M.
 The potential V(x) at any point x can be found by integrating the electric field 
since by definition E = −dV∕dx. Taking the potential on the p-side far away from 
M as zero (we have no applied voltage), which is an arbitrary reference level, then 
V(x) increases in the depletion region toward the n-side, as indicated in Figure 6.1f. 
Its functional form can be determined by integrating Equation 6.2, which is, of 
course, a parabola. Notice that on the n-side the potential reaches Vo, which is called 
the built-in potential.

 The fact that we are considering an abrupt pn junction means that ρnet(x) can 
simply be described by step functions, as displayed in Figure 6.1d. Using the step 
form of ρnet(x) in Figure 6.1d in the integration of Equation 6.2 gives the electric 
field at M as

 Eo = −
eNdWn

ε
= −

eNaWp

ε
 [6.3]

where ε = εoεr. We can integrate the expression for E(x) in Figure 6.1e to evaluate 
the potential V(x) and thus find Vo by putting in x = Wn. The graphical representation 
of this integration is the step from Figure 6.1e to f. The result is

 Vo = −
1
2

 EoWo =
eNa NdW 

2
o

2ε(Na + Nd)
 [6.4]

where Wo = Wn + Wp is the total width of the depletion region under a zero 
applied voltage. If we know Wo, then Wn or Wp follows readily from Equation 6.1. 
Equation 6.4 is a relationship between the built-in voltage Vo and the depletion region 
width Wo. If we know Vo, we can calculate Wo.
 The simplest way to relate Vo to the doping parameters is to make use of the 
fact that in the system consisting of p- and n-type semiconductors joined together, 

 1 This is called Gauss’s law in point form and comes from Gauss’s law in electrostatics. Gauss’s law is discussed 
in Section 7.5.
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in equilibrium, Boltzmann statistics2 demands that the concentrations n1 and n2 of 
carriers at potential energies E1 and E2 are related by

 
n2

n1
= exp[−

(E2 − E1)
kT ]

where E = qV, where q is the charge of the carrier. Considering electrons (q = −e), 
we see from Figure 6.1g that E = 0 on the p-side far away from M where n = npo, 
and E = −eVo on the n-side away from M where n = nno. Thus

 
npo

nno

= exp(−
eVo

kT ) [6.5a]

 This shows that Vo depends on nno and npo and hence on Nd and Na. The corre-
sponding equation for hole concentrations is clearly

 
pno

ppo

= exp(−
eVo

kT ) [6.5b]

 Thus, rearranging Equations 6.5a and b we obtain

 Vo =
kT

e
 ln(nno

npo
)  and  Vo =

kT

e
 ln(ppo

pno
)

 We can now write ppo and pno in terms of the dopant concentrations inasmuch 
as ppo = Na and

 pno =
n2

i

nno

=
n2

i

Nd

so Vo becomes

 Vo =
kT

e
 ln(Na Nd

n2
i

) [6.6]

 Clearly Vo has been conveniently related to the dopant and material properties 
via Na, Nd, and n2

i. The built-in voltage (Vo) is the voltage across a pn junction, going 
from p- to n-type semiconductor, in an open circuit. It is not the voltage across the 
diode, which is made up of Vo as well as the contact potentials at the metal-to-
semiconductor junctions at the electrodes. If we add Vo and the contact potentials at 
the electroded ends, we will find zero.
 Once we know the built-in potential from Equation 6.6, we can then calculate 
the width of the depletion region from Equation 6.4, namely

 Wo = [2ε(Na + Nd)Vo

eNaNd
]

1∕2

 [6.7]

 Notice that the depletion width Wo ∝ Vo
1∕2. This results in the capacitance of the 

depletion region being voltage dependent, as we will see in Section 6.3.

 2 We use Boltzmann statistics, that is, n(E ) ∝ exp(−E∕kT ), because the concentration of electrons in the conduction 
band, whether on the n-side or p-side, is never so large that the Pauli exclusion principle becomes important. As 
long as the carrier concentration in the conduction band is much smaller than Nc, we can use Boltzmann statistics.

Boltzmann 

statistics for 

electrons

Built-in 

voltage

Depletion 

region width
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THE BUILT-IN POTENTIALS FOR Ge, Si, InP, AND GaAs pn JUNCTIONS A pn junction 
diode has a concentration of 1016 acceptor atoms cm−3 on the p-side and a concentration of 1017 
donor atoms cm−3 on the n-side. What will be the built-in potential for the semiconductor 
materials Ge, Si, InP, and GaAs?

SOLUTION

The built-in potential is given by Equation 6.6, which requires the knowledge of the intrinsic 
concentration for each semiconductor. From Chapter 5 we can tabulate the following at 300 K:

 EXAMPLE 6.1

THE p+n JUNCTION Consider a p+n junction, which has a heavily doped p-side relative to 
the n-side, that is, Na ≫ Nd. Since the amount of charge Q on both sides of the metallurgical 
junction must be the same (so that the junction is overall neutral)

 Q = eNaWp = eNdWn

it is clear that the depletion region essentially extends into the n-side. According to Equation 6.7, 
when Nd ≪ Na, the width is

 Wo = [2εVo

eNd
]

1∕2

 What is the depletion width for a pn junction Si diode that has been doped with 1018 
acceptor atoms cm−3 on the p-side and 1016 donor atoms cm−3 on the n-side?

SOLUTION

To apply the above equation for Wo, we need the built-in potential, which is

 Vo = (kT

e ) ln(Nd Na

n2
i

) = (0.0259 V) ln[ (1016) (1018)

(1.0 × 1010)2] = 0.835 V

 EXAMPLE 6.2

Table 6.1 Typical built-in voltages

Semiconductor Eg(eV) ni(cm−3) Vo(V)

Ge 0.66 2.4 × 1013 0.37
Si 1.10 1.0 × 1010 0.78
InP 1.34 1.3 × 107 1.12
GaAs 1.42 2.1 × 106 1.21

 Using

 Vo = (kT

e ) ln(Nd Na

n2
i

)
for Si with Nd = 1017cm−3 and Na = 1016 cm−3, kT∕e = 0.0259 V at 300 K, and ni = 1.0 × 
1010 cm−3, we obtain

 Vo = (0.0259 V) ln[ (1017) (1016)

(1.0 × 1010)2] = 0.775 V

 The results for all four semiconductors are summarized in the last column of Table 6.1 
in this example.
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 Then with Nd = 1016 cm−3, that is, 1022 m−3, Vo = 0.835 V, and εr = 11.9 in the equation 
for Wo

 Wo = [2εVo

eNd
]

1∕2

= [2(11.9)(8.85 × 10−12) (0.835)

(1.6 × 10−19) (1022) ]
1∕2

 = 3.32 × 10−7 m  or  0.33 μm

 Nearly all of this region (99 percent of it) is on the n-side.

BUILT-IN VOLTAGE There is a rigorous derivation of the built-in voltage across a pn junc-
tion. Inasmuch as in equilibrium there is no net current through the pn junction, drift of holes 
due to the built-in field E(x) must be just balanced by their diffusion due to the concentration 
gradient dp∕dx. We can thus set the total electron and hole current densities (drift + diffusion) 
through the depletion region to zero. Considering holes alone, from Equation 5.38,

 Jhole(x) = ep(x)μhE(x) − eDh

dp

dx
= 0

The electric field is defined by E = −dV∕dx, so substituting we find,

 −epμh dV − eDh dp = 0

We can now use the Einstein relation Dh∕μh = kT∕e to get

 −ep dV − kT dp = 0

 We can integrate this equation. According to Figure 6.1, in the p-side, p = ppo, V = 0, 
and in the n-side, p = pno, V = Vo, thus,

 ∫
Vo

0

dV +
kT

e
∫

Pno

ppo

 
dp

p
= 0

that is, Vo +
kT

e
[ln(pno) − ln(ppo) ] = 0

giving Vo =
kT

e
 ln(ppo

pno
)

which is the same as Equation 6.5b and hence leads to Equation 6.6.

6.1.2 FORWARD BIAS: DIFFUSION CURRENT

Consider what happens when a battery is connected across a pn junction so that the 
positive terminal of the battery is attached to the p-side and the negative terminal 
to the n-side. Suppose that the applied voltage is V. It is apparent that the nega-
tive polarity of the supply will reduce the potential barrier Vo by V, as shown in 
Figure 6.2a. The reason for this is that the bulk regions outside the depletion width 
have high conductivities due to plenty of majority carriers in the bulk, in comparison 
with the depletion region in which there are mainly immobile ions. Thus, the applied 
voltage drops mostly across the depletion width W. Consequently, V directly opposes 
Vo and the potential barrier against diffusion is reduced to (Vo − V ), as depicted in 
Figure 6.2b. This has drastic consequences because the probability that a hole will 

 EXAMPLE 6.3
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surmount this potential barrier and diffuse to the right now becomes proportional to 
exp[−e(Vo − V )∕kT]. In other words, the applied voltage effectively reduces the 
built-in potential and hence the built-in field, which acts against diffusion. Conse-
quently many holes can now diffuse across the depletion region and enter the n-side. 
This results in the injection of excess minority carriers, holes, into the n-region. 
Similarly, excess electrons can now diffuse toward the p-side and enter this region 
and thereby become injected minority carriers.
 The hole concentration

 pn(0) = pn(x′ = 0)

just outside the depletion region at x′ = 0 (x′ is measured from Wn) is due to the 
excess of holes diffusing as a result of the reduction in the built-in potential barrier. 
This concentration pn(0) is determined by the probability of surmounting the new 
potential energy barrier e(Vo − V ),

 pn(0) = ppo exp[−
e(Vo − V)

kT ] [6.8]

 This follows directly from the Boltzmann equation, by virtue of the hole poten-
tial energy rising by e(Vo − V ) from x = −Wp to x = Wn, as indicated in Figure 6.2b, 
and at the same time the hole concentration falling from ppo to pn(0). By dividing 
Equation 6.8 by Equation 6.5b, we obtain the effect of the applied voltage directly, 
which shows how the voltage V determines the amount of excess holes diffusing and 
arriving at the n-region. Equation 6.8 divided by Equation 6.5b is

 pn(0) = pno exp(eV

kT) [6.9]
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which is called the law of the junction. Equation 6.9 is an important equation that 
we will use again in dealing with pn junction devices. It describes the effect of the 
applied voltage V on the injected minority carrier concentration just outside the 
depletion region pn(0). Obviously, with no applied voltage, V = 0 and pn(0) = pno, 
which is exactly what we expect.
 Injected holes diffuse in the n-region and eventually recombine with electrons 
in this region as there are many electrons in the n-side. Those electrons lost by 
recombination are readily replenished by the negative terminal of the battery con-
nected to this side. The current due to holes diffusing in the n-region can be sustained 
because more holes can be supplied by the p-region, which itself can be replenished 
by the positive terminal of the battery.
 Electrons are similarly injected from the n-side to the p-side. The electron con-
centration np(0) just outside the depletion region at x = −Wp is given by the equivalent 
of Equation 6.9 for electrons, that is,

 np(0) = npo exp(eV

kT) [6.10]

 In the p-region, the injected electrons diffuse toward the positive terminal look-
ing to be collected. As they diffuse they recombine with some of the many holes in 
this region. Those holes lost by recombination can be readily replenished by the 
positive terminal of the battery connected to this side. The current due to the diffu-
sion of electrons in the p-side can be maintained by the supply of electrons from the 
n-side, which itself can be replenished by the negative terminal of the battery. It is 
apparent that an electric current can be maintained through a pn junction under 
forward bias, and that the current flow, surprisingly, seems to be due to the diffusion 

of minority carriers. There is, however, some drift of majority carriers as well.
 If the lengths of the p- and n-regions are longer than the minority carrier diffu-
sion lengths, then we will be justified to expect the hole concentration pn(x′) on the 
n-side to fall exponentially toward the thermal equilibrium value pno, that is,

 Δpn(x′ ) = Δpn(0) exp(−
x′

Lh
) [6.11]

where

 Δpn(x′) = pn(x′) − pno

is the excess carrier distribution and Lh is the hole diffusion length, defined by 
Lh = √Dhτh in which τh is the mean hole recombination lifetime (minority carrier 
lifetime) in the n-region. We base Equation 6.11 on our experience with the minority 
carrier injection in Chapter 5.3

 The hole diffusion current density JD,hole is therefore

 JD,hole = −eDh 

dpn(x′ )

dx′
= −eDh 

dΔpn(x′ )

dx′

Law of the 

junction

Excess 

minority 

carrier profile

Excess 

minority 

carrier 

concentration

 3 This is simply the solution of the continuity equation in the absence of an electric field, which is discussed in 
Chapter 5. Equation 6.11 is identical to Equation 5.48.
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that is,

 JD,hole = (eDh

Lh
) Δpn(0) exp(−

x′

Lh
)

 Although this equation shows that the hole diffusion current depends on location, 
the total current at any location is the sum of hole and electron contributions, which 
is independent of x, as indicated in Figure 6.3. The decrease in the minority carrier 
diffusion current with x′ is made up by the increase in the current due to the drift 
of the majority carriers, as schematically shown in Figure 6.3. The field in the neu-
tral region is not totally zero but a small value, just sufficient to drift the huge 
number of majority carriers there.
 At x′ = 0, just outside the depletion region, the hole diffusion current is

 JD,hole = (eDh

Lh
)Δpn(0)

 We can now use the law of the junction to substitute for Δpn(0) in terms of the 
applied voltage V. Writing

 Δpn(0) = pn(0) − pno = pno[exp(eV

kT) − 1]
and substituting in JD,hole, we get

 JD,hole = (eDh pno

Lh
)[exp(eV

kT) − 1]
Thermal equilibrium hole concentration pno is related to the donor concentration by

 pno =
n2

i

nno

=
n2

i

Nd

Thus,

 JD,hole = (eDhn
2
i

LhNd
)[exp(eV

kT) − 1]
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 There is a similar expression for the electron diffusion current density JD,elec in 
the p-region. We will assume (quite reasonably) that the electron and hole currents 
do not change across the depletion region because, in general, the width of this region 
is narrow (reality is not quite like the schematic sketches in Figures 6.2 and 6.3). 
The electron current at x = −Wp is the same as that at x = Wn. The total current 
density is then simply given by JD,hole + JD,elec, that is,

 J = ( eDh

Lh Nd

+
eDe

Le Na
)n2

i [exp(eV

kT) − 1]
or

 J = Jso[exp(eV

kT) − 1] [6.12a]

This is the familiar diode equation with

 Jso = [( eDh

Lh Nd
) + ( eDe

Le Na
)]n2

i  [6.12b]

It is frequently called the Shockley equation. The constant Jso depends not only on 
the doping, Nd and Na, but also on the material via ni, Dh, De, Lh, and Le. It is known 
as the reverse saturation current density, as explained below. Writing

 n2
i = (Nc Nv)exp(−

eVg

kT )
where Vg = Eg∕e is the bandgap energy expressed in volts, we can write Equa-
tion 6.12a as

 J = ( eDh

 LhNd

+
eDe

LeNa
)[(NcNv) exp(−

eVg

kT )][exp(eV

kT) − 1]
that is,

 J = J1 exp(−
eVg

kT )[exp(eV

kT) − 1]
or

 J = J1 exp[e(V − Vg)

kT ]  for  
eV

kT
≫ 1 [6.13]

where

 J1 = ( eDh

Lh Nd

+
eDe

Le Na
)(Nc Nv)

is a new constant.
 The significance of Equation 6.13 is that it reflects the dependence of I–V char-
acteristics on the bandgap (via Vg), as displayed in Figure 6.4 for the three important 
semiconductors, Ge, Si, and GaAs. Notice that the voltage across the pn junction for 

Ideal diode 

(Shockley) 

equation
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current

Diode current 

and bandgap 

energy

Intrinsic 

concentration
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an appreciable current of say ∼0.1 mA is about 0.2 V for Ge, 0.6 V for Si, and 
0.9 V for GaAs.
 The diode equation, Equation 6.12a, was derived by assuming that the lengths 
of the p and n regions outside the depletion region are long in comparison with the 
diffusion lengths Lh and Le. Suppose that ℓp is the length of the p-side outside the 
depletion region and ℓn is that of the n-side outside the depletion region. If ℓp and 
ℓn are shorter than the diffusion lengths Le and Lh, respectively, then we have what 
is called a short diode and consequently the minority carrier distribution profiles 
fall almost linearly with distance from the depletion region, as depicted in Figure 
6.5. This can be readily proved by solving the continuity equation, but an intuitive 
explanation makes it clear. At x′ = 0, the minority carrier concentration is determined 
by the law of the junction, whereas at the battery terminal there can be no excess 
carriers as the battery will simply collect these. Since the length of the neutral region 
is shorter than the diffusion length, there are practically no holes lost by recombina-
tion, and therefore the hole flow is expected to be uniform across ℓn. This can be so 
only if the driving force for diffusion, the concentration gradient, is linear.
 The excess minority carrier gradient is

 
dΔpn(x′ )

dx′
= −

[pn(0) − pno]

ℓn

 The current density JD,hole due to the injection and diffusion of holes in the 
n-region as a result of forward bias is

 JD,hole = −eDh 

dΔpn(x′ )

dx′
= eDh

[pn(0) − pno]

ℓn

 We can now use the law of the junction

 pn(0) = pno exp(eV

kT)
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Figure 6.4 Schematic sketch of the I–V  

characteristics of Ge, Si, and GaAs pn junctions.
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for pn(0) in the above equation and also obtain a similar equation for electrons dif-
fusing in the p-region and then sum the two for the total current J,

 J = ( eDh

ℓnNd

+
eDe

ℓpNa
)n2

i [exp(eV

kT) − 1] [6.14]

 It is clear that this expression is identical to that of a long diode, that is, Equa-
tions 6.12a and b, if in the latter we replace the diffusion lengths Lh and Le by the 
lengths ℓn and ℓp of the n- and p-regions outside the SCL.

6.1.3 FORWARD BIAS: RECOMBINATION AND TOTAL CURRENT

So far we have assumed that, under a forward bias, the minority carriers diffusing 
and recombining in the neutral regions are supplied by the external current. However, 
some of the minority carriers will recombine in the depletion region. The external 
current must therefore also supply the carriers lost in the recombination process in 
the SCL. Consider for simplicity a symmetrical pn junction as in Figure 6.6a under 
forward bias. At the metallurgical junction at the center C, the hole and electron 
concentrations are pM and nM and are equal. We can find the SCL recombination 
current by considering electrons recombining in the p-side in Wp and holes recom-
bining in the n-side in Wn as shown by the shaded areas ABC and BCD, respectively, 
in Figure 6.6b. Suppose that we can describe the average rate of hole recombination 
in Wn by assigning holes a mean hole recombination time τh in this region. (Strictly 
we should call this an effective recombination time4 as it represents an average over 

Short diode

 4 The exact analysis involves what is known as Shockley-Read-Hall indirect recombination statistics, which is 
discussed in more advanced textbooks. The use of effective lifetimes in the two depletion regions is equivalent 
averaging recombination rates in Wp and Wn. Further, the treatment here applies to indirect recombination, that 
is, through defects and impurities.
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the rates of recombination in Wn.) Similarly, the mean electron recombination time 
in Wp is τe. The rate at which the electrons in ABC are recombining is the area ABC 
(nearly all injected electrons) divided by τe. The electrons are replenished by the 
diode current. Similarly, the rate at which holes in BCD are recombining is the area 
BCD divided by τh. Thus, the recombination current density is

 Jrecom =
eABC

τe

+
eBCD

τh

 We can evaluate the areas ABC and BCD by taking them as triangles, 
ABC ≈ 1

2WpnM , etc., so that

 Jrecom ≈
e

1
2Wp nM

τe

+
e

1
2Wn pM

τh

 Under steady-state and equilibrium conditions, assuming a nondegenerate semi-
conductor, we can use Boltzmann statistics to relate these concentrations to the 
potential energy. At A, the potential is zero and at M it is 1

2e(Vo − V), so

 
pM

ppo

= exp[−
e(Vo − V)

2kT ]
 There is a similar equation for nM∕nno. Further as the pn junction is symmetric 
pM = nM. Since Vo depends on dopant concentrations and ni as in Equation 6.6 and 
further ppo = Na and nno = Nd, we can simplify the above equation to

 pM = ni exp( eV

2kT)
This means that the recombination current for V > kT∕e is given by

 Jrecom =
eni

2 (Wp

τe

+
Wn

τh ) exp( eV

2kT) [6.15]

 From a better quantitative analysis, the expression for the recombination current 
can be shown to be5

 Jrecom = Jro[exp( eV

2kT) − 1]  [6.16]

where Jro is the preexponential constant in Equation 6.15.
 Equation 6.15 is the current that supplies the carriers that recombine in the 
depletion region. The total current into the diode will supply carriers for minority 
carrier diffusion in the neutral regions and recombination in the space charge layer, 
so it will be the sum of Equations 6.12a and 6.15. For V > kT∕e,

 J = Jso exp(eV

kT) + Jro exp( eV

2kT)

Recombina-

tion current

Recombina-

tion current

Total diode 

current = 

diffusion + 

recombination

 5 This is generally proved in advanced texts.
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This expression is often lumped into a single exponential as

 J = Jo exp( eV

ηkT) [6.17]

where Jo is a new constant and η is an ideality factor, which is 1 when the current is 
due to minority carrier diffusion in the neutral regions and 2 when it is due to recom-
bination in the space charge layer. Figure 6.7 shows typical expected I–V characteris-
tics of pn junction Ge, Si, and GaAs diodes. At the highest currents, invariably, the 
bulk resistances of the neutral regions limit the current (why?). For Ge diodes, typically 
η = 1 and the overall I–V characteristics are due to minority carrier diffusion. In the 
case of both Si and GaAs, η is 2 over a wide current range but, at higher currents, it 
changes to 1. The current is initially controlled by recombination in the space charge 
layer but at high at sufficiently high voltages, it is due to by minority carrier diffusion 
in the neutral regions, indicating that both processes play an important role. In the case 
of heavily doped Si diodes, heavy doping leads to short minority carrier recombination 
times and the current is controlled by recombination in the space charge layer so that 
the η = 2 region extends all the way to the onset of bulk resistance limitation.

6.1.4 REVERSE BIAS

When a pn junction is reverse biased, as shown in Figure 6.8a, the applied voltage, 
as before, drops mainly across the depletion region, that is, the space charge layer 
(SCL), which becomes wider. The negative terminal will attract the holes in the 
p-side to move away from the SCL, which results in more exposed negative accep-
tor ions and thus a wider SCL. Similarly, the positive terminal will attract electrons 
away from the SCL, which exposes more positively charged donors. The depletion 
width on the n-side also widens. The movement of electrons in the n-region toward 
the positive battery terminal cannot be sustained because there is no electron supply 
to this n-side. The p-side cannot supply electrons to the n-side because it has almost 
none. However, there is a small reverse current due to two causes.
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 The applied voltage increases the built-in potential barrier, as depicted in Figure 
6.8b. The electric field in the SCL is larger than the built-in internal field Eo. The 
small number of holes on the n-side near the SCL become extracted and swept by 
the field across the SCL over to the p-side. This small current can be maintained by 
the diffusion of holes from the n-side bulk to the SCL boundary.
 Assume that the reverse bias Vr > kT∕e = 25 mV. The hole concentration pn(0) 
just outside the SCL is nearly zero by the law of the junction, Equation 6.9, whereas 
the hole concentration in the bulk (or near the negative terminal) is the equilibrium 
concentration pno, which is small. There is therefore a small concentration gradient 
and hence a small hole diffusion current toward the SCL as shown in Figure 6.8a. 
Similarly, there is a small electron diffusion current from bulk p-side to the SCL. 
Within the SCL, these carriers are drifted by the field. This minority carrier diffusion 
current is essentially the Shockley model. The reverse current is given by Equation 
6.12a with a negative voltage which leads to a diode current density of −Jso called 
the reverse saturation current density. The value of Jso depends only on the mate-
rial via ni, μh, μe, dopant concentrations, but not on the voltage (Vr > kT∕e). Further-
more, as Jso depends on n2

i, it is strongly temperature dependent. In some books it 
is stated that the causes of reverse current are the thermal generation of minority 
carriers in the neutral region within a diffusion length to the SCL, the diffusion of 
these carriers to the SCL, and their subsequent drift through the SCL. This description, 
in essence, is identical to the Shockley model we just described.
 The thermal generation of electron–hole pairs (EHPs) in the SCL, as shown in 
Figure 6.8a, can also contribute to the observed reverse current since the internal 
field in this layer will separate the electron and hole and drift them toward the neu-
tral regions. This drift will result in an external current in addition to the reverse 
current due to the diffusion of minority carriers. The theoretical evaluation of SCL 
generation current involves an in-depth knowledge of the charge carrier generation 
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processes via recombination centers, which is discussed in advanced texts. Suppose 
that τg is the mean time to generate an EHP by virtue of the thermal vibrations of 
the lattice; τg is also called the mean thermal generation time. Given τg, the rate 
of thermal generation per unit volume must be ni∕τg because it takes on average τg 
seconds to create ni number of EHPs per unit volume. Furthermore, since WA, where 
A is the cross-sectional area, is the volume of the depletion region, the rate of EHP, 
or charge carrier, generation is (AWni)∕τg. Both holes and electrons drift in the SCL 
each contributing equally to the current. The observed current density must be 
e(Wni)∕τg. Therefore, the reverse current density component due to thermal genera-
tion of EHPs within the SCL should be given by

 Jgen =
eWni

τg

  [6.18]

 The reverse bias widens the width W of the depletion layer and hence increases 
Jgen. The total reverse current density Jrev is the sum of the diffusion and generation 
components,

 Jrev = ( eDh

Lh Nd

+
eDe

Le Na
)n2

i +
eWni

τg

 [6.19]

which is shown schematically in Figure 6.9a. The thermal generation component Jgen 
in Equation 6.18 increases with reverse bias Vr because the SCL width W increases 
with Vr. (See Figure 6.8b.)
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Figure 6.9 (a) Forward and reverse I–V characteristics of a pn junction (the positive and negative current axes 

have different scales and hence the discontinuity at the origin). (b) Reverse diode current in a Ge pn junction as a 

function of temperature in a ln(Irev) versus 1∕T plot. Above 238 K, Irev is controlled by n2
i , and below 238 K, it is 

controlled by ni. The vertical axis is a logarithmic scale with actual current values.

 SOURCE: (b) Data extracted from Scansen, D., and Kasap, S.O., Canadian Journal of Physics, 70,  1070, 1992.
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 The terms in the reverse current in Equation 6.19 are predominantly controlled 
by n2

i and ni. Their relative importance depends not only on the semiconductor 
properties but also on the temperature since ni ∝ exp(−Eg∕2kT ). Figure 6.9b shows 
the reverse current Irev in dark in a Ge pn junction (a photodiode) plotted as ln(Irev) 
versus 1∕T to highlight the two different processes in Equation 6.19. The measure-
ments in Figure 6.9b show that above 238 K, Irev is controlled by n2

i because the 
slope of ln(Irev) versus 1∕T yields an Eg of approximately 0.63 eV, close to the 
expected Eg of about 0.66 eV in Ge. Below 238 K, Irev is controlled by ni because 
the slope of ln (Irev) versus 1∕T is equivalent to Eg∕2 of approximately 0.33 eV. In 
this range, the reverse current is due to EHP generation in the SCL via defects and 
impurities (recombination centers).

FORWARD- AND REVERSE-BIASED Si DIODE An abrupt Si p+n junction diode has a cross-
sectional area of 1 mm2, an acceptor concentration of 5 × 1018 boron atoms cm−3 on the 
p-side, and a donor concentration of 1016 arsenic atoms cm−3 on the n-side. The lifetime of 
holes in the n-region is 420 ns, whereas that of electrons in the p-region is 5 ns due to a 
greater concentration of impurities (recombination centers) on that side. Mean thermal gen-
eration lifetime (τg) is about 1 μs. The lengths of the p- and n-regions are 5 and 100 microns, 
respectively.

a. Calculate the minority diffusion lengths and determine what type of a diode this is.
b. What is the built-in potential across the junction?
c. What is the current when there is a forward bias of 0.6 V across the diode at 27 °C? 

Assume that the current is by minority carrier diffusion.
d. Estimate the forward current at 100 °C when the voltage across the diode remains at 

0.6 V. Assume that the temperature dependence of ni dominates over those of D, L, 
and μ.

e. What is the reverse current when the diode is reverse biased by a voltage Vr = 5 V?

SOLUTION

The general expression for the diffusion length is L = √Dτ where D is the diffusion coef-
ficient and τ is the carrier lifetime. D is related to the carrier mobility μ via the Einstein 
relationship D∕μ = kT∕e. We therefore need to know μ to calculate D and hence L. Electrons 
diffuse in the p-region and holes in the n-region, so we need μe in the presence of Na accep-
tors and μh in the presence of Nd donors. From the drift mobility, μ versus dopant concentra-
tion in Figure 5.19, we have the following:

With Na = 5 × 1018 cm−3 μe ≈ 150 cm2 V−1 s−1

With Nd = 1016 cm−3 μh ≈ 430 cm2 V−1 s−1

Thus, with kT∕e = 0.2585 V at 300 K, we have

  De =
kTμe

e
≈ (0.02585 V)(150 cm2 V−1 s−1) = 3.88 cm2 s−1

  Dh =
kTμh

e
≈ (0.02585 V)(430 cm2 V−1 s−1) = 11.12 cm2 s−1

 EXAMPLE 6.4
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Diffusion lengths are

 Le = √Deτe = √[ (3.88 cm2 s−1) (5 × 10−9 s) ]

 = 1.39 × 10−4 cm  or  1.39 μm < 5 μm

 Lh = √Dhτh = √[ (11.12 cm2 s−1) (420 × 10−9 s) ]

 = 21.6 × 10−4 cm  or  21.6 μm < 100 μm

 We therefore have a long diode. The built-in potential is

 Vo = (kT

e ) ln(Nd Na

n2
i

) = (0.02585 V) ln[ (1016 × 5 × 1018)

(1.0 × 1010)2 ] = 0.875 V

 To calculate the forward current when V = 0.6 V, we need to evaluate both the diffusion 
and recombination components to the current. It is likely that the diffusion component will 
exceed the recombination component at this forward bias (this can be easily verified). Assuming 
that the forward current is due to minority carrier diffusion in neutral regions,

 I = Iso[exp(eV

kT) − 1] ≈ Iso exp(eV

kT)  for V ≫
kT

e
  (= 0.02585 V)

where

 Iso = A Jso = Aen2
i [( Dh

Lh Nd
) + ( De

Le Na
)] ≈

Aen2
i Dh

Lh Nd

as Na ≫ Nd. In other words, the current is mainly due to the diffusion of holes in the n-region. 
Thus,

 Iso =
(0.01 cm2) (1.602 × 10−19 C)(1.0 × 1010 cm−3)2 (11.12 cm2 s−1)

(21.6 × 10−4 cm)(1016 cm−3)

 = 8.24 × 10−14 A  or  0.082 pA

 Then the diode current is

 I ≈ Iso exp(eV

kT) = (8.24 × 10−14 A) exp[ (0.6 V)
(0.0259 V) ]

 = 0.99 × 10−3 A  or  1.0 mA

 We note that when a forward bias of 0.6 V is applied, the built-in potential is reduced 
from 0.875 V to 0.275 V, which encourages minority carrier injection, that is, diffusion of 
holes from p- to n-side and electrons from n- to p-side. To find the current at 100 °C, first 
we assume that Iso ∝ n2

i. Then at T = 273 + 100 = 373 K, ni ≈ 1.0 × 1012 cm−3 (approxi-
mately from ni versus 1∕T graph in Figure 5.16), so

  Iso(373 K) ≈ Iso(300 K)[ni(373 K)
ni(300 K) ]

2

  ≈ (8.24 × 10−14)(1.0 × 1012

1.0 × 1010)
2

= 8.24 × 10−10 A  or  0.824 nA

 At 100 °C, the forward current with 0.6 V across the diode is

 I = Iso exp(eV

kT) = (8.24 × 10−10 A) exp[ (0.6 V)(300 K)
(0.02585 V)(373 K) ] = 0.10 A
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 When a reverse bias of Vr is applied, the potential difference across the depletion region 
becomes Vo + Vr and the width W of the depletion region is

 W = [2ε(Vo + Vr)
eNd

]
1∕2

= [2(11.9)(8.85 × 10−12) (0.875 + 5)

(1.6 × 10−19) (1022) ]
1∕2

 = 0.88 × 10−6 m  or  0.88 μm

 The thermal generation current with Vr = 5 V is

 Igen =
eAWni

τg

=
(1.602 × 10−19 C)(0.01 cm2) (0.88 × 10−4 cm)(1.0 × 1010 cm−3)

(10−6 s)
 = 1.41 × 10−9 A  or  1.4 nA

 This thermal generation current is much greater than the reverse saturation current 
Iso  (= 0.0842 pA). The reverse current is therefore dominated by Igen and it is 1.4 nA.

A DIRECT BANDGAP pn JUNCTION In direct bandgap semiconductors, an electron and a 

hole can recombine directly, without needing a recombination center. Such a direct recombi-

nation leads to photon emission and is the basis of LEDs as discussed later in this chapter. 

Consider holes injected into the n-side of a pn junction from a direct bandgap semiconductor 

such as GaAs. Assume weak injection so that the excess hole concentration Δpn is much less 

than the equilibrium majority carrier concentration nno. If τ′h is the mean lifetime due direct 

recombination, then the probability per unit time 1∕τ′h that a hole directly recombines with 

an electron depends on the concentration of electrons nno in the n-side, that is

 τ′h =
1

Bnno

 [6.20]

where B is a constant called the direct recombination coefficient. In addition, there will 

also be indirect recombination, which depends on the concentration of impurities and defects. 

Suppose that 1∕τ″h is the probability per unit time for indirect recombination, then the overall 
probability of recombination per unit time 1∕τh will be

 
1
τh

=
1
τ′h

+
1

τ″h
= Bnn +

1

τ″h
 [6.21]

where τh is the effective lifetime. The quantities τ′h and τ″h are known as hole radiative and non-

radiative lifetimes and are often written as τr and τnr. We can use the above expression for the 

recombination of injected carriers in the neutral regions as well as the depletion region.6 Within 

the depletion region, nn will be small and the hole lifetime will be due to indirect recombination. 

Similar arguments can be applied to electrons on the p-side with similar expressions.

 Consider a symmetrical GaAs pn junction in which the p-side doping Na is equal to the n-side 

doping Nd and both are 1017 cm−3. The direct recombination coefficient B ≈ 2 × 10−16 m3 s−1, 

cross sectional area A = 1 mm2. The indirect recombination lifetime is roughly 200 ns. At these 

doping levels and at 300 K, the electron and hole drift mobilities are roughly μe ≈ 4500 cm2 

V−1 s−1 in the p-side and μh ≈ 270 cm2 V−1 s−1 in the n-side. From the Einstein relation 

(D = μkT∕e), the corresponding diffusion coefficients are Dh = 6.98 × 10−4 m2 s−1 and 
De = 1.16 × 10−2 m2 s−1. Calculate the diffusion and recombination currents for this GaAs 
pn junction when the forward bias is 0.8 V and 1.0 V. What is your conclusion?

 EXAMPLE 6.5

Minority 

carrier 

lifetime in 

direct  

recombination

Minority 

carrier 

lifetime in 

direct and 

indirect 

recombination

 6 There is also another recombination mechanism called Auger recombination, which occurs at high carrier 
concentrations, but this is ignored in this introductory treatment.
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SOLUTION

We can calculate the direct recombination lifetimes τ′e and τ′h for electrons and holes recom-

bining in the neutral p- and n-regions, respectively. In the n-side nn = nno = Nd = 1017 cm−3, 

and since this is a symmetric device

 τ′e = τ′h =
1

Bnno

=
1

BNd

=
1

(2.0 × 10−16 m3 s−1) (1 × 1023 m−3)
= 50.0 ns

 The effective lifetime τh is given by Equation 6.21

 
1

τh

=
1

τ′h
+

1

τ″h
=

1

50 × 10−9
+

1

200 × 10−9

which gives τh = τe = 40 ns.

 To find the Shockley current in Equation 6.12a we need the diffusion lengths,

 Lh = (Dhτh)
1∕2 = [6.98 × 10−4 m2 s−1)(40.0 × 10−9 s)]1∕2 = 5.28 × 10−6 m,

and

 Le = (Deτe)
1∕2 = [(1.16 × 10−2 m2 s−1)(40.0 × 10−9 s)]1∕2 = 2.16 × 10−5 m.

 Notice that the electrons diffuse much further in the p-side due to their higher mobility. 
From Table 5.1, ni = 2.1 × 1012 m−3, so that reverse saturation current due to diffusion in 
the neutral regions is

  Iso = A( Dh

Lh Nd

+
De

Le Na
)en2

i

  = (1 × 10−6)[ 6.98 × 10−4

(5.28 × 10−6) (1023)
+

1.16 × 10−2

(2.16 × 10−5) (1023) ](1.602 × 10−19) (2.1 × 1012)2

  ≈ 4.7 × 10−21 A

 Thus, the forward diffusion current is

  Idiff = Iso exp(eV

kT)
  = (4.7 × 10−21 A) exp[ 0.80 V

0.02585 V] = 1.3 × 10−7 A  or  0.13 μA

 To calculate recombination component of the current, we need to know the SCL width 
W and the mean electron and hole recombination times in the depletion region.
 The built-in voltage Vo is

 Vo =
kT

e
ln(NaNd

n2
i

) = (0.02585) ln[ 10231023

(2.1 × 1012)2] = 1.27 V

 Depletion region width W is

  W = [2ε(Na + Nd) (Vo − V)
eNaNd

]
1∕2

  = [2(13)(8.85 × 10−12 F m−1) (1023 + 1023 m−3) (1.27 − 0.80 V)

(1.602 × 10−19 C)(1023 m−3) (1023 m−3) ]
1∕2

  = 1.16 × 10−7 m,  or  0.116 μm.
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 In the depletion region both electron and hole concentrations are much less than nno and 
pno respectively, which means that the direct recombination rate will be small. Put differently, 
in the depletion region Bnn and Bpp are both small and, as first order, we can ignore radiative 
recombination. Thus, τh = τe ≈ 200 ns.
 As this is a symmetric diode, Wp = Wn = (1∕2)W. The preexponential Iro is

  Iro =
Aeni

2 [Wp

τe

+
Wn

τh
] =

Aeni

2 (W

τh
)

  =
(10−6) (1.602 × 10−19) (2.1 × 1012)

2 (1.16 × 10−7

200 × 10−9 ) ≈ 9.8 × 10−14 A

so that at V = 0.8 V,

  Irecom ≈ Iro exp( eV

2kT)
  ≈ (9.8 × 10−14 A) exp[ 0.8 V

2(0.02585 V) ] = 5.1 × 10−7 A or 0.51 μA

 The recombination current is more than the diffusion current. If we repeat the calculation 
for a voltage of 1.0 V across the device, we would find Idiff = 0.30 mA and Irecom = 0.025 mA, 
where Idiff dominates the current. Thus, as the voltage increases across a GaAs pn junction, 
the ideality factor η is initially 2 but then becomes 1 as shown in Figure 6.7. It is apparent 
that the I–V characteristics depend very much on the relative values of the radiative and 
nonradiative lifetimes.

6.2  pn JUNCTION BAND DIAGRAM

6.2.1 OPEN CIRCUIT

Figure 6.10a shows the energy band diagrams for a p-type and an n-type semicon-
ductor of the same material (same Eg) when the semiconductors are isolated from 
each other. In the p-type material the Fermi level EFp is Φp below the vacuum level 
and is close to Ev. In the n-type material the Fermi level EFn is Φn below the vacuum 
level and is close to Ec. The separation Ec − EFn determines the electron concentra-
tion nno in the n-type and EFp − Ev determines the hole concentration ppo, in the 
p-type semiconductor under thermal equilibrium conditions.
 An important property of the Fermi energy EF is that in a system in equilibrium, 
the Fermi level must be spatially continuous. A difference in Fermi levels ΔEF is 
equivalent to electrical work eV, which is either done on the system or extracted 
from the system. When the two semiconductors are brought together, as in Figure 
6.10b, the Fermi level must be uniform through the two materials and the junction 
at M, which marks the position of the metallurgical junction. Far away from M, in 
the bulk of the n-type semiconductor, we should still have an n-type semiconductor 
and Ec − EFn should be the same as before. Similarly, EFp − Ev far away from M 
inside the p-type material should also be the same as before. These features are 
sketched in Figure 6.10b keeping EFp and EFn the same through the whole system 
and, of course, keeping the bandgap Ec − Ev the same. Clearly, to draw the energy 
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band diagram, we have to bend the bands Ec and Ev around the junction at M because 
Ec on the n-side is close to EFn whereas on the p-side it is far away from EFp. How 
do bands bend and what does it mean?
 As soon as the two semiconductors are brought together to form the junction, 
electrons diffuse from the n-side to the p-side and as they do so they deplete the 
n-side near the junction. Thus Ec must move away from EFn toward M, which is 
exactly what is sketched in Figure 6.10b. Holes diffuse from the p-side to the n-side 
and the loss of holes in the p-type material near the junction means that Ev moves 
away from EFp toward M, which is also in the figure.
 Furthermore, as electrons and holes diffuse toward each other, most of them 
recombine and disappear around M, which leads to the formation of a depletion 
region or the space charge layer, as we saw in Figure 6.1. The electrostatic 
potential energy (PE) of the electron decreases from 0 inside the p-region to −eVo 
inside the n-region, as shown in Figure 6.1g. The total energy of the electron 
must therefore decrease going from the p- to the n-region by an amount eVo. In 
other words, the electron in the n-side at Ec must overcome a PE barrier to go 
over to Ec in the p-side. This PE barrier is eVo, where Vo is the built-in potential 
that we evaluated in Section 6.1. Band bending around M therefore accounts not 
only for the variation of electron and hole concentrations in this region but also 
for the effect of the built-in potential (and hence the built-in field as the two are 
related).
 In Figure 6.10b we have also schematically sketched in the positive donor (at 
Ed) and the negative acceptor (at Ea) charges in the SCL around M to emphasize 
that there are exposed charges near M. These charges are, of course, immobile and, 
generally, they are not shown in band diagrams. It should be noted that in the SCL 
region, marked as Wo, the Fermi level is close to neither Ec nor Ev, compared with 
the bulk semiconductor regions. This means that both n and p in this zone are much 
less than their bulk (majority carrier) values nno and ppo. The metallurgical junction 

Figure 6.10 (a) Two isolated p- and n-type semiconductors (same material). (b) A pn junction band diagram when the 

two semiconductors are in contact. The Fermi level must be uniform in equilibrium. The metallurgical junction is at M. 

The region around M contains the space charge layer (SCL). On the n-side of M, SCL has the exposed positively 

charged donors, whereas on the p-side it has the exposed negatively charged acceptors.
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zone has been depleted of carriers compared with the bulk. Any applied voltage must 
therefore drop across the SCL.

6.2.2 FORWARD AND REVERSE BIAS

The energy band diagram of the pn junction under open circuit conditions is shown 
in Figure 6.11a. There is no net current, so the diffusion current of electrons from 
the n- to p-side is balanced by the electron drift current from the p- to n-side driven 
by the built-in field Eo. Similar arguments apply to holes. The probability that an 
electron diffuses from Ec in the n-side to Ec in the p-side determines the diffusion 
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Figure 6.11 Energy band diagrams for a pn junction: (a) open circuit, (b) forward bias, (c) reverse bias 

conditions, (d) thermal generation of EHP in the depletion region results in a small reverse current.
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current density Jdiff. The probability of overcoming the PE barrier is proportional to 
exp(−eVo∕kT ). Therefore, under zero bias,

 Jdiff(0) = B exp(−
eVo

kT ) [6.22]

 Jnet(0) = Jdiff(0) + Jdrift(0) = 0 [6.23]

where B is a proportionality constant and Jdrift(0) is the current due to the drift of 
electrons by Eo. Clearly Jdrift(0) = −Jdiff(0); that is, drift is in the opposite direction 
to diffusion.
 When the pn junction is forward biased, the majority of the applied voltage 
drops across the depletion region, so the applied voltage is in opposition to the 
built-in potential Vo. Figure 6.11b shows the effect of forward bias, which is to 
reduce the PE barrier from eVo to e(Vo − V ). The electrons at Ec in the n-side can 
now readily overcome the PE barrier and diffuse to the p-side. The diffusing elec-
trons from the n-side can be replenished easily by the negative terminal of the 
battery connected to this side. Similarly holes can now diffuse from the p- to n-side. 
The positive terminal of the battery can replenish those holes diffusing away from 
the p-side. There is therefore a current flow through the junction and around 
the circuit.
 The probability that an electron at Ec in the n-side overcomes the new PE bar-
rier and diffuses to Ec in the p-side is now proportional to exp[−e(Vo − V )∕kT ]. The 
latter increases enormously even for small forward voltages. The new diffusion cur-
rent due to electrons diffusing from the n- to p-side is

 Jdiff(V) = B exp[−
e(Vo − V)

kT ]
 There is still a drift current due to electrons being drifted by the new field 
Eo  −  E  (E is the applied field) in the SCL. This drift current now has the value 
Jdrift(V). The net current is the diode current under forward bias

 J = Jdiff(V ) + Jdrift(V )

 Jdrift(V ) is difficult to evaluate. As a first approximation we can assume that 
although Eo has decreased to Eo − E, there is, however, an increase in the electron 
concentration in the SCL due to diffusion so that we can approximately take Jdrift(V ) 
to remain the same as Jdrift(0). Thus,

 J ≈ Jdiff(V) + Jdrift(0) = B exp[−
e(Vo − V)

kT ] − B exp(−
eVo

kT )
Factoring leads to

 J ≈ B exp(−
eVo

kT )[exp(eV

kT) − 1]
 We should also add to this the hole contribution, which has a similar form with 
a different constant B. The diode current–voltage relationship then becomes the 
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familiar diode equation,

 J = Jo[exp(eV

kT) − 1] [6.24]

where Jo is a temperature-dependent constant.7

 When a reverse bias, V = −Vr, is applied to the pn junction, the voltage again 
drops across the SCL. In this case, however, Vr adds to the built-in potential Vo, so 
the PE barrier becomes e(Vo + Vr), as shown in Figure 6.11c. The field in the SCL 
at M increases to Eo + E, where E is the applied field.
 The diffusion current due to electrons diffusing from Ec in the n-side to Ec in 
the p-side is now almost negligible because it is proportional to exp[−e(Vo + Vr)∕kT], 
which rapidly becomes very small with Vr. There is, however, a small reverse cur-
rent arising from the drift component. When an EHP is thermally generated in the 
SCL, as shown in Figure 6.11d, the field here separates the pair. The electron falls 
down the PE hill, down to Ec, in the n-side to be collected by the battery. Similarly 
the hole falls down its own PE hill (energy increases downward for holes) to make 
it to the p-side. The process of falling down a PE hill is the same process as being 
driven by a field, in this case by Eo + E. Under reverse bias conditions, there is 
therefore a small reverse current that depends on the rate of thermal generation of 
EHPs in the SCL. An electron in the p-side that is thermally generated within  
a diffusion length Le to the SCL can diffuse to the SCL and consequently can 
become drifted by the field, that is, roll down the PE hill in Figure 6.11d. Such 
minority carrier thermal generation in neutral regions can also give rise to a small 
reverse current.

pn Junction 

I–V 

characteristics

 7 The derivation is similar to that for the Schottky diode, but there are more assumptions here.

THE BUILT-IN VOLTAGE Vo FROM THE ENERGY BAND DIAGRAM The energy band treat-
ment allows a simple way to calculate Vo. When the junction is formed in Figure 6.10 from 
a to b, EFp and EFn must shift and line up. Using the energy band diagrams in this figure and 
semiconductor equations for n and p, derive an expression for the built-in voltage Vo in terms 
of the material and doping properties Nd, Na, and ni.

SOLUTION

The shift in EFp and EFn to line up is clearly Φp − Φn, the work function difference. Thus 
the PE barrier eVo is Φp − Φn. From Figure 6.10, we have

 eVo = Φp − Φn = (Ec − EFp) − (Ec − EFn)

 But on the p- and n-sides, the electron concentrations in thermal equilibrium are 
given by

 npo = Nc exp[−
(Ec − EFp)

kT ]
 nno = Nc exp[−

(Ec − EFn)
kT ]

 EXAMPLE 6.6
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 From these equations, we can now substitute for (Ec − EFp) and (Ec − EFn) in the expres-
sion for eVo. The Nc cancel and we obtain

 eVo = kT ln(nno

npo
)

 Since npo = n2
i∕Na and nno = Nd, we readily obtain the built-in potential Vo,

 Vo = (kT

e ) ln[ (NaNd)

n2
i

]

6.3   DEPLETION LAYER CAPACITANCE  

OF THE pn JUNCTION

It is apparent that the depletion region of a pn junction has positive and negative 
charges separated over a distance W similar to a parallel plate capacitor. The stored 
charge in the depletion region, however, unlike the case of a parallel plate capacitor, 
does not depend linearly on the voltage. It is useful to define an incremental capacitance 
that relates the incremental charge stored to an incremental voltage change across 
the pn junction.
 With an applied voltage V, the width of the depletion region is given by Equa-
tion 6.7

 W = [2ε(Na + Nd) (Vo − V)
eNa Nd

]
1∕2

 [6.25]

where, for forward bias, V is positive, which reduces Vo, and, for reverse bias, V is 
negative, so Vo is increased. We are interested in obtaining the capacitance of the 
depletion region under dynamic conditions, that is, when V is a function of time. 
When the applied voltage V changes by dV, to V + dV, then W also changes via 
Equation 6.25, and as a result, the amount of charge in the depletion region becomes 
Q + dQ, as shown in Figure 6.12a for the reverse bias case, that is, V = −Vr and 
dV = −dVr. The depletion layer capacitance Cdep is defined by

 Cdep = ∣ dQ

dV ∣  [6.26]

where the amount of charge (on any one side of the depletion layer) is

 ∣Q∣ = eNdWnA = eNaWpA

and W = Wn + Wp. We can therefore substitute for W in Equation 6.25 in terms of 
Q and then differentiate it to obtain dQ∕dV. The final result for the depletion capac-
itance is

 Cdep =
εA

W
=

A

(Vo − V)1∕2[ eε(Na Nd)
2(Na + Nd) ]

1∕2

 [6.27]

 We should note that Cdep is given by the same expression as that for the parallel 
plate capacitor, εA∕W, but with W being voltage dependent by virtue of Equation 
6.25. The Cdep versus V behavior is sketched in Figure 6.12b. Notice that Cdep decreases 
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with increasing reverse bias, which is expected since the separation of the charges 
increases via W ∝ (Vo + Vr)

1∕2. The capacitance Cdep is present under both forward 
and reverse bias conditions.
 The simple parallel plate capacitance expression Cdep = εA∕W in Equation 6.27 
was derived for an abrupt junction in which both the p and n-sides have uniform 
acceptor and donor concentration. It may seem unusual but it turns out that Cdep = 
εA∕W is generally valid whatever the dopant concentration profiles are. Consider a 
one-sided pn junction in which the p-side is much more heavily doped, denoted as 
p+, than the n-side as shown in Figure 6.13a. The depletion width extends almost 
entirely into the lightly doped n-side and we can take W ≈ Wn. Under a reverse bias 
of Vr, the +Q charge in the n-side is within W. When we increase Vr to Vr + dVr, 
the charge Q increases to Q + dQ as shown in Figure 6.13b. Take the net space 
charge density ρnet = eNd(x) in the n-side depletion region. The total charge and the 
maximum field Eo from Equation 6.2 are given by

 Q = A ∫
W

0

ρnet dx  and  Eo = −
1
ε ∫

W

0

ρnet dx

so that Eo = −Q∕Aε and thus dEo = −dQ∕Aε. Further, the integration of ∣E(x)∣ 
over x upto W gives Vr which is the area under the curve of ∣E(x)∣ as indicated in 
Figure 6.13c. When we increase Vr to Vr + dVr, this area increases by an amount 
shown as dark grey, which is dVr. The additional dVr drops across W and gives rise 
to −dEo so that8 dVr∕W = −dEo. Thus,

 Cdep = dQ∕dVr = (−εAdEo)∕(−WdEo)

dQ = incremental charge
Diode voltage = –Vr

 Diode voltage = –(Vr + dVr)

Space charge region

  eNd

  –eNa

Net space
charge density

x

M

M

(10–103) pF/mm2

Cdep

ForwardReverse
Diode
voltageVo

0

(a) (b)

Figure 6.12 The depletion region behaves like a capacitor. (a) The charge in the depletion region depends on the  

applied voltage just as in a capacitor. A reverse bias example is shown. (b) The incremental capacitance of the depletion 

region increases with forward bias and decreases with reverse bias. Its value is typically in the range of picofarads per 

mm2 of device area.

 8 It seems intuitively correct that dVr∕W = ∣dEo∣, but a rigorous proof is by no means trivial. The field depends 
on the integration of ρnet and Vr depends on the double integration of ρnet. We then have to differentiate the 
latter integral to obtain dVr∕W = ∣dEo∣.
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that is

 Cdep =
εA

W
 [6.28]

 Equation 6.28 is generally valid even if we do not have a one-sided junction, 
and is basically Equation 6.27 for a uniformly doped abrupt junction. Since W 
depends on the voltage, so does the depletion capacitance.
 Suppose that we assume that the donor concentration in the p+n junction follows 
Nd(x) = Bxm as shown in Figure 6.13b; and d for three m values. Obviously, m = 0 
is the abrupt junction case. If we integrate ρnet = eBxm across the depletion region 
W, we would get the field and if we integrate it again, we would find the total volt-
age across the depletion region, Vo − V or Vo + Vr as a function of W, that is the 
dependence of W on (Vo − V ). We can then substitute for W in Equation 6.28 and 
find Cdep as

 Cdep = A[ eεm+1B

(m + 2)(Vo − V) ]
1∕(m+2)

 [6.29]

in which V = −Vr for reverse bias. Clearly under suitable reverse bias Vr > Vo, and 
Cdep ∝ Vr

−1∕(m+2) which implies that we should design a pn junction whose Cdep 
dependence on the external Vr can be controlled. Notice that m = 1 gives Cdep ∝ 
Vr

−1∕2 as expected from Equation 6.27. For many pn junctions, the dopant concentration 
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Figure 6.13 (a) A one-sided p+n junction under reverse bias Vr in which Wn ≫ Wp and W ≈ Wn. The n-side depletion  

region has exposed positive donors with total charge +Q. When Vr increased by dVr, +Q increases by +dQ. There is also 

an increase in the negative charge by the same amount in the p+-side depletion region but this is not shown since it is 

very narrow. (b) An arbitrary donor concentration Nd(x) on the n-side and the regions of +Q and +dQ corresponding to Vr 

and dVr. (c) The field is almost totally on the n-side, maximum at the metallurgical junction at x = 0, and falls rapidly into  

the p+-side. The area under the electric field ∣E(x)∣ is the voltage across the depletion region. (d) Shapes of the donor  

concentration Nd(x) = Bxm profiles for m = 0 (abrupt), 1 (linear), and −3∕2 (hyperabrupt).
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DEPLETION REGION CAPACITANCE Table 6.2 provides data on the capacitance C between 
the terminals of a reverse-biased Si diode at various reverse voltages Vr. The diode is a 
single sided p+n junction (fabricated by ion implantation) with a circular electrode that is 
approximately 500 μm in diameter. The stray capacitance or the packaging capacitance 
between the terminals is estimated to be 0.5–0.7 pF. Find the built-in voltage Vo and the donor 
concentration Nd. What is your conclusion?

SOLUTION

Since this a single-sided p+n type Si diode, from Equation 6.27, with Na ≫ Nd, we have

 Cdep = A[ eε

2Nd(Vo − V) ]
1∕2

 [6.30]

and substituting V = −Vr and rearranging the equation,

 
1

C 
2
dep

=
2Nd

A2eε
(Vo + Vr)

A plot of 1∕C2
dep against Vr should be straight line and we can find Vo and Nd from the inter-

cept and the slope. However, the measured C is not exactly Cdep but Cdep + Cs, where Cs is 
the stray capacitance 0.6 ± 0.1 pF. Table 6.2 shows a third row in which 1∕C2

dep has been 
calculated from the second row (C) by subtracting Cs = 0.6 pF. Figure 6.14 shows the plot 
of 1∕C2

dep against Vr, which follows the expected behavior quite well with the best line being 

 EXAMPLE 6.7

on both or on one side can be approximated as a linear variation (m = 1) so that 
Cdep ∝ Vr

−1∕3.
 The voltage dependence of the depletion capacitance is utilized in varactor 

diodes (varicaps), which are used as voltage-dependent capacitors in tuning circuits. 
A varactor diode is reverse biased to prevent conduction, and its depletion capaci-
tance is varied by the magnitude of the reverse bias. The resonant frequency of an 
LC circuit with a varactor will be

 fo =
1

2π√LCdep
∝ (Vo − V)1∕2(m+2)

fo will be linear in Vr if 1∕(m + 2) = 1 or m = −3∕2, which is shown in Figure 
6.13d. pn junctions with such or similar sharp dopant profiles are called hyperabrupt 

junctions.9

 9 See Question 6.10 on varactor diodes. The term hyperabrupt is commonly used for doping profiles in which m 
is negative, i.e., the donor concentration decreases with x in Figure 6.13d.

p+n junction 

depletion 

capacitance

Table 6.2 Capacitance of a reverse-biased Si pn junction diode at 23 °C

Vr (V) 0.5 1.0 2.0 4.0 8.0 10 15
C (pF) 42.6 36.4 29.2 22.4 16.6 15.3 12.6
1∕C2

dep × 10−4 (pF−2) 5.67 7.80 12.2 21.04 39.1 46.3 69.4
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y = 0.000438x + 0.000346 (easily obtained from a graphic software such as Excel). The 
intercept on the Vr axis gives −Vo so that

 Vo = 0.000346∕0.000438 = 0.79 V.

The slope is

 Slope =
2Nd

A2eε
= 0.000438 V pF−2,

so that substituting A = π(250 × 10−6 m)2 = 1.97 × 10−7 m2, ε = εoεr, εr = 11.9, we find 
Nd = 7.0 × 1021 m−3 or Nd = 7.0 × 1015 cm−3.
 We can also extract Na by using Vo = (kT∕e)ln(NaNd∕ni

2), which gives Na = 4.0 × 1023 m−3 
or 4.0 × 1017 cm−3; a reasonable value. While these are reasonable values, they do depend 
on the stray capacitance, especially Na. If we repeat the above calculations for different Cs 
we would find the results in Table 6.3. Notice that while Nd values are comparable between 
different Cs values, Na is extremely sensitive to stray capacitance and varies by five orders 
of magnitude. Clearly, stray capacitance correction is very important, assuming everything 
else has been accounted (including the assumption of an abrupt junction).

Table 6.3 Extraction of pn junction characteristics from diode capacitance measurements

Cs (pF) 0 0.5 0.6 0.7 1
Vo (V) 0.96 0.82 0.79 0.75 0.67
Nd (cm−3) 7.8 × 1015 7.1 × 1015 7.0 × 1015 6.9 × 1015 6.5 × 1015

Na (cm−3) 3.1 × 1020 1.2 × 1018 4.0 × 1017 8.1 × 1016 4.7 × 1015

Vo = 0.79

0 2 4 6 8 10 12 14 16−2

0

0.002

0.004

0.006

y = 0.000438x + 0.000346 

Vr (V)

1/Cdep
2

(pF−2)

0.008

Figure 6.14 Plot of 1∕C2
dep against Vr for  

data in Table 6.2. The solid line is the best fit 

to the data.

LINEARLY GRADED pn JUNCTIONS The simplest way to fabricate a pn junction is to dif-
fuse dopants into a Si wafer at a high temperature in a diffusion chamber. Consider an n-type 
Si crystal and we expose one surface of the crystal to a boron gas at a high temperature in 
a diffusion chamber. B-atoms from the gas enter and diffuse into the Si-crystal as depicted 
in Figure 6.15. The boron (acceptor) concentration Na decays with x as shown in Figure 6.15 
at two times t1 and t2 where t2 > t1. The whole acceptor concentration profile Na(x) widens 

 EXAMPLE 6.8
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into the crystal as time lapses because more and more B-atoms diffuse further into the bulk. 
The B-gas provides a constant flux of B-atoms to the surface (an infinite source). The point 
x = xj where Na = Nd defines the metallurgical junction. To the left, x < xj, Na > Nd, and this 
side is p-type. To the right, x > xj, Nd > Na, and this side is n-type. A pn junction is formed 
with its junction at x = xj and there is a depletion region of width Wo around this junction 
as shown in Figure 6.15. The problem is similar to the one-sided junction and the depletion 
layer capacitance is given by Equation 6.29 with m = 1. Figure 6.16a shows a plot of 1∕C3

dep 
against Vr for a commercial diffused junction Si power diode and the data seem to confirm 
a linearly graded junction behavior and the best line is y = (1.49 × 10−5)x + 5.47 × 10−6 
which gives a built-in voltage Vo = 0.37 V or roughly 0.4 V on the Vr axis; the determination 
of the intercept for Vo is quite sensitive to stray capacitances. We can further check the linearly 
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Figure 6.15 Formation of a linearly graded junction in a diffused pn junction. The B-atoms 

from B-gas on the surface of an n-Si wafer diffuse into the crystal. Na(x) is the acceptor 

concentration profile at arbitrary times t1 and t2 (>t1). Acceptors diffuse from the surface 

and at time t = t2, at x = xj, the acceptor and donor concentrations are the same. This is 

the metallurgical junction. The diffusion is terminated when xj reaches (approximately) the  

desired value. The net dopant concentration (Nd − Na) around xj depends linearly on x.
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Figure 6.16 (a) Plot of 1∕C3
dep against Vr using data from diode capacitance measurements on a diffused 

Si power diode. The solid line is the best fit. (b) Cdep against Vr + Vo with Vo = 0.4 from (a). (Measurements 

were carried out by Peyman Pourhaj, P. Eng.)
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graded junction assumption by plotting Cdep against Vr + Vo on a log–log plot as in Figure 
6.15b which shows a best power fit of Cdep ∝ (Vr + Vo)

−0.337. Clearly, the assumption is well 
supported for this diode and the junction is linearly graded.
 Suppose we take xj as x = 0, then Nd − Na = Bx, where B is the gradient of the doping 
profile. We can easily find the built-in potential Vo by noting that, as shown in Figure 6.15, 
the hole concentration at positions 1 and 2 in equilibrium are ppo(1) = BWo∕2 and pno(2) = 
ni

2∕nno(2) = ni
2∕(BWo∕2). If we apply Boltzmann statistics (i.e., assume a nondegenerate 

semiconductor) we can write

 
pno(2)
ppo(1)

=
2n2

i ∕BWo

BWo∕2
= exp(−

eVo

kT )
so that

 Vo =
kT

e
 ln(BWo

2ni
)

2

 [6.31]

Further, for a lineary graded junction m = 1, and since Cdep = εA∕W, then from Equation 6.29, 
Wo at Vr = 0 is

 Wo = [12εVo

eB ]
1∕3

 [6.32]

Capacitance measurements under reverse bias in Figure 6.16a, in principle, provide Vo. We 
then have two equations with two unknowns, B and Wo in Equations 6.31 and 6.32, and hence 
we can find B and Wo. Thus, using Vo ≈ 0.4 V in Equations 6.31 and 6.32, we find,

 B ≈ 5.5 × 1016 cm−4  and  Wo ≈ 8.3 × 10−6 m or 8.3 μm

which are quite sensitive to the exact value of Vo and hence to experimental uncertainties, 
that is parasitic capacitances and whether the linear doping profile is linear over the whole 
depletion width. As we move away from the junction, the linearity will be lost. If we 
know the cross sectional area of the pn junction we can use the slope of the best line in 
Figure 6.16a to find B.

6.4   DIFFUSION (STORAGE) CAPACITANCE  

AND DYNAMIC RESISTANCE

The diffusion or storage capacitance arises under forward bias only. As shown in 
Figure 6.2a, when the p+n junction is forward biased, we have stored a positive charge 
on the n-side by the continuous injection and diffusion of minority carriers. Similarly, 
a negative charge has been stored on the p+-side by electron injection, but the mag-
nitude of this negative charge is small for the p+n junction. When the applied voltage 
is increased from V to V + dV, as shown in Figure 6.17, then pn(0) changes from 
pn(0) to p′n(0). If dQ is the additional minority carrier charge injected into the n-side, 
as a result of a small increase dV in V, then the incremental storage or diffusion 

capacitance Cdiff is defined as Cdiff = dQ∕dV. At voltage V, the injected positive 
charge Q on the n-side is disappearing by recombination at a rate Q∕τh, where τh is 
the minority carrier lifetime. The diode current I is therefore Q∕τh, from which

 Q = τh I = τh Io[exp(eV

kT) − 1] [6.33]
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Thus,

 Cdiff =
dQ

dV
=

τh eI

kT
=

τh I(mA)
25

 [6.34]

where we used e∕kT ≈ 1∕0.025 at room temperature. (Note that 1∕0.026 is also 
commonly used.) Generally the value of the diffusion capacitance, typically in the 
nanofarads range, far exceeds that of the depletion layer capacitance.
 Suppose that the voltage V across the diode is increased by an infinitesimally 
small amount dV, as shown in an exaggerated way in Figure 6.18. This gives rise to 
a small increase dI in the diode current. We define the dynamic or incremental 

resistance rd of the diode as dV∕dI, so

 rd =
dV

dI
=

kT

eI
=

25
I(mA)

 [6.35]

 The dynamic resistance is therefore the inverse of the slope of the I–V charac-
teristics at a point and hence depends on the current I. It relates the changes in the 
diode current and voltage arising from the diode action alone, by which we mean 
the modulation of the rate of minority carrier diffusion by the diode voltage. We 
could have equivalently defined a dynamic conductance by

 gd =
dI

dV
=

I

rd

From Equations 6.34 and 6.35 we have

 rd Cdiff = τh [6.36a]
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holes into the n-side during forward bias.

Storage or diffusion capacitance arises  

because when the diode voltage increases 

from V to V + dV, more minority carriers are 

injected and more minority carrier charge is 

stored in the n-region.

0

I

0.5 V

1 dI
dV

=

Current

I+dI

Tangent

dI

dV

Voltage

V+dV

rd

Figure 6.18 The dynamic  

resistance of the diode is defined 

as dV∕dI, which is the inverse of 

the tangent at I.



 6 . 4  DIFFUSION (STORAGE) CAPACITANCE AND DYNAMIC RESISTANCE 561

 The dynamic resistance rd and diffusion capacitance Cdiff of a diode determine 
its response to small ac signals under forward bias conditions. By small we usually 
mean voltages smaller than the thermal voltage kT∕e or 25 mV at room temperature. 
For small ac signals we can simply represent a forward-biased diode as a resistance 
rd in parallel with a capacitance Cdiff.
 Equation 6.36a applies to a long diode, and cannot be used for a short diode. The 
reason is that the injected minority carriers simply diffuse and reach the collecting 
electrodes. The minority carrier profile is a straight line whose gradient determines 
the diffusion current as in Figure 6.5. The diode current I supplies the minority car-
riers that diffuse through the neutral regions and reach the electrodes. Consider a 
p+n junction and the diffusion of holes on the n-side as in Figure 6.5. If τt is the 
diffusion time of holes across ℓn, then we know from Chapter 1 that ℓn = (2Dhτt)

1∕2. 
If the total charge injected into the neutral n-side is Q (the grey area in Figure 6.17 
under the pn(x) profile) then this charge takes τt seconds to diffuse across ℓn and the 
current I must replace Q every τt seconds so that I = Q∕τt. Thus Q = Iτt, and fol-
lowing along the lines above for the long diode, we can easily show that

 rd Cdiff = τt [6.36b]

The short diode diffusion capacitance is always less than that of the long diode.

Diffusion 

capacitance of 

a short diode

INCREMENTAL RESISTANCE AND CAPACITANCE An abrupt Si p+n junction diode of 
cross-sectional area (A) 1 mm2 with an acceptor concentration of 5 × 1018 boron atoms cm−3 
on the p-side and a donor concentration of 1016 arsenic atoms cm−3 on the n-side is forward 
biased to carry a current of 5 mA. The lifetime of holes in the n-region is 417 ns, whereas 
that of electrons in the p-region is 5 ns. What are the small-signal dynamic resistance, incre-
mental storage, and depletion capacitances of the diode?

SOLUTION

This is the same diode we considered in Example 6.4 for which the built-in potential was 
0.877 V and Iso = 0.0836 pA. The current through the diode is 5 mA. Thus

 I = Iso exp(eV

kT)  or  V = (kT

e ) ln( I

Iso
) = (0.0259) ln( 5 × 10−3

0.0836 × 10−12) = 0.643 V

 The dynamic diode resistance is given by

 rd =
25

I (mA)
=

25
5

= 5 Ω

 The depletion capacitance with Na ≫ Nd is

  Cdep = A[ eε(NaNd)
2(Na + Nd) (Vo − V) ]

1∕2

≈ A[ eεNd

2(Vo − V) ]
1∕2

 At V = 0.643 V, with Vo = 0.877 V, Nd = 1022 m−3, εr = 11.9, and A = 10−6 m2, the 
above equation gives

 Cdep = 10−6[ (1.6 × 10−19) (11.9)(8.85 × 10−12) (1022)
2(0.877 − 0.643) ]

1∕2

 = 6.0 × 10−10 F  or  600 pF

 EXAMPLE 6.9
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 The incremental diffusion capacitance Cdiff due to holes injected and stored in the 
n-region is

 Cdiff =
τh I(mA)

25
=

(417 × 10−9) (5)
25

= 8.3 × 10−8 F  or  83 nF

Clearly the diffusion capacitance (83 nF) that arises during forward bias completely over-
whelms the depletion capacitance (600 pF).
 We note that there is also a diffusion capacitance due to electrons injected and stored in 
the p-region. However, electron lifetime in the p-region is very short (here 5 ns), so the value 
of this capacitance is much smaller than that due to holes in the n-region. In calculating the 
diffusion capacitance, we normally consider the minority carriers that have the longest recom-
bination lifetime, here τh. These are the carriers that take a long time to disappear by recom-
bination when the bias is suddenly switched off.

6.5   REVERSE BREAKDOWN: AVALANCHE  

AND ZENER BREAKDOWN

The reverse voltage across a pn junction cannot be increased without limit. Eventu-
ally the pn junction breaks down either by the Avalanche or Zener breakdown mech-
anisms, which lead to large reverse currents, as shown in Figure 6.19. In the V = −Vbr 
region, the reverse current increases dramatically with the reverse bias. If unlimited, 
the large reverse current will increase the power dissipated, which in turn raises the 
temperature of the device, which leads to a further increase in the reverse current 
and so on. If the temperature does not burn out the device, for example, by melting 
the contacts, then the breakdown is recoverable. If the current is limited by an exter-
nal resistance to a value within the power dissipation specifications, then there is no 
reason why the device cannot operate under breakdown conditions.

6.5.1 AVALANCHE BREAKDOWN

As the reverse bias increases, the field in the SCL can become so large that an 
electron drifting in this region can gain sufficient kinetic energy to impact on a Si 
atom and ionize it, or rupture a Si–Si bond. The phenomenon by which a drifting 
electron gains sufficient energy from the field to ionize a host crystal atom by 

V

IVbr
Figure 6.19 Reverse I–V, characteristics of 

a pn junction.
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bombardment is termed impact ionization. The accelerated electron must gain at 
least an energy equal to Eg as impact ionization breaks a Si–Si bond, which is tan-
tamount to exciting an electron from the valence band to the conduction band. Thus, 
an additional EHP is created by this process. The actual energy needed by the accel-
erating electron to ionize the crystal turns out to be more than Eg because we need 
to also obey the conservation of momentum principle.
 Consider what happens when a thermally generated electron just inside the SCL 
in the p-side is accelerated by the field. The electron accelerates and gains sufficient 
energy to collide with a host Si atom and release an EHP by impact ionization, as 
depicted in Figure 6.20. It will lose at least Eg amount of energy, but it can acceler-
ate and head for another ionizing collision further along the depletion region until 
it reaches the neutral n-region. The EHPs generated by impact ionization themselves 
can now be accelerated by the field and will themselves give rise to further EHPs 
by ionizing collisions and so on, leading to an avalanche effect. One initial carrier 
can thus create many carriers in the SCL through an avalanche of impact ionizations.
 If the reverse current in the SCL in the absence of impact ionization is Io, then 
due to the avalanche of ionizing collisions in the SCL, the reverse current becomes 
MIo where M is the multiplication. It is the net number of carriers generated by the 
avalanche effect per carrier in the SCL. Impact ionization depends strongly on the 
electric field. Small increases in the reverse bias can lead to dramatic increases in 
the multiplication process. Typically

 M =
1

1 − ( Vr

Vbr)
n
 [6.37]

where Vr is the reverse bias, Vbr is the breakdown voltage, and n is an index in the 
range 3 to 5. It is clear that the reverse current MIo increases sharply with Vr near 
Vbr, as depicted in Figure 6.19. Indeed, the voltage across a diode under reverse 
breakdown remains around Vbr for very large current variations (several orders of 
magnitude). If the reverse current under breakdown is limited by an appropriate 
external resistor R, as shown in Figure 6.21, to prevent destructive power dissipation 
in the diode, then the voltage across the diode remains approximately at Vbr. Thus, 
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Figure 6.20 Avalanche breakdown 

by impact ionization.
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as long as Vr > Vbr, the diode clamps the voltage between A and B to approximately 
Vbr. The reverse current in the circuit is then (Vr − Vbr)∕R.
 Since the electric field in the SCL depends on the width of the depletion region 
W, which in turn depends on the doping parameters, Vbr also depends on the doping, 
as discussed in Example 6.10. In addition, the avalanche breakdown voltage is higher 
in wider bandgap semiconductors because the impact ionization depends on exciting 
an electron across the bandgap.

6.5.2 ZENER BREAKDOWN

Heavily doped pn junctions have narrow depletion widths, which lead to large elec-
tric fields within this region. When a reverse bias is applied to a pn junction, the 
energy band diagram of the n-side can be viewed as being lowered with respect to 
the p-side, as depicted in Figure 6.22. For a sufficient reverse bias (typically less 
than 10 V), Ec on the n-side may be lowered to be below Ev on the p-side. This 
means that electrons at the top of the VB in the p-side are now at the same energy 
level as the empty states in the CB in the n-side. As the separation between the VB 
and CB narrows, shown as a (< W ), the electrons easily tunnel from the VB in the 
p-side to the CB in the n-side, which leads to a current. This process is called the 
Zener effect. As there are many electrons in the VB and many empty states in 
the CB, the tunneling current can be substantial. The reverse voltage Vr, which starts 
the tunneling current and hence the Zener breakdown, is clearly that which lowers 
Ec on the n-side to be below Ev on the p-side and thereby gives a separation that 
encourages tunneling. In nonquantum mechanical terms, one may intuitively view 
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Figure 6.22 Zener breakdown involves electrons 

tunneling from the VB of p-side to the CB of n-side 
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the Zener effect as the strong electric field in the depletion region ripping out some 
of those electrons in the Si–Si bond and thereby releasing them for conduction.
 Figure 6.23a shows the dependence of the breakdown field Ebr in the depletion 
region for the onset of avalanche or Zener breakdown in a one-sided (p+n or pn+) 
abrupt junction on the dopant concentration Nd in the lightly doped side. At high 
fields, the tunneling becomes the dominant reverse breakdown mechanism. Since we 
can readily relate the maximum field at the junction to the reverse bias, we can also 
plot the break down voltage Vbr against Nd as shown in Figure 6.23b.
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breakdown voltage Vbr versus Nd.

Avalanche and tunneling mechanisms are separated by the arrow.

 Data extracted from Sze, M., and Gibbons, G., Solid State Electronics, 9, 831, 1966.

AVALANCHE BREAKDOWN Consider a uniformly doped abrupt p+n junction (Na ≫ Nd) 

reverse biased by V = −Vr.

a. What is the relationship between the depletion width W and the potential difference 

(Vo + Vr) across W?

b. If avalanche breakdown occurs when the maximum field in the depletion region Eo 

reaches the breakdown field Ebr, show that the breakdown voltage Vbr (≫ Vo) is then 

given by

 Vbr =
εE 

2
br

2eNd

c. An abrupt Si p+n junction has boron doping of 1019 cm−3 on the p-side and phosphorus 

doping of 1016 cm−3 on the n-side. The dependence of the avalanche breakdown field on 

the dopant concentration is shown in Figure 6.23a.

1. What is the reverse breakdown voltage of this Si diode?

2. Calculate the reverse breakdown voltage when the phosphorus doping is increased 

to 1017 cm−3.

 EXAMPLE 6.10
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SOLUTION

One can assume that all the applied reverse bias drops across the depletion layer so that the 
new voltage across W is now Vo + Vr. We have to integrate dE∕dx = ρnet∕ε as before across 
W to find the maximum field. The most important fact to remember here is that the pn junc-
tion equations relating W, Eo, Vo, No, Nd, and so on remain the same but with Vo replaced with 
Vo + Vr since the applied reverse bias of Vr increases Vo to Vo + Vr. Then from Equation 6.4,

 W 
2 =

2ε(Vo + Vr) (N 
−1
a + N 

−1
d )

e
≈

2ε(Vo + Vr)
eNd

since Na ≫ Nd. The maximum field that corresponds to the breakdown field Ebr is given by 

  Ebr = −
2(Vo + Vr)

W

 Thus, from these two equations we can eliminate W and obtain Vbr = Vr as

 Vbr =
εE2

br

2eNd

 Given Na ≫ Nd we have a p+n junction with Nd = 1016 cm−3. The depletion region 
extends into the n-region, so the maximum field actually occurs in the n-region. Here the 
breakdown field Ebr depends on the doping level as given in the graph of the critical field 
at breakdown Ebr versus doping concentration Nd in Figure 6.23a. Taking Ebr ≈ 40 V∕μm or 
4.0 × 105 V cm−1 at Nd = 1016 cm−3 and using the above equation for Vbr, we get Vbr = 53 V. 
From Figure 6.23b, on the other hand, Vbr is close to 60 V (a difference of around 12%).
 When Nd = 1017 cm−3, Ebr from the graph is about 6.2 × 105 V cm−1, which leads to 
Vbr = 12.6 V. Figure 6.23b, on the other hand, gives Vbr that is close to 12 V. Both Ebr and 
Vbr can be represented by straightforward empirical relationships as in Question 6.13, which 
simplifies the calculations.

6.6  LIGHT EMITTING DIODES (LED)

6.6.1 LED PRINCIPLES

A light emitting diode (LED) is essentially a pn junction diode typically made from 
a direct bandgap semiconductor, for example, GaAs, in which the EHP recombination 
results in the emission of a photon. The emitted photon energy hf  is approximately 
equal to the bandgap energy Eg. Figure 6.24a shows the energy band diagram of an 
unbiased pn+ junction device in which the n-side is more heavily doped than the p-side. 
The Fermi level EF is uniform through the device, which is a requirement of equilibrium 
with no applied bias. The depletion region extends mainly into the p-side. There is a 
PE barrier eVo from Ec on the n-side to Ec on the p-side where Vo is the built-in voltage. 
The PE barrier eVo prevents the diffusion of electrons from the n-side to the p-side.
 When a forward bias V is applied, the built-in potential Vo is reduced to Vo − V, 
which then allows the electrons from the n+-side to diffuse, that is, become injected, 
into the p-side as depicted in Figure 6.24b. The hole injection component from p into 
the n+-side is much smaller than the electron injection component from the n+-side to 
the p-side. The recombination of injected electrons in the depletion region and within 
a volume extending over the electron diffusion length Le in the p-side leads to photon 
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emission. The phenomenon of light emission from the EHP recombination as a result 
of minority carrier injection is called injection electroluminescence. Due to the sta-
tistical nature of the recombination process between electrons and holes, the emitted 
photons are in random directions; they result from spontaneous recombination pro-
cesses between electrons and holes. Such spontaneous direct recombination processes 
result in spontaneous photon emission. The emitted photon has an energy that is 
roughly equal to the bandgap, that is hf ≈ Eg. The LED structure has to be such that 
the emitted photons can escape the device without being reabsorbed by the semicon-
ductor material. This means the p-side has to be sufficiently narrow or we have to use 
heterostructure devices as discussed below.
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Figure 6.24 Energy band diagram of a pn (heavily n-type doped) junction. (a) No bias voltage. The p-layer 

is usually thin. The Fermi level is uniform across the whole device; EFn = EFp. (b) With forward bias V. Direct 

recombination around the junction and within the diffusion length of the electrons in the p-side leads to 

photon emission. The Fermi levels are separated and EFn − EFp = eV.

Herbert Kroemer (left), along with Zhores Alferov, played a key 
role in the development of semiconductor heterostructuctures 
that are widely used in modern optoelectronics. Herbert 
Kroemer was also well-recognized for his experimental work 
on the fabrication of heterostructures by using an atomic 
layer-by-layer crystal growth technique called Molecular 
Beam Epitaxy (MBE); the equipment shown behind Professor 
Kroemer in the photo. Since 1976, Professor Kroemer has 
been with the University of California, Santa Barbara where he 
continues his research. Herbert Kroemer and Zhores Alferov 
shared the Nobel Prize in Physics (2000) with Jack Kilby.

 Courtesy of University of California, Santa Barbara.



568 C H A P T E R  6  ∙ SEMICONDUCTOR DEVICES

6.6.2 HETEROJUNCTION HIGH-INTENSITY LEDS

A pn junction between two differently doped semiconductors that are of the same 
material, that is, the same bandgap Eg, is called a homojunction. A junction between 
two different bandgap semiconductors is called a heterojunction. A semiconductor 
device structure that has junctions between different bandgap materials is called a 
heterostructure device.

 LED constructions for increasing the intensity of the output light make use of 
the double heterostructure. Figure 6.25a shows a double-heterostructure (DH) 
device based on two junctions between different semiconductor materials with dif-
ferent bandgaps. In this case the semiconductors are AlGaAs with Eg ≈ 2 eV and 
GaAs with Eg ≈ 1.4 eV. The double heterostructure in Figure 6.25a has an n+p 
heterojunction between n+-AlGaAs and p-GaAs. There is another heterojunction 
between p-GaAs and p-AlGaAs. The p-GaAs region is a thin layer, typically a frac-
tion of a micron, and it is lightly doped.
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pn+ p

ppn+
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Figure 6.25 (a) A double heterostructure 

diode has two junctions which are between 

two different bandgap semiconductors 

(GaAs and AlGaAs). (b) A simplified energy 

band diagram with exaggerated features.  

EF must be uniform. (c) Forward-biased  

simplified energy band diagram. (d) Forward-

biased LED. Schematic illustration of photons 

escaping reabsorption in the AlGaAs layer 

and being emitted from the device.



 The simplified energy band diagram for the whole device in the absence of an 
applied voltage is shown in Figure 6.25b. The Fermi level EF is continuous through-
out the whole structure. There is a potential energy barrier eVo for electrons in the 
CB of n+-AlGaAs against diffusion into p-GaAs. There is a bandgap change at the 
junction between p-GaAs and p-AlGaAs which results in a step change ΔEc in Ec 
between the two conduction bands of p-GaAs and p-AlGaAs. This ΔEc is effectively 
a potential energy barrier that prevents any electrons in the CB in p-GaAs passing 
to the CB of p-AlGaAs. (There is also a step change ΔEv in Ev, but this is small and 
is not shown.)
 When a forward bias is applied, most of this voltage drops between the n+-
AlGaAs and p-GaAs and reduces the potential energy barrier eVo, just as in the 
normal pn junction. This allows electrons in the CB of n+-AlGaAs to be injected 
into p-GaAs as shown in Figure 6.25c. These electrons, however, are confined to 
the CB of p-GaAs since there is a barrier ΔEc between p-GaAs and p-AlGaAs. 
The wide bandgap AlGaAs layer therefore acts as a confining layer that restrict 
injected electrons to the p-GaAs layer. The recombination of injected electrons 
and the holes in this p-GaAs layer results in spontaneous photon emission. The 
radiative recombination and photon generation takes place in the p-GaAs layer, 
which is called the active layer. Since the bandgap (2 eV) of AlGaAs is greater 
than GaAs, the emitted photons do not get reabsorbed as they escape the active 
region and can reach the surface of the device as depicted in Figure 6.25d. Since 
light is also not absorbed in p-AlGaAs, it can be reflected to increase the light 
output.
 The holes lost by recombination with electrons in the p-GaAs layer are readily 
replenished by p-AlGaAs, connected to the positive terminal. Further, notice that the 
potential energy barrier against hole injection from p-GaAs into n+-AlGaAs is quite 
large, compared to the homojunction case, which suppresses the flow of holes away 
from p-GaAs into n+-AlGaAs.

6.6.3 QUANTUM WELL HIGH INTENSITY LEDS

A typical quantum well (QW) device has an ultra thin, typically less than 50 nm, 
narrow bandgap semiconductor with a bandgap Eg1 sandwiched between two wider 
bandgap semiconductors with a bandgap Eg2, as shown in Figure 6.26a. The quantum 
well could be a thin GaAs (Eg1) layer sandwiched between two AlGaAs (Eg2) layers. 
The wide bandgap layers are called confining layers. The two semiconductors are 
always lattice matched, that is, they have the same crystal structure and lattice param-
eter a. This means that interface defects due to the mismatch of crystal dimensions 
between the two semiconductor crystals are minimal. Since bandgap Eg changes at 
the interface, there are discontinuities in Ec and Ev at the interfaces. These disconti-
nuities, ΔEc and ΔEv, are shown in Figure 6.26b, and depend on the semiconductor 
properties. The potential energy barrier ΔEc confines the conduction electrons in the 
thin Eg1-layer in the x-direction, though they are free in the y- and z-directions. This 
confinement length d, the width of the thin Eg1-semiconductor, is so small that we 
can treat the electron as in a one-dimensional (1D) potential energy (PE) well in the 

x-direction but as if it were free in the yz plane.
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 The energy of the electron in the QW must reflect its 1D quantization in the 
x-direction, and its freedom in the yz plane. If En is the electron energy in the well, then

 En = Ec +
h2n2

8m*e d 
2 +

ħ2k2
y

2m*e
+

ħ2k2
z

2m*e
 [6.38]

where n is a quantum number having the values 1, 2, 3, . . . , and ky and kz are the 
wavevectors of the electron along y- and z-directions. The reason for including Ec in 
Equation 6.38 is that the potential energy barriers are defined with respect to Ec as in 
Figure 6.26b. The second term is the energy of an electron in an infinite PE well, 
whereas we have a finite PE well of depth ΔEc. The second term is therefore only an 
approximation. The minimum energy E1 corresponds to n = 1 and is above Ec of the 
Eg1-semiconductor as shown in Figure 6.26b. For any given n value, we have a sub-band 
of energies due to ky and kz terms in Equation 6.38; these sub-bands are also shown 
in Figure 6.26b. The separation between the energy levels associated with motion in 
the yz plane in a sub-band is so small that the electron is free to move in the yz plane 
as if it were in the bulk semiconductor. We therefore have a two-dimensional electron 

gas which is confined in the x-direction. The holes in the valence band are confined 
by the potential energy barrier ΔEv (hole energy is in the opposite direction to electron 
energy) and behave similarly as depicted in Figure 6.26b. They are characterized by 
the quantum number n′ = 1, 2, etc. corresponding to the levels E1′, E2′, etc. Remember 
that in a finite PE well, there may only be a few energy levels; in the present example, 
three within ΔEc and two in ΔEv as in Figure 6.26b. The structure in Figure 6.26a has 
only one QW and is called a single quantum well (SQW). However, it is also pos-
sible to include a number of QWs that are separated by a fixed distance, in which case 
the structure is called a multiple quantum well (MQW).
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 We can easily sandwich the QW between a p-type and an n-type wider Eg- 
semiconductors. If we apply a forward bias, then electrons and holes would be injected 
into the QW as shown in Figure 6.26b. The electrons reaching the QW from the n-side 
will fall down the energy levels, from E3 to E2 and then to E1 and will populate E1 where 
the electron concentration can be large. Similarly, holes reaching the QW from the p-side 
will drop from E2′ to E1′and populate the states at E1′. Radiative recombination occurs 
between electrons and holes in the QW with photon emission. These photons can easily 
escape the QW as the surrounding semiconductor has a wider bandgap.10 The sandwiched 
QW is the active layer. There are two distinct advantages to a QW. First is that the elec-
trons and holes are both confined in a very narrow space, and hence unable to avoid each 
other, which encourages recombination. Secondly, there are a large number of states at 
the lowest energies (at E1 and E1′) compared with what one would expect at Ec and Ev if 
this were simply a bulk semiconductor. In a 3D bulk crystal, the density of states increases 
as E1∕2 being zero at Ec but in a 2D solid, the density of states is constant at E1.
 The main problem with the single quantum well (SQW) heterostructure LEDs 
is that, under a sufficiently large current, the well can be flooded with charge car-
riers and can overflow. For example, electrons can flood the QW and the well will 
overflow. The advantages of the QW action (such as confinement that increases the 
electron concentration) would be lost. The light output will no longer increase pro-
portionally to the current, and will fall behind the increase in the current. This 
problem has been resolved by using multiple quantum wells in which electrons are 
shared by a number of quantum wells. Modern high intensity UV, violet and blue 
LEDs use MQW heterostructures. They use a thin InxGa1−xN (Eg1) QW layer that is 
sandwiched between GaN (Eg2) layers. GaN has a large bandgap of 3.4 eV, and the 
composition and hence the bandgap of InGaN is chosen for the application, e.g., for 
blue, Eg1 = 2.7 eV. The heterostructure has a number of MQWs to improve the 
efficiency but the number of QWs is not many; limited by the fabrication process. 
AlN, InN, and GaN and their alloys are called III-Nitrides with wide bandgaps that 
cover green, blue and UV emission.

 10 The radiative transitions in a QW must obey a selection rule, which requires the initial and final quantum 
numbers, n and n′ to be the same. The transition from n = 1 to n′ = 1 is allowed and emits a photon, as well 
that from n = 2 to n′ = 2.

Shuji Nakamura, obtained his PhD from the 
University of Tokushima in Japan, and is currently 
a Professor at the University of California at Santa 
Barbara and the Director of Solid State Lighting 
and Energy Center. He shared the 2014 Nobel 
prize with Isamu Akasaki and Hiroshi Amano “for 
the invention of efficient blue light-emitting diodes 
which has enabled bright and energy-saving white 
light sources.” He is holding a blue laser diode that 
is turned on.

 Courtesy of Randy Lam, University of California, 
Santa Barbara.
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6.7  LED MATERIALS AND STRUCTURES

There are various direct bandgap semiconductor materials that can be readily doped 
to make commercial pn junction LEDs which emit radiation in the red and infrared 
range of wavelengths. III–V ternary alloys based on alloying GaAs and GaP and 
denoted as GaAs1−yPy represent an important class of commercial semiconductor 
materials that covers the visible spectrum. In this compound, As and P atoms from 
Group V are distributed randomly at normal As sites in the GaAs crystal structure. 
When y < 0.45, the alloy GaAs1−yPy is a direct bandgap semiconductor and hence 
the EHP recombination process is direct as shown in Figure 6.27a. The rate of 
recombination is directly proportional to the product of electron and hole concentrations. 
The emitted wavelengths range from about 630 nm, red, for y = 0.45 (GaAs0.55P0.45) 
to 870 nm for y = 0 (GaAs).
 GaAs1−yPy alloys (which include GaP) with y > 0.5 are indirect bandgap semi-
conductors. The EHP recombination processes occur through recombination centers 
and involve lattice vibrations rather than photon emission. However, if we add  
isoelectronic impurities or dopants such as nitrogen (in the same Group V as P) 
into the semiconductor crystal, then these N atoms substitute for P atoms. Since N 
and P have the same valency, N atoms substituting for P atoms form the same num-
ber of bonds and do not act as donors or acceptors. The electronic cores of N and 
P, however, are different. The positive nucleus of N is less shielded by electrons 
compared with that of the P atom. This means that a conduction electron in the 
neighborhood of an N atom will be attracted and may become captured at this site. 
N atoms therefore introduce localized energy levels, or electron traps, EN near the 
conduction band (CB) edge as depicted in Figure 6.26b. When a conduction electron 
is captured at EN, it can attract a hole (in the valence band) in its vicinity by Cou-
lombic attraction and eventually recombine with it directly and emit a photon. The 
emitted photon energy is only slightly less than Eg as EN is typically close to Ec, 
e.g., Eg = 2.26 eV for GaP and EN is 0.05–0.15 eV below Ec. As the recombination 
process depends on N doping, it is not as efficient as direct recombination. Thus, 
the efficiency of LEDs from N-doped indirect bandgap GaAs1−yPy semiconductors 
is less than those from direct bandgap compositions. Nitrogen-doped indirect band-
gap GaAs1−yPy alloys are widely used in inexpensive green, yellow, and orange LEDs.
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 Ternary alloys based on Al1−xGaxAs where x < 0.43 are direct bandgap semi-
conductors. The composition can be varied to adjust the bandgap and hence the 
emitted radiation, from about 640 to 870 nm, from deep red to infrared, correspond-
ing to GaAs (Eg = 1.42 eV).
 AlGaInP is a quarternary III–V alloy (In, Ga, Al from III and P from V) that 
has a direct bandgap variation with composition over the visible range. This III–V 
alloy material system can be lattice matched to GaAs substrates for compositions 
(AlxGa1−x)0.5In0.5P where x < 0.53, that is, Ga0.50In0.50P (Eg = 1.89 eV, red) to 
Al0.265Ga0.235 In0.50P (2.33 eV, green). Many commercial brands of high-intensity LEDs 
have been based on this material system, which is likely to continue to be used in the 
high-intensity visible LED range, especially for the red, amber and yellow.
 AlN, InN, and GaN and their alloys are called III-Nitrides with wide bandgaps 
that cover green, blue, and UV emission. GaN is a direct bandgap semiconductor 
with an Eg of 3.4 eV. The blue GaN LEDs actually use the GaN alloy InGaN with 
a bandgap of about 2.7 eV which corresponds to blue emission. One of the most 
important technological advances in the last two decades has been the development 
of various III-Nitride LEDs that can emit high intensity light from the UV to green. 
GaN (Eg = 3.4 eV) and InN (Eg = 0.77 eV) alloys, InxGa1−xN, span wavelengths 
from the UV up to the IR, though they are currently not used beyond the green 
wavelength as other semiconductors such as AlGaInP provide better efficiencies. 
The alloys of AlN (Eg = 6.2 eV) and GaN (Eg = 3.4 eV), AlGaN, have emission 
wavelengths in the UV. GaN can be doped n-type (e.g., Si or Ge) and p-type (e.g., 
Mg), and the GaN LEDs are generally MQW heterostructures. Table 6.4 provides 
a short summary of some LED materials, their wavelengths of emission and typi-
cal efficiencies.

Table 6.4 Selected LED semiconductor materials

Semiconductor Active Layer Structure D or I λ (nm) PCE (%) Comment

GaAs  DH D 870–900 10  Infrared (IR)
AlxGa1−x As (0 < x < 0.4) DH D 640–870 3–20 Red to IR
In1−xGaxAsyP1−y DH D 1–1.6 μm >10 LEDs in communications
 (y ≈ 2.20x, 0 < x < 0.47)
AlxGa0.51−xIn0.49P  DH D 570–630 >10 Amber, green, red.
      High luminous intensity
InGaN∕GaN MQW D 450–530 5–20 Blue–green
AlGaN∕GaN MQW D 240–360 1–30 UV
GaAs1−yPy (y < 0.45) HJ D 630–870  <1 Red–IR
GaAs1−yPy (y > 0.45) HJ I 560–700 <1 Red, orange, yellow
 (N or Zn, O doping)
SiC (doped) HJ I 460–470 0.02 Blue. Low efficiency
GaP (Zn-O) HJ I 700 <2 Red
GaP (N) HJ I 565 <1 Green

 NOTE: Optical communication channels are at 850 nm (local network) and at 1.3 and 1.55 μm (long distance). D = direct bandgap,  
I = indirect bandgap. PCE (power conversion efficiency) is typical and may vary substantially depending on the device structure.  
DH = double heterostructure, HJ = homojunction, QW = quantum well, MQW = Multiple QW.
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 A double heterostructure AlGaInP LED cross section is shown in Figure 6.28a, 
which is a good illustrative example. There are at least four layers that need to be 
grown on a substrate, which is n-GaAs. The substrate is essentially a sufficiently 
thick crystal that serves as a mechanical support for the pn junction device (the doped 
layers) and can be of different crystal. Starting with the first layer, the n-type confin-
ing layer (n-AlInP), the layers are grown epitaxially on the substrate. Epitaxy is the 
growth of a layer of single crystal material on top of a single crystal substrate in 
such a way that the new layer has the same structure as the substrate crystal. If the 
epitaxial layer and the substrate crystals have different crystal lattice parameters, then 
there is a lattice mismatch between the two crystal structures. This causes lattice 
strain in the LED layer and hence leads to crystal defects. Such crystal defects 
encourage radiationless EHP recombinations. That is, a defect acts as a recombina-
tion center. Such defects are reduced by lattice matching the LED epitaxial layer to 
the substrate crystal. It is therefore important to lattice match the LED layers to the 
substrate crystal.
 The active layer is a thin AlGaInP (e.g., Al0.35Ga0.15In0.5P), which is only lightly 
doped. This layer is sandwiched by confining layers that are p-type and n-type AlInP 
(e.g., Al0.5In0.5P) on the positive and negative terminal sides, respectively. AlInP has 
a wider bandgap than AlGaInP, and the band offsets confine the carriers to the active 
region. Under forward bias, the p-AlInP injects holes and n-AlInP injects electrons 
into the active layer. The top layer is p-GaP and serves to spread out the current to 
regions outside the top contact. Thus, radiative recombinations are reduced right 
under the top contact from which photons cannot be extracted. AlGaInP LEDs are 
currently the best choice for high intensity LEDs in the red, orange, and yellow regions.
 Figure 6.28b shows a simplified III-Nitride based MQW LED for blue or green 
emission. With some modification to compositions, it can also emit in the UV. The 
p-GaN (doped with Mg) is the p-layer that is used for the injection of holes. The 
QWs are formed between the narrower Eg InGaN and wider Eg GaN, which are 
undoped. There is a p-AlGaN layer that is called a buffer layer. The bandgap of 
AlGaN is wider than InGaN, so it confines the injected electrons in the QW-region. 
The n-GaN layer is the electron injecting n-type semiconductor from which electrons 
are injected into the MQWs. A sapphire crystal is the most commonly used substrate 
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Figure 6.28 A schematic illustration of two types of LEDs. (a) AlGaInP high intensity  

heterostructure LED. (b) Multiple quantum well III-Nitride based LED.
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for GaN though the mismatch is roughly 12 percent (significant). Special growth 
techniques have been developed to keep the defects (dislocations) to the initial GaN 
growth region near the sapphire/GaN interface, away from actual LED heterostruc-
ture. Notice that the negative terminal is on high quality n-GaN, away from the 
defective region in n-GaN, near the substrate (sapphire) interface in Figure 6.28b.
 Not all light rays reaching the semiconductor–air interface, however, can escape 
because of total internal reflection (TIR). Those rays with angles of incidence greater 
than the critical angle θc become reflected as depicted in Figure 6.29a. For the GaAs-
air interface, for example, θc is only 17° which means that much of the light suffers 
TIR. An inexpensive and common procedure that reduces TIR is the encapsulation 
of the semiconductor junction within a transparent plastic medium (an epoxy) which 
has a higher refractive index greater than air and, further, also has a domed surface 
on the emission side of the LED chip as shown in Figure 6.29b. The epoxy is refrac-
tive index matched to the semiconductor to avoid TIR at the semiconductor∕plastic 
interface. The rays reaching the dome’s surface have angles narrower than θc and do 
not suffer TIR. Many individual LEDs are sold in similar types of plastic bodies.
 Another example of a device structure that improves the light extraction ratio is 
shown in Figure 6.29c. The surface has been textured or nanostructured. Such a 
textured surface allows light to escape after one or two reflections. Light extraction 
is critical to improving the optical power that can be extracted from an LED. We 
also need to consider the light that is emitted backwards, towards the substrate, as 
in Figure 6.29a. In some modern LEDs, layers of different refractive index semicon-
ductors are used to construct a dielectric mirror that can reflect the backward traveling 
light toward the surface.11

 11 Interested reader can peek at dielectric mirrors in Chapter 9.
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Figure 6.29 (a) Some of the internally generated light suffers total internal reflection (TIR) at the semiconductor∕air  

interface and cannot be emitted into the outside. (b) A simple structure that overcomes the TIR problem by placing the 

LED chip at the center of a hemispherical plastic dome. (c) An example of a textured surface that allows light to escape 

after a couple of (or more) reflections (highly exaggerated sketch).
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6.8  LED OUTPUT SPECTRUM

The emitted photon energy from an LED is not simply equal to the bandgap energy 
Eg because electrons in the conduction band (CB) are distributed in energy and so 
are the holes in the valence band (VB). Consider a p-type active region and the 
injection of excess electrons into this layer by forward bias. Figure 6.30a and b 
illustrate the energy band diagram and the energy distributions of electrons and holes 
in the CB and VB, respectively for a p-type semiconductor. The electron concentration 
as a function of energy in the CB is given by g(E) f (E) where g(E) is the density of 
states in the CB and f(E) is the Fermi-Dirac function (probability of finding an elec-
tron in a state with energy E). The product g(E) f (E) represents the electron concen-
tration per unit energy, nE(E). Suppose that we use the Boltzmann approximation 
for f (E). The corresponding nE(E) is plotted along the horizontal axis in Figure 6.30b. 
There is a similar energy distribution for holes, pE, in the VB but pE is much larger 
than nE given that this is a p-type layer. The E−k or the energy versus electron’s 
crystal momentum diagram for a typical direct bandgap semiconductor (such as 
GaAs) is shown in Figure 6.30c. Since the hole concentration is very large, we can 
assume that the rate of recombination will depend primarily on the concentration of 
injected electrons, and the electron transition probability to an empty state in the VB.
 The electron concentration in the CB as a function of energy is asymmetrical, 
and has a peak at 1

2 kT  above Ec. The energy spread of these electrons is typically 
about 1.8kT from Ec as in Figure 6.30b. When an electron at Ec recombines with a 
hole at Ev, shown as the transition 1 in Figure 6.30c, a photon is emitted with an 
energy hf1 = Ec − Ev = Eg. Since there are not many electrons and holes at the band 
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Figure 6.30 (a) Energy band diagram with possible recombination paths. (b) Energy distribution of electrons in the CB  

and holes in the VB. The highest electron concentration is (1∕2)kT above Ec. (c) A simplified E−k (equivalent to energy  

versus momentum) diagram and direct recombination paths in which k (i.e., momentum) is conserved. (d) The relative light 

intensity as a function of photon energy based on (b) and (c).
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edges, this type of recombination does not occur frequently, and the emitted light 
intensity from a type 1 transition is small.
 The transitions that involve the largest electron concentration, the peak in nE, are 
shown as 2 in Figure 6.30a, and emit a photon with hf2 > hf1. Such transitions occur 
frequently (large nE), and hence the emitted intensity is much larger than that from 1. 
Similarly, the transition marked 3, corresponding to hf3 > hf2, involves an electron 
quite high up in the CB where nE is very small. Such type 3 transitions are infrequent 
and lead to a small emission intensity. The emission intensity rises to a maximum 
and then falls with hf  as depicted in Figure 6.30d.
 One might guess that the highest emitted intensity should intuitively correspond 
to the transition from the peak in nE to the peak in pE in Figure 6.30b that emits 
hf  = Eg + kT. However, we also need to consider the conservation of momentum, 
and hence the E−k diagram in Figure 6.30c. The emitted photon has a negligible 
momentum, which means that an electron must fall straight down in the E−k diagram 
without changing its k-vector, that is, the electron momentum ħk is conserved. As 
apparent from Figure 6.30c, the E−k curvatures are different in the CB and the VB. 
The electron at Ec + 1

2 kT  cannot just recombine with the hole at Ev − 1
2 kT  because 

that transition does not satisfy the ħk-conservation. As shown in Figure 6.30c, direct 
recombination involves energetic electrons spreading over several kT in the CB, more 
than the holes in the VB, because the E−k curvature is narrower in the CB and 
broader in the VB. It is apparent that the emission spectrum in this case is deter-
mined by nE, the energy spread in the electrons in the CB, so that the emission has 
a peak at roughly Eg + 1

2 kT . Further, the spread Δ(hf ) in the emitted photon energies 
should roughly be the spread in nE, i.e., Δ(hf ) ≈ 1.8kT.
 The intuitive relative light intensity versus photon energy characteristic of the 
output spectrum based on nE and the E−k diagram is shown in Figure 6.30d; it 
represents an important LED characteristic. Given the spectrum in Figure 6.30d, we 
can easily derive the relative light intensity versus wavelength characteristic since 
λ = c∕f, which would look like Figure 6.30d, but flipped horizontally. The linewidth 
of the output spectrum, Δf or Δλ, is defined as the width between half-intensity 
points as depicted in Figure 6.30d; it is also called the full width at half maximum 
(FWHM) spectral width.
 Typical observed output spectra, i.e., the relative intensity versus wavelength 
characteristics, from an LED depend not only on the semiconductor material, includ-
ing dopant concentrations, but also on the structure of the device. The spectrum in 
Figure 6.30d represents a highly simplified theoretical spectrum without including 
the effects of heavy doping on the energy bands nor the reabsorption of photons 
before they leave the device. For a heavily doped n-type semiconductor there are so 
many donors that the electron wavefunctions at these donors overlap to generate a 
narrow impurity band centered at Ed but extending into the conduction band. Thus, 
the donor impurity band overlaps the conduction band and hence effectively lowers 
Ec as described in Chapter 5. The minimum emitted photon energy from heavily 
doped semiconductors is therefore less than Eg and depends on the amount of doping.
 Typical output spectrum from an AlGaAs infrared (IR) LED is shown in 
Figure 6.31a. It is clear that the spectrum exhibits significantly less asymmetry than 
the idealized spectrum in Figure 6.30d. The width of the spectrum is about 40 nm 
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which corresponds to a width of about 2.9kT in the energy distribution of the emit-
ted photons, more than the expected 1.8kT. The reasons for not observing the highly 
asymmetrical theoretical spectrum are essentially two fold. First, higher energy pho-
tons become reabsorbed in the material and photogenerate electrons and holes. These 
electrons and holes thermalize and end up recombining to emit photons with lower 
energies, closer to Eg, thus photons become redistributed. Secondly, the band edges 
Ec and Ev are not sharp in heavily doped semiconductors, which leads to the smearing 
of the well-defined Eg for the emission onset.
 Based on the Boltzmann distribution of electrons in the CB in Figure 6.30b, the 
peak emission frequency fo and the spectral width Δf in photon energy in LEDs with 
a direct bandgap active region can be written as

 hfo ≈ Eg +
1
2

 kT   and  hΔf = mkT  [6.39]

where m is a numerical factor that is theoretically 1.8, but in practice typically 
between 1.8 and 3. The corresponding peak wavelength λo = c∕fo. The actual posi-
tion of the peak in the output spectrum is likely to be somewhat more than (1

2)kT in 
Equation 6.39 given a broader observed spread than 1.8kT. The spectral width Δλ 
can be easily found differentiating λ = c∕f (Example 6.11) so that

 Δλ = λ2
o 

mkT

hc
 [6.40]

 Equations 6.39 and 6.40 do not apply to an indirect bandgap semiconductor in 
which a recombination center is involved in the radiative transition, such GaP:N 
(N-doped GaP). The electron localized at the recombination center would have a 
significant uncertainty in its momentum Δp and hence an uncertainty ΔE in its 
energy (Heisenberg’s uncertainty principle, ΔpΔx ≈ ħ). The emitted photon spectrum 
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depends on this ΔE, and is significantly wider than 3kT that is involved in direct 
recombination process in Figure 6.30c.
 As the temperature increases, the change in hfo in Equation 6.39 is due primar-
ily to the decrease in the bandgap Eg with temperature. The peak emission wave-
length λo, corresponding to fo, therefore increases with temperature as shown in 
Figure 6.31b. Further, the linewidth Δλ becomes longer at higher temperatures as 
electrons are distributed further into the CB. Thus, a wider spectrum of photon ener-
gies are emitted as electrons and hole recombine. The dependence of the bandgap 
Eg on the temperature is often described by the Varshni equation,

 Eg = Ego −
AT 

2

B + T
 [6.41]

where Ego is the bandgap at T = 0 K, and A and B are constants that are specific to 
a given material and are listed in various semiconductor handbooks.
 The description of the output spectrum above essentially assumes that injected 
electrons thermalize and reach an equilibrium distribution in the p-type active layer 
as soon as they are injected as in Figure 6.30b. These arguments would apply to 
nondegenerate semiconductors under weak injection. For degenerately doped junc-
tions, the Fermi level EFn on the n-side and EFp on the p-side will be in the CB and 
VB, respectively. Under a large forward bias, the active region can have EFn in the 
CB, EFp in the VB around the junction as shown in Figure 6.32a. The bandgap Eg′ 
is narrower than Eg in the bulk. As shown in the E−k diagram in Figure 6.32b, 
electrons occupy states from the CB edge E′c up to about ∼1.5kT above EFn. The 
emission spectrum will extend from hf  ≈ E′g to about E′g + ΔEFn + 1.5kT so the 
spectral width in photon energy is ΔEFn + 1.5kT. This will increase with the bias 
voltage as well since EFn − EFp = eV.
 Figure 6.33 is a log–log plot of the spectral with Δλ of a collection of com-
mercial LEDs as a function of the peak emission wavelength. The two lines are the 
expected spectral widths from Equation 6.40 with m = 1.8 and 3. The vast majority 
of direct bandgap LEDs that are not based on QWs indeed fall between the two lines. 
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bulk. The quasi-Fermi levels EFn and EFp overlap around the junction. (b) The transitions 

involved in a degenerately doped pn junction.
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Indirect semiconductors are obviously exempt such as GaP. Further, we cannot expect 
QW LED spectral widths to follow the simple Boltzmann spread in Equation 6.40, 
which is for a bulk crystal.
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SPECTRAL LINEWIDTH IN WAVELENGTH We know that the spread in the photon energies 
Δ(hf ) ≈ mkT between the half intensity points as shown in Figure 6.30d. Show that the cor-
responding linewidth Δλ between the half intensity points in the output spectrum is given by 
Equation 6.40. What is the spectral linewidth of an optical communications LED operating 
at 1550 nm and at 300 K assuming m = 2?

SOLUTION

First consider the relationship between the photon frequency f and wavelength λ,

 λ =
c

f
=

hc

hf

in which hf  is the photon energy. We can differentiate this,

 
dλ

d(hf )
= −

hc

(hf )2 = −
λ2

hc

The negative sign implies that increasing the photon energy decreases the wavelength. We 
are only interested in changes or spreads, thus Δλ∕Δ(hf ) ≈ ∣dλ∕d(hf )∣, and this spread should 
be around λ = λo, so that the above gives,

 Δλ =
λ2

o

hc
Δ(hf ) = λ2

o 

mkT

hc

 EXAMPLE 6.11
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where we used Δ(hf ) = mkT. We can substitute λo = 1550 nm, and T = 300 K to calculate 
the linewidth of the 1550 nm LED with m = 2,

 Δλ = λ2 
2kT

hc
= (1550 × 10−9)2 

2(1.38 × 10−23) (300)

(6.626 × 10−34) (3 × 108)
= 1.07 × 10−7 m  or  100 nm

Experimentally observed FWHM spectral widths are typically in the range 100–120 nm.

LED SPECTRAL WIDTH The dependence of the peak emission wavelength and the spectral 
width for an AlGaAs IR LED is shown in Figure 6.31b. By using a suitable plot find m for 
this LED and verify Equation 6.40.

SOLUTION

From Equation 6.40, we have

 
Δλ
λ2

o

= (mk

hc )T  [6.42]

so that if we plot Δλ∕λ2
o versus T, the slope of the best line forced through zero should give 

mk∕hc and hence m. Using the three λo and Δλ values in the inset of Figure 6.31b, we obtain 
the graph in Figure 6.34. The best line that is forced through zero to follow Equation 6.42 
gives a slope of 1.95 × 10−7 nm−1 K−1 or 195 m−1 K−1. Thus,

 slope = 195 m K−1 =
mk

hc
=

m(1.38 × 10−23 J K−1)

(6.626 × 10−34 J s) (3 × 108 m s−1)

that is m = 2.80.

 EXAMPLE 6.12

EMISSION PEAK WAVELENGTH AND TEMPERATURE Consider a GaAs IR LED. The 
Varshni constants for GaAs are, Ego = 1.519 eV, A = 5.41 × 10−4 eV K−1, B = 204 K. What 
is the shift in the peak wavelength (λo) emitted from a GaAs LED when it is cooled from 25 °C 
to −40 °C and compare with the data in Figure 6.31b.

 EXAMPLE 6.13
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SOLUTION

At 25 °C, T = 298 K, using the Varshni equation,

 Eg = Ego − AT 2∕(B + T )

 = 1.519 eV − (5.41 × 10−4 eV K−1)(298 K)2∕(204 K + 298 K) = 1.4233 eV.

The peak emission is at hfo ≈ Eg + (1∕2)kT. Using fo = c∕λo, we get

 λo =
ch

(Eg + 1
2 kT)

=
(3 × 108 m s−1) (6.626 × 10−34 J s)

(1.4233 eV + 0.01284 eV)(1.602 × 10−19 J eV−1)
= 864.0 nm

At −45 °C, T = 233 K, repeating the above calculation,

 Eg = 1.519 eV − (5.41 × 10−4 eV K−1)(233 K)2∕(204 K + 233 K) = 1.4518 eV,

and the new peak emission wavelength λ′o is

 λ′o =
(3 × 108 m s−1) (6.626 × 10−34 J s)

(1.4518 eV + 0.01004 eV)(1.602 × 10−19 J eV−1)
= 848.8 nm

The change Δλ = λo − λ′o = 864.0 − 848.8 = 15.2 nm over 65 °C, or 0.23 nm/°C. The 
examination of Figure 6.31b shows that the change in the peak wavelength per unit tempera-
ture in the range −40 °C to 85 °C is roughly the same. Because of the small change, we kept 
sufficient significant figures in Eg and λo calculations.

6.9  BRIGHTNESS AND EFFICIENCY OF LEDS

The visual brightness of a light source as observed by an average person is propor-
tional to the radiation (optical) power emitted, called the radiant flux, and also the 
efficiency of the eye over the spectrum of the source. While the eye can see a red 
color source, it cannot see an infrared source and the brightness of the infrared source 
would be zero. It is clear that we need to define some kind of a standard sensitivity 
curve for the eye as a function of wavelength. This function is the relative luminous 

efficiency (or the relative sensitivity) ηeye(λ) of an average light-adapted (photopic) 
eye, which depends on the wavelength and hence λ. This function is also called the 
luminosity function and the visibility function. ηeye(λ) is a Gaussian-like function 
with a peak of unity at 555 nm as shown in Figure 6.35. Suppose that Po is the 
radiation (optical) power emitted by an LED; Po is in watts. The luminous flux Φv 
is a measure of visual brightness, in lumens (lm), and is defined by

 Φv = Po × (683 lm W−1) × ηeye(λ) [6.43]

One lumen of luminous flux, or brightness, is obtained from a 1.46 mW light source 
emitting at a single wavelength of 555 nm (green). A typical 60 W incandescent 
lamp provides roughly 900 lm (or 15 lm W−1). When we buy a light bulb, we are 
buying lumens.
 The luminous efficacy12 of a light source (such as a lamp) as widely used in 
lighting applications is the efficiency with which an electrical light source converts 

Luminous 

flux

 12 Some authors use the term luminous efficiency but the latter, strictly, needs the output and input quantities to 
have the same units so that the efficiency can be expressed as a percentage, which is not the case here. 
Efficacy would be a better term.
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the input electric power (watts) into an emitted luminous flux (lumens).

 ηLE =
Φv

IV
 [6.44]

 A 100 W light bulb producing 1700 lumens has an efficacy of 17 lm W−1. 
Recent technological advances has led to LEDs with efficacies that are comparable 
to standard fluorescent tubes; efficacies around 100 lm W−1. LEDs as solid state 
lamps have much longer lifetimes and much higher reliability, and hence are expected 
to be more economical than incandescent and fluorescent lamps.
 The power conversion efficiency (PCE), ηPCE, or simply the power efficiency, 

gauges the overall efficiency of conversion from the input of electric power to the 
output of optical power, i.e.,

 ηPCE =
Optical output power
Electrical input power

=
Po

IV
 [6.45]

In some books, PCE is also simply called the external efficiency.

 Consider the DH LED in Figure 6.25. The current brings in the electrons into 
the p-GaAs layer where they recombine with holes and emit photons. The electrons 
recombine in p-GaAs through direct (radiative) and indirect (nonradiative) recombi-
nation. The latter involves recombination through defects and impurities and gener-
ates lattice waves (phonons). Suppose that τr is the mean lifetime of an electron 
before it recombines radiatively and τnr is the mean lifetime before it recombines 
nonradiatively via a recombination center without emitting a photon. Internal quan-

tum efficiency (IQE) is defined as

 ηIQE =
Rate of radiative recombination

Total rate of recombination (radiative and nonradiative)
 [6.46]

or ηIQE =
τ−1

r

τ−1
r + τ−1

nr

 [6.47]
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 The current I is proportional to the total rate of recombination 1∕τr + 1∕τnr, the 
denominator in Equation 6.47. The rate of photon generation internally is propor-
tional to 1∕τr. Before the photons can be observed externally, they have to be 
extracted. The fraction of photons that escape the device and become emitted is 
called the extraction efficiency (EE),

 ηEE =
Photons emitted externally from the device

Photons generated internally by recombination
 [6.48]

 The rate of electron injection into the p-GaAs is I∕e. Rate of internal photon 
emission is ηIQE(I∕e). Of these ηEE become extracted so the output photon flux is 
ηEEηIQE(I∕e). The output optical power is

 Po = hf  × Photon flux = hfηEEηIQE(I∕e) [6.49]

 According to Equation 6.49, the output power is proportional to the current. 
However, the IQE can also depend on the current because τr and τnr are not neces-
sarily constant; they may depend on the injected carrier concentration and hence on 
the current. Typical optical output power Po versus current I LED characteristics are 
shown in Figure 6.36 on a log–log plot for three cases. For comparison, the expected 
linear relationship, Po ∝ I, has been also shown for each device. In general, at high 
currents, Po−I relationship curves down from the expected Po ∝ I (linear) behavior. 
The worst case is for InGaN MQW LEDs in which there is significant deviation 
from the expected linear relationship almost from the start, that is, Po cannot keep 
up linearly with the current and droops as the current increases. The Po−I charac-
teristics for standard AlGaInP and AlGaAs heterojunction LEDs deviate from linear-
ity mainly at high currents, exhibiting an extensive range of reasonable linearity. 
While a non-linear Po−I behavior is not a serious problem in digital communications, 
it can create distortion in analog modulation, especially under large signals.
 We can view the LED as converting quanta of charge (electrons) brought in by 
the current to emitted quanta of radiation energy (photons). External quantum 
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efficiency (EQE) measures this conversion efficiency. Since Po∕hf  is the number of 
emitted photons per second and I∕e is the number of electrons flowing into the LED,

 ηEQE =
Photons emitted externally per second

Electrons flowing into the device per second
=

Po∕hf

I∕e
 [6.50]

External 

quantum 

efficiency

LED BRIGHTNESS Consider two LEDs, one red, with an optical output power (radiant flux) 
of 20 mW, emitting at 650 nm, and the other, a weaker 5 mW green LED, emitting at 530 nm. 
What is the luminous flux emitted by each LED? What is your conclusion?

SOLUTION

For the red LED, at λ = 650 nm, Figure 6.35 gives ηeye ≈ 0.10 so that from Equation 6.43

 Φv = Po × (683 lm W−1) × ηeye = (20 × 10−3 W)(683 lm W−1)(0.10) = 1.37 lm

For the green LED, at λ = 530 nm, Figure 6.35 gives ηeye ≈ 0.85 so that from Equation 6.43

 Φv = Po × (683 lm W−1) × ηeye = (5 × 10−3 W)(683 lm W−1)(0.85) = 2.9 lm

Clearly the green LED at a quarter of the power is more than twice as bright as the red LED.

 EXAMPLE 6.14

LED EFFICIENCIES A particular GaAs LED emits at 870 nm. The active region is p-type 
and has an acceptor concentration Na of 2 × 1017 cm−3. The nonradiative lifetime is about 
100 ns. At a forward current of 35 mA, the voltage across the LED is 1.45 V, and the emitted 
optical power is 7.5 mW. Calculate the IQE, EQE, PCE, and estimate the light extraction 
efficiency. For GaAs, the radiative lifetime in the p-GaAs layer can be written as τr = 1∕BNa 
in which B = 2 × 10−16 m3 s−1.

SOLUTION

The radiative lifetime τr = 1∕BNa = 1∕[(2 × 10−16 m3 s−1)(2 × 1023 m−3)] = 2.5 × 10−8 s or 
25 ns. IQE is,

 ηIQE =
τ−1

r

τ−1
r + τ−1

nr

=
(25 ns)−1

(25 ns)−1 + (100 ns)−1 = 0.80 or 80%.

 EXAMPLE 6.15

Left: This UV LED can emit 0.5 mW of radiation at 300 nm. The metal case is roughly 8.33 mm in diameter. 

Right: This multichip LED from Osram is used in various lighting applications, including microprojectors and stage 
lighting. The chip has three GaN and one AlGaInP LED devices, and can emit red, green, blue and white light.  
(The chip dimensions are approximately 5.8 × 4.7 × 1.3 mm.)

 Left: Courtesy of Thorlabs. Right: Courtesy of Osram.
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Figure 6.37 The basic principle of  

operation of the solar cell (exaggerated 

features to highlight principles). The  

built-in field change upon illumination.

The emitted photon energy hf  = hc∕λ = 1.425 eV. The EQE is

 ηEQE =
Po∕hf

I∕e
=

(7.5 × 10−3 W)∕(1.425 eV × 1.602 × 10−19 J eV−1)

(35 × 10−3 A)∕(1.602 × 10−19 C)
= 0.15  or  15%.

The power conversion efficiency is

 ηPCE = Po∕IV = 7.5 mW∕(35 mA × 1.45 V) = 0.148  or  15%.

We can find the extraction efficiency from Equation 6.49, Po = hfηEEηIQE(I∕e),

 7.5 × 10−3 W = (1.425 eV × 1.6 × 10−19 J eV−1)ηEE(0.80)(35 × 10−3 A∕1.6 × 10−19 C).

Solving the above gives ηEE = 0.188 or 19 percent. Clearly, improving the extraction efficiency 
is critical to obtaining higher efficacy emitters.

6.10  SOLAR CELLS

6.10.1 PHOTOVOLTAIC DEVICE PRINCIPLES

A simplified schematic diagram of a typical solar cell is shown in Figure 6.37. 
Consider a pn junction with a very narrow and more heavily doped n-region. The 
illumination is through the thin n-side. The depletion region (W ) or the space charge 
layer (SCL) extends primarily into the p-side. There is a built-in field Eo in this 
depletion layer. The electrodes attached to the n-side must allow illumination to enter 
the device and at the same time result in a small series resistance. They are depos-
ited on the n-side to form an array of finger electrodes on the surface as depicted 
in Figure 6.38. A thin antireflection coating on the surface (not shown in the figure) 
reduces reflections and allows more light to enter the device.
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 As the n-side is very narrow, most of the photons are absorbed within the deple-
tion region (W ) and within the neutral p-side (ℓp) and photogenerate EHPs in these 
regions. EHPs photogenerated in the depletion region are immediately separated by 
the built-in field Eo which drifts them apart. The electron drifts and reaches the 
neutral n-side whereupon it makes this region negative by an amount of charge −e. 
The actual reason the n-side becomes negative is that the excess electron that drifts 
into the n-side shields a positive donor charge at the depletion region edge. This 
changes the built-in field Eo and hence the built-in voltage, and it is this change that 
is observed externally. Remember that in the dark, the voltage across the terminals 
of the pn junction is zero because the built-in voltage Vo is canceled by contact 
potentials between the metal and the semiconductor at the two contacts. If we upset 
this equilibrium by changing Vo, we can register an external voltage. Similarly, the 
hole drifts and reaches the neutral p-side and thereby makes this side positive. 
Consequently a net open circuit voltage develops between the terminals of the device 
with the p-side positive with respect to the n-side. If an external load is connected, 
then the excess electron in the n-side can travel around the external circuit, do work, 
and reach the p-side to recombine with the excess hole there. It is important to real-
ize that without the internal field Eo it is not possible to drift apart the photogenerated 
EHPs and bring excess electrons to the n-side and excess holes to the p-side.

Left: Solar cell inventors at Bell Labs (left to right): Gerald Pearson, Daryl Chapin, and Calvin 
Fuller. They are checking a Si solar cell sample for the amount of voltage produced (1954). 
Upper: This is Solar Impulse, a plane powered by solar cells.

 Left: © Nokia Corporation. Upper: Courtesy of Solar Impulse SA, Switzerland.
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n

Bus electrode
for current collection
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Figure 6.38 Finger electrodes on the surface 

of a solar cell reduce the series resistance.
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 The EHPs photogenerated by long-wavelength photons that are absorbed in the 
neutral p-side diffuse around in this region as there is no electric field. If the recom-
bination lifetime of the electron is τe, it diffuses a mean distance Le = √2Deτe where 
De is its diffusion coefficient in the p-side. Those electrons within a distance Le to 
the depletion region can readily diffuse and reach this region whereupon they become 
drifted by Eo to the n-side as shown in Figure 6.37. Consequently only those EHPs 
photogenerated within the minority carrier diffusion length Le to the depletion layer 
can contribute to the photovoltaic effect. Again the importance of the built-in field 
Eo is apparent. Once an electron diffuses to the depletion region, it is swept over to 
the n-side by Eo to give an additional negative charge there. Holes left behind in the 
p-side contribute a net positive charge to this region. Those photogenerated EHPs 
further away from the depletion region than Le are lost by recombination. It is therefore 
important to have the minority carrier diffusion length Le be as long as possible. 
This is the reason for choosing this side of a Si pn junction to be p-type which makes 
electrons the minority carriers; the electron diffusion length in Si is longer than the 
hole diffusion length. The same ideas also apply to EHPs photogenerated by short-
wavelength photons absorbed in the n-side. Those holes photogenerated within a 
diffusion length Lh can reach the depletion layer and become swept across to the 
p-side. The photogeneration of EHPs that contributes to the photovoltaic effect there-
fore occurs in a volume covering Lh + W + Le. If the terminals of the device are 
shorted, as in Figure 6.39, then the photogenerated electrons that are drifted into the 
n-side can flow through the external circuit to neutralize the photogenerated holes 
that have drifted into the p-side. This current due to the flow of the photogenerated 
carriers is called the photocurrent.

 Under a steady-state operation, there can be no net current through an open 

circuit solar cell. This means the photocurrent inside the device due to the flow of 
photogenerated carriers must be exactly balanced by a flow of carriers in the oppo-
site direction. The latter carriers are minority carriers that become injected by the 
appearance of the photovoltaic voltage across the pn junction as in a normal diode. 
This is not shown in Figure 6.37.

W

x

EHPs

Lh Le

Iph

exp(–αx)

Figure 6.39 An np junction solar cell in short 

circuit. Photogenerated carriers within the volume 

Lh + W + Le give rise to a photocurrent Iph.

The variation in the photogenerated EHP  

concentration with distance is also shown 

where α is the absorption coefficient at the 

wavelength of interest.
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 EHPs photogenerated by energetic photons absorbed in the n-side near the sur-
face region or outside the diffusion length Lh to the depletion layer are lost by 
recombination as the lifetime in the n-side is generally very short (due to heavy 
doping). The n-side is therefore made very thin, typically less than 0.2 μm. Indeed, 
the length ℓn of the n-side may be shorter than the hole diffusion length Lh. The 
EHPs photogenerated very near the surface of the n-side, however, disappear by 
recombination due to various surface defects acting as recombination centers as 
discussed below.
 At long wavelengths, around 1–1.2 μm, the absorption coefficient α of Si is 
small and the absorption depth (1∕α) is typically greater than 100 μm. To capture 
these long-wavelength photons, we therefore need a thick p-side and at the same 
time a long minority carrier diffusion length Le. Typically the p-side is 200–500 μm 
and Le tends to be shorter than this.
 Crystalline silicon has a bandgap of 1.1 eV which corresponds to a threshold 
wavelength of 1.1 μm. The incident energy in the wavelength region greater than  
1.1 μm is then wasted; this is not a negligible amount (∼25 percent). The worst part 
of the efficiency limitation however comes from the high-energy photons becoming 
absorbed near the crystal surface and being lost by recombination in the surface 
region. Crystal surfaces and interfaces contain a high concentration of recombination 
centers which facilitate the recombination of photogenerated EHPs near the surface. 
Losses due to EHP recombinations near or at the surface can be as high as 40 percent. 
These combined effects bring the efficiency down to about 45 percent. In addition, 
the antireflection coating is not perfect, which reduces the total collected photons by 
a factor of about 0.8–0.9. When we also include the limitations of the photovoltaic 
action itself (discussed below), the upper limit to a photovoltaic device that uses a 
single crystal of Si is about 24–26 percent at room temperature.
 Consider an ideal pn junction photovoltaic device connected to a resistive load 
R as shown in Figure 6.40a. Note that I and V in the figure define the convention 
for the direction of positive current and positive voltage. If the load is a short circuit, 
then the only current in the circuit is that generated by the incident light. This is the 
photocurrent Iph shown in Figure 6.40b which depends on the number of EHPs 

R

I

V V = 0 V

R

(a) (b) (c)

I I I

Isc = –Iph

Iph

Id

Iph

I = Id – Iph

Figure 6.40 (a) The solar cell connected to an external load R and the convention for the definitions of positive 

voltage and positive current. (b) The solar cell in short circuit. The current is the photocurrent Iph. (c) The solar cell 

driving an external load R. There is a voltage V and current I in the circuit.
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photogenerated within the volume enclosing the depletion region (W ) and the diffu-
sion lengths to the depletion region (Figure 6.39). The greater is the light intensity, 
the higher is the photogeneration rate and the larger is Iph. If I is the light intensity, 
then the short circuit current is

 Isc = −Iph = −KI [6.51]

where K is a constant that depends on the particular device. The photocurrent does 
not depend on the voltage across the pn junction because there is always some inter-
nal field to drift the photogenerated EHP. We exclude the secondary effect of the 
voltage modulating the width of the depletion region. The photocurrent Iph therefore 
flows even when there is not a voltage across the device.
 If R is not a short circuit, then a positive voltage V appears across the pn junc-
tion as a result of the current passing through it as shown in Figure 6.40c. This 
voltage reduces the built-in potential of the pn junction and hence leads to minority 
carrier injection and diffusion just as it would in a normal diode. Thus, in addition 
to Iph there is also a forward diode current Id in the circuit as shown in Figure 6.40c 
which arises from the voltage developed across R. Since Id is due to the normal pn 
junction behavior, it is given by the diode characteristics,

 Id = Io[exp( eV

ηkT) − 1]
where Io is the “reverse saturation current” and η is the ideality factor (η = 1−2). 
In an open circuit, the net current is zero. This means that the photocurrent Iph 
develops just enough photovoltaic voltage Voc to generate a diode current Id = Iph.
 Thus the total current through the solar cell, as shown in Figure 6.40c, is

 I = −Iph + Io[exp( eV

ηkT) − 1] [6.52]

 The overall I–V characteristics of a typical Si solar cell are shown in Figure 6.41. 
It can be seen that it corresponds to the normal dark characteristics being shifted 
down by the photocurrent Iph, which depends on the light intensity I. The open 
circuit output voltage Voc, of the solar cell is given by the point where the I–V curve 
cuts the V axis (I = 0). It is apparent that although it depends on the light intensity, 
its value typically lies in the range 0.5–0.7 V.
 Equation 6.52 gives the I–V characteristics of the solar cell. When the solar cell 
is connected to a load as in Figure 6.42a, the load has the same voltage as the solar 
cell and carries the same current. But the current I through R is now in the opposite 
direction to the convention that current flows from high to low potential. Thus, as 
shown in Figure 6.42a,

 I = −
V

R
 [6.53]

 The actual current I′ and voltage V′ in the circuit must satisfy both the I–V 
characteristics of the solar cell, Equation 6.52, and that of the load, Equation 6.53. 
We can find I′ and V′ by solving these two equations simultaneously or using a 

Solar cell I–V 
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The load line
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solar cell 

current in 
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graphical solution. I′ and V′ in the solar cell circuit are most easily found by using 
a load line construction. The I–V characteristics of the load in Equation 6.53 is a 
straight line with a negative slope −1∕R. This is called the load line and is shown 
in Figure 6.42b along with the I–V characteristics of the solar cell under a given 
intensity of illumination. The load line cuts the solar cell characteristic at P where 
the load and the solar cell have the same current and voltage I′ and V′. Point P 
therefore satisfies both Equations 6.52 and 6.53 and thus represents the operating 

point of the circuit.

 The power delivered to the load is Pout = I′V′, which is the area of the rect-
angle bound by the I and V axes and the dashed lines shown in Figure 6.42b. 
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Figure 6.41 Typical I–V characteristics of a Si solar cell.

The short circuit current is Iph and the open circuit  

voltage is Voc. The I–V curves for positive current  

require an external bias voltage. Photovoltaic operation 

is always in the negative current region.
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Figure 6.42 (a) When a solar cell drives a load R, R has the same voltage as the solar cell but the current through 

it is in the opposite direction to the convention that current flows from high to low potential. (b) The current I′  
and voltage V′ in the circuit of (a) can be found from a load line construction. Point P is the operating point (I′, V′). 
The load line is for R = 3 Ω.
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A SOLAR CELL DRIVING A RESISTIVE LOAD Consider the solar cell in Figure 6.42 that 
is driving a load of 3 Ω. This cell has an area of 2.5 cm × 2.5 cm and is illuminated with 
light of intensity 700 W m−2. Find the current and voltage in the circuit. Find the power delivered 
to the load, the efficiency of the solar cell in this circuit, and the fill factor of the solar cell.

SOLUTION

The I–V characteristic of the load in Figure 6.42a, is the load line in Equation 6.53; that is, 
I = −V∕(3 Ω). The line is drawn in Figure 6.42b with a slope 1∕(3 Ω). It cuts the I–V char-
acteristics of the solar cell at I′ = 157 mA and V′ = 0.475 V as apparent in Figure 6.42b, 
which are the current and voltage, respectively, in the photovoltaic circuit of Figure 6.42a. 
The power delivered to the load is

 Pout = I′V′ = (157 × 10−3)(0.475 V) = 0.0746 W  or  74.6 mW

 The input of sunlight power is

 Pin = (Light intensity)(Surface area) = (700 W m−2)(0.025 m)2 = 0.438 W

 The efficiency is

 ηphotovoltaic = (100%)
Pout

Pin
= (100%)

(0.0746 W)
(0.438 W)

= 17.0%

 This will increase if the load is adjusted to extract the maximum power from the solar 
cell, but the increase will be small as the rectangular area I′V′ in Figure 6.42b is already 
quite close to the maximum.
 The fill factor can also be calculated since point P in Figure 6.42b is close to the opti-
mum operation, maximum output power, in which the rectangular area I′V′ is maximum:

 FF =
ImVm

IscVoc
≈

I′V′
IscVoc

=
(157 mA)(0.475 V)
(178 mA)(0.58 V)

= 0.722  or  72%

 EXAMPLE 6.16

OPEN CIRCUIT VOLTAGE AND ILLUMINATION A solar cell under an illumination of 
500 W m−2 has a short circuit current Isc of 150 mA and an open circuit output voltage Voc 
of 0.530 V. What are the short circuit current and open circuit voltage when the light intensity 
is doubled? Assume η = 1.5, a typical value for various Si pn junctions.

 EXAMPLE 6.17

Maximum power is delivered to the load when this rectangular area is maximized 
(by changing R or the intensity of illumination), when I′ = Im and V′ = Vm. Since 
the maximum possible current is Isc and the maximum possible voltage is Voc, IscVoc 
represents the desirable goal in power delivery for a given solar cell. Therefore, it 
makes sense to compare the maximum power output ImVm with IscVoc. The fill factor 
FF, which is a figure of merit for the solar cell, is defined as

 FF =
ImVm

IscVoc
 [6.54]

 The FF is a measure of the closeness of the solar cell I–V curve to the rectan-
gular shape (the ideal shape). It is clearly advantageous to have the FF as close to 
unity as possible, but the exponential pn junction properties prevent this. Typically 
FF values are in the range 70–85 percent and depend on the device material and 
structure.

Definition of 

fill factor
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SOLUTION

The general I–V characteristic under illumination is given by Equation 6.52. Setting I = 0 for 
open circuit,

 I = −Iph + I0[exp(eVoc

ηkT ) − 1] = 0

Assuming that Voc ≫ ηkT∕e, rearranging the above equation we can find Voc,

 Voc =
ηkT

e
ln(Iph

Io
)

The photocurrent Iph depends on the light intensity I via Iph = KI, where K is a constant. 
Thus, at a given temperature, the change in Voc is

 Voc2 − Voc1 =
ηkT

e
 ln(Iph2

Iph1) =
ηkT

e
 ln(I2

I1)
 The short circuit current is the photocurrent, so at double the intensity this is

 Isc2 = Isc1(I2

I1) = (150 mA)(2) = 300 mA

 Assuming η = 1.5, the new open circuit voltage is

 Voc2 = Voc1 +
ηkT

e
ln(I2

I1) = 0.530 V + (1.5)(0.02585) ln(2) = 0.557 V

This is a 5 percent increase compared with the 100 percent increase in illumination and the 
short circuit current.

6.10.2 SERIES AND SHUNT RESISTANCE

Practical solar cells can deviate substantially from the ideal pn junction solar cell 
behavior depicted in Figure 6.41 due to a number of reasons. Consider an illuminated 
pn junction driving a load resistance RL and assume that photogeneration takes place 
in the depletion region. As shown in Figure 6.43, the photogenerated electrons have 
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to traverse a surface semiconductor region to reach the nearest finger electrode. All 
these electron paths in the n-layer surface region to finger electrodes introduce an 
effective series resistance Rs into the photovoltaic circuit. If the finger electrodes 
are thin, then the resistance of the electrodes themselves will further increase Rs. 
There is also a series resistance due to the neutral p-region, but this is generally 
small compared with the resistance of the electron paths to the finger electrodes.
 Figure 6.44a shows the equivalent circuit of an ideal pn junction solar cell. The 
photogeneration process is represented by a constant current generator Iph, which gen-
erates a current that is proportional to the light intensity. The flow of photogenerated 
carriers across the junction gives rise to a photovoltaic voltage difference V across the 
junction, and this voltage leads to the normal diode current Id = Io[exp(eV∕ηkT) − 1]. 
This diode current Id is represented by an ideal pn junction diode in the circuit as 
shown in Figure 6.44a. As apparent, Iph and Id are in opposite directions (Iph is “up” 
and Id is “down”), so in an open circuit the photovoltaic voltage is such that Iph and 
Id have the same magnitude and cancel each other. By convention, positive current 
I at the output terminal is normally taken to flow into the terminal and is given by 
Equation 6.52. (In reality, of course, the solar cell current is negative, as in Figure 
6.41, which represents a current that is flowing out into the load.)
 Figure 6.44b shows the equivalent circuit of a more practical solar cell. The 
series resistance Rs in Figure 6.44b gives rise to a voltage drop and therefore pre-
vents the ideal photovoltaic voltage from developing at the output between A and B 
when a current is drawn. A fraction (usually small) of the photogenerated carriers 
can also flow through the crystal surfaces (edges of the device) or through grain 

boundaries in polycrystalline devices instead of flowing though the external load RL. 
These effects that prevent photogenerated carriers from flowing in the external circuit 
can be represented by an effective internal shunt or parallel resistance Rp that 
diverts the photocurrent away from the load RL. Typically Rp is less important than 
Rs in overall device behavior, unless the device is highly polycrystalline and the 
current component flowing through grain boundaries is not negligible.
 The series resistance Rs can significantly deteriorate the solar cell performance 
as illustrated in Figure 6.45 where Rs = 0 is the best solar cell case. It is apparent 
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Figure 6.44 The equivalent circuit of a solar cell. (a) Ideal pn junction solar cell. (b) Parallel and 

series resistances Rs and Rp.
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that the available maximum output power decreases with the series resistance which 
therefore reduces the cell efficiency. Notice also that when Rs is sufficiently large, 
it limits the short circuit current. Similarly, low shunt resistance values, due to exten-
sive defects in the material, also reduce the efficiency. The difference is that although 
Rs does not affect the open circuit voltage Voc, low Rp leads to a reduced Voc.

6.10.3 SOLAR CELL MATERIALS, DEVICES, AND EFFICIENCIES

Most solar cells use crystalline silicon because silicon-based semiconductor fabrica-
tion is now a mature technology that enables cost-effective devices to be manufac-
tured. Typical Si-based solar cell efficiencies range from about 18 percent for 
polycrystalline to 22–25 percent in high-efficiency single-crystal devices that have 
special structures to absorb as many of the incident photons as possible. Solar cells 
fabricated by making a pn junction in the same crystal are called homojunctions. The 
best Si homojunction solar cell efficiencies are about 25 percent for single-crystal 
passivated emitter, rear locally diffused (PERL) cells.13 The PERL and similar cells 
have a textured surface that is an array of “inverted pyramids” etched into the surface 
to capture as much of the incoming light as possible as depicted in Figure 6.46. 
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Figure 6.45 The series resistance broadens the 

I–V curve and reduces the maximum available 

power and hence the overall efficiency of the 

solar cell.

The example is a Si solar cell with η ≈ 1.5 and  

Io ≈ 3 × 10−6 mA. Illumination is such that the 

photocurrent Iph = 10 mA.

 13 See, for example, M. Green, Prog. Photovolt: Res. Appl., 17, 183, 2009.
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Normal reflections from a flat crystal surface lead to a loss of light, whereas reflec-
tions inside the pyramid allow a second or even a third chance for absorption. Further, 
after refraction, photons would be entering the semiconductor at oblique angles which 
means that they will be absorbed in the useful photogeneration volume, that is, within 
the electron diffusion length of the depletion layer as shown in Figure 6.46.
 Table 6.5 summarizes some typical characteristics of various solar cells. GaAs 
and Si solar cells have comparable efficiencies though theoretically GaAs with a 
higher bandgap is supposed to have a better efficiency. The largest factors reducing 
the efficiency of a Si solar cell are the unabsorbed photons with hf  < Eg and short 
wavelength photons absorbed near the surface. Both these factors are improved if 
tandem cell structures or heterojunctions are used.
 There are a number of III–V semiconductor alloys that can be prepared with dif-
ferent bandgaps but with the same lattice constant. Heterojunctions (junctions between 
different materials) from these semiconductors have negligible interface defects. AlGaAs 
has a wider bandgap than GaAs and would allow most solar photons to pass through. 
If we use a thin AlGaAs layer on a GaAs pn junction then this layer passivates the 
surface defects normally present in a homojunction GaAs cell. The AlGaAs window 
layer therefore overcomes the surface recombination limitation and improves the cell 
efficiency (such cells have efficiencies of about 24 percent).
 Tandem solar cells, which are also called multijunction solar cells, are high 
efficiency heterostructure based devices, which use two or more cells in tandem, or 
in cascade. Figure 6.47a shows a typical two-cell tandem solar cell. The first cell is 

Table 6.5 Room temperature typical photovoltaic parameters for individual cells under AM1.5 illumination 1000 W m−2

Semiconductor Eg (eV) Voc (V) Jsc (mA cm−2) FF (%) η (%) Comment

Si, single crystal 1.1 0.706 42.7 82.8 25.6 Single crystal, PERL
Si, polycrystalline 1.1 0.663 39.0 80.9 20.4
Si, c-Si∕a-Si:H 1.1∕1.7 0.750 41.8 83.2 25.6  Crystalline Si (c-Si)∕a-Si:H  

 heterojunction
Amorphous Si (a-Si:H) 1.7 0.896 16.36 69.8 10.2 Thin film
Amorphous Si:Ge:H film     8–13  Amorphous film with tandem  

  structure. Convenient large area 
fabrication

GaAs, single crystal 1.42 1.030 29.8 86.0 26.4 High fill factor
GaAs, polycrystalline 1.42 0.757 23.2 79.7 18.4 Ge substrate
InP, single crystal 1.34 0.878 29.5 85.4 22.1 Epitaxial layer
CIGS 1.2–1.4 0.757 35.7 77.6 21.0 CIGS is Cu(In1−xGax)Se2

CdTe, polycrystalline 1.5  0.84 26 75 16–17 Thin film
Perovoskite film  1.074 19.29 75.1 15.6
Organic films  0.793 19.4 71.4 11.0
GaInP2∕GaAs Tandem 1.9∕1.4 2.488 14.22 85.6 30.3  Different bandgap materials in  

  tandem increases absorption 
efficiency

GaInP2∕GaAs∕Ge Tandem 1.9∕1.4∕0.7 2.622 14.37 85.0 32.0 Triple junction

 Data have been selectively extracted mainly from Green, M. A., et al., Progress in Photovoltaics: Research and Applications, 18, 346, 
2010; 19, 84, 2011; 23, 805, 2015.
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made from a wider bandgap material and only absorbs photons with hf  > Eg1. A 
good example is the III–V alloy GaInP2 (or Ga0.5In0.5P), which has Eg1 ≈ 1.9 eV. 
The second cell absorbs photons (hf  < Eg1) that pass through the first cell and have 
hf  > Eg2. This could be GaAs with Eg2 ≈ 1.4 eV. The whole structure can be grown 
by using lattice matched crystalline layers on a suitable substrate, leading to a mono-
lithic tandem cell. The two cells have to be connected, that is, allow the carriers 
(electrons and holes) to pass. This is done by using a highly doped very thin p+n+ 
junction between the two cells that serves as a tunneling junction. Since both p+ and 
n+ sides are very heavily doped (degenerate), the depletion layer width is very nar-
row and the carriers simply tunnel through it.14 All the layers are grown by special 
techniques on a single substrate.
 One of the best efficiencies is achieved by using a three junction solar cell, 
which is illustrated in Figure 6.47b. The layers are all grown epitaxially on a Ge 
substrate. Each cell is an np junction and functions as a solar cell. There are two 
very thin p+n+ tunnel junctions that connect the cells in tandem as shown in Figure 
6.47b, to allow the drifting carriers tunnel (pass) through. The top cell is GaInP2 

with Eg ≈ 1.9 eV (corresponding bandgap wavelength λg = 0.65 μm), the second is 
GaAs with Eg ≈ 1.42 eV (λg = 0.87 μm) and the third is Ge with Eg ≈ 0.66 eV (λg = 
0.19 μm). The three cells have a wide spectral range and are able to capture a very 
high percentage of the incident solar radiation. The multijunction solar cell in Figure 
6.47b is commercially available with an efficiency of 32 percent. Even higher effi-
ciencies have been reported in research labs using such multijunction heterostruc-
tures. If, in addition, light concentrators are also used, the efficiency can be further 
increased.
 Tandem cells are also used in inexpensive thin film a-Si:H (hydrogenated amor-
phous silicon) pin solar cells to obtain efficiencies up to about 11−12 percent. These 
tandem cells have a-Si:H and a-SiGe:H cells and are readily fabricated in large areas 

npn p
pn pn p n

GaAs Ge

(b)(a)

Eg ≈ 1.9 eV

GaInP2

1.4 eV 0.7 eV

Electrode

Tunnel

junction
Electrode

AR

Tunnel

junction

Tunnel

junction Ge substrate

Cell 1 (Eg1) Cell 2 (Eg2 < Eg1)

n+p+

Figure 6.47 (a) A tandem or multijunction solar cell from two cells connected by a tunneling junction.  

(b) A tandem solar cell with three individual cells connected by tunnel junctions, and with an efficiency above 

30 percent. The structures are grown layer by layer on a suitable substrate; Ge in this case.

 14 In a tunnel diode, which is a degenerately doped p+n+ junction, even a tiny voltage allows electrons to tunnel 
through the depletion region in both forward and reverse bias conditions. The current flows through quite 
easily. It is like carriers tunneling in Zener breakdown in Figure 6.22 with zero reverse bias or forward bias.
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as discussed in Chapter 1. Amorphous Si:H has an Eg of about 1.8 eV. The alloying 
of a-Si:H with Ge to produce a-SiGe:H decreases Eg. Further, Eg of a-SiGe:H can 
be graded by controlling the Ge content.

6.11  BIPOLAR TRANSISTOR (BJT)

6.11.1 COMMON BASE (CB) DC CHARACTERISTICS

As an example, we will consider the pnp bipolar junction transistor (BJT) whose 
basic structure is shown in Figure 6.48a. The pnp transistor has three differently 
doped semiconductor regions. These regions of different doping occur within the 
same single crystal by the variation of acceptor and donor concentrations resulting 
from the fabrication process. The most heavily doped p-region (p+) is called the 
emitter. In contact with this region is the lightly doped n-region, which is called the 
base. The next region is the p-type doped collector. The base region has the most 
narrow width for reasons discussed below. Although the three regions in Figure 6.48a 
have identical cross-sectional areas, in practice, due to the fabrication process, the 
cross-sectional area increases from the emitter to the collector and the collector 
region has an extended width. For simplicity, we will assume that the cross-sectional 
area is uniform, as in Figure 6.48a.
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Figure 6.48 (a) A schematic illustration of the pnp bipolar transistor with three differently doped regions. (b) The 

pnp bipolar operated under normal and active conditions. (c) The CB configuration with input and output circuits 

identified. (d) The illustration of various current components under normal and active conditions.
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The first monolithic integrated circuit, about the size of a fingertip, was documented and developed at Texas Instruments by Jack Kilby in 1958; 
he won the 2000 Nobel prize in physics for his contribution to the development of the first integrated circuit. The IC was a chip of a single Ge 
crystal containing one transistor, one capacitor, and one resistor. Left: Jack Kilby holding his IC (photo, 1998). Right. The photo of the chip.

 Left: © AP Photo. Right: © Fotosearch/Getty Images.

This first commercial pocket transistor  

radio (Regency TR- 1) was released in 1954.  

It had 4 npn Ge transistors from Texas  

Instruments and was sold at $49.99, 

roughly $450 in today’s dollars.

 © Bettmann/Getty Images.

Left to right: Andrew Grove (1936–2016), Robert Noyce 

(1927–1990), and Gordon Moore (born 1929), who founded 

Intel in 1968. Andrew Grove’s book Physics and Technology 

of Semiconductor Devices (Wiley, 1967) was one of the clas-

sic texts on devices in the sixties and seventies. “Moore’s 

law” that started as a rough rule in 1965 states that the 

number of transistors in a chip will double every 18 months; 

Moore updated it in 1995 to every couple of years.

 Courtesy of Intel Corp.
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 The pnp BJT connected as shown in Figure 6.48b is said to be operating under 
normal and active conditions, which means that the base–emitter (BE) junction is 
forward biased and the base–collector (BC) junction is reverse biased. The circuit in 
Figure 6.48b, in which the base is common to both the collector and emitter bias 
voltages, is known as the common base (CB) configuration.15 Figure 6.48c shows 
the CB transistor circuit with the BJT represented by its circuit symbol. The arrow 
identifies the emitter junction and points in the direction of current flow when the 
EB junction is forward biased. Figure 6.48c also identifies the emitter circuit, where 
VEB is connected, as the input circuit. The collector circuit, where VCB is connected, 
is the output circuit.
 The base–emitter junction is simply called the emitter junction and the base-
collector junction is called the collector junction. As the emitter is heavily doped, 
the base–emitter depletion region WEB extends almost entirely into the base. Gener-
ally, the base and collector regions have comparable doping, so the base–collector 
depletion region WBC extends to both sides. The width of the neutral base region 
outside the depletion regions is labeled as WB. All these parameters are shown and 
defined in Figure 6.48b.
 We should note that all the applied voltages drop across the depletion widths. 
The applied collector–base voltage VCB reverse biases the BC junction and hence 
increases the field in the depletion region at the collector junction.
 Since the EB junction is forward biased, minority carriers are then injected into 
the emitter and base exactly as they are in the forward-biased diode. Holes are 
injected into the base and electrons into the emitter, as depicted in Figure 6.48d. 
Hole injection into the base, however, far exceeds the electron injection into the 
emitter because the emitter is heavily doped. We can then assume that the emitter 
current is almost entirely due to holes injected from the emitter into the base. Thus, 
when forward biased, the emitter “emits,” that is, injects holes into the base.
 Injected holes into the base must diffuse toward the collector junction because 
there is a hole concentration gradient in the base. Hole concentration pn(WB) just 
outside the depletion region at the collector junction is negligibly small because the 
increased field sweeps nearly all the holes here across the junction into the collector 
(the collector junction is reverse biased).
 The hole concentration pn(0) in the base just outside the emitter junction deple-
tion region is given by the law of the junction. Measuring x from this point 
(Figure 6.48b),

 pn(0) = pno exp(eVEB

kT ) [6.55]

whereas at the collector end, x = WB, pn(WB) ≈ 0.
 If no holes are lost by recombination in the base, then all the injected holes 
diffuse to the collector junction. There is no field in the base to drift the holes. Their 
motion is by diffusion. When they reach the collector junction, they are quickly swept 
across into the collector by the internal field E in WBC. It is apparent that all the 
injected holes from the emitter become collected by the collector. The collector 

 15 CB should not be confused with the conduction band abbreviation.
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current is then the same as the emitter current. The only difference is that the emitter 
current flows across a smaller voltage difference VEB, whereas the collector current 
flows through a larger voltage difference VCB. This means a net gain in power from 
the emitter (input) circuit to the collector (output) circuit.
 Since the current in the base is by diffusion, to evaluate the emitter and col-
lector currents we must know the hole concentration gradient at x = 0 and x = WB 
and therefore we must know the hole concentration profile pn(x) across the base.16 
In the first instance, we can approximate the pn(x) profile in the base as a straight 
line from pn(0) to pn(WB) = 0, as shown in Figure 6.48b. This is only true in the 
absence of any recombination in the base as in the short diode case. The emitter 
current is then

 IE = −eADh(dpn

dx )
x=0

= eADh 

pn(0)
WB

 We can substitute for pn(0) from Equation 6.55 to obtain

 IE =
eADh pno

WB

 exp(eVEB

kT ) [6.56]

 It is apparent that IE is determined by VEB, the forward bias applied across the 
EB junction, and the base width WB. In the absence of recombination, the collector 
current is the same as the emitter current, IC = IE. The control of the collector cur-
rent IC in the output (collector) circuit by VEB in the input (emitter) circuit is what 
constitutes the transistor action. The common base circuit has a power gain because 
IC in the output in Figure 6.48c flows around a larger voltage difference VCB com-
pared with IE in the input, which flows across VEB (about 0.6 V).
 The ratio of the collector current IC to the emitter current IE is defined as the 
CB current gain or current transfer ratio α of the transistor,

 α =
IC

IE

 [6.57]

 Typically, α is less than unity, in the range 0.990–0.999, due to two reasons. First 
is the limitation due to the emitter injection efficiency. When the BE junction is 
forward biased, holes are injected from the emitter into the base, giving an emitter 
current IE(hole), and electrons are injected from the base into the emitter, giving an 
emitter current IE(electron). The total emitter current is, therefore,

 IE = IE(hole) + IE(electron)

Only the holes injected into the base are useful in giving a collector current because 
only they can reach the collector. The emitter injection efficiency is defined as

 γ =
IE(hole)

IE(hole) + IE(electron)
=

1

1 +
IE(electron)

IE(hole)

 [6.58]

 16 The actual concentration profile can be calculated by solving the steady-state continuity equation, which can 
be found in more advanced texts.

Emitter 

current

Definition of 

CB current 

gain

Emitter 

injection 

efficiency

Total emitter 

current



602 C H A P T E R  6  ∙ SEMICONDUCTOR DEVICES

Consequently, the collector current, which depends on IE(hole) only, is less than the 
emitter current. We would like γ to be as close to unity as possible; IE(hole) ≫ IE(electron). 
γ can be readily calculated for the forward-biased pn junction current equations as 
shown in Example 6.19.
 Secondly, a small number of the diffusing holes in the narrow base inevitably 
become lost by recombination with the large number of electrons present in this 
region as depicted in Figure 6.48d. Thus, a fraction of IE(hole) is lost in the base due 
to recombination, which further reduces the collector current. We define the base 

transport factor αT as

 αT =
IC

IE(hole)
=

IC

γIE

 [6.59]

 If the emitter were a perfect injector, IE = IE(hole), then the current gain α would 
be αT. If τh is the hole (minority carrier) lifetime in the base, then 1∕τh is the prob-
ability per unit time that a hole will recombine and disappear. We also know that in 
time t, a particle diffuses a distance x, given by x = √2Dt where D is the diffusion 
coefficient. The time τt it takes for a hole to diffuse across WB is then given by

 τt =
W 

2
B

2Dh

 [6.60]

This diffusion time is called the transit time of the minority carriers across the base.
 The probability of recombination in time τt is then τt∕τh. The probability of not 
recombining and therefore diffusing across is (1 − τt∕τh). Since IE(hole) represents the 
holes entering the base per unit time, IE(hole)(1 − τt∕τh) represents the number of holes 
leaving the base per unit time (without recombining) which is the collector current 
IC. Substituting for IC and IE(hole) in Equation 6.59 gives the base transport factor αT,

 αT =
IC

IE(hole)
= 1 −

τt

τh

 [6.61]

 Using Equations 6.57, 6.59, and 6.61 we can find the total CB current gain α:

 α = αTγ = (1 −
τt

τh)γ  [6.62]

 The recombination of holes with electrons in the base means that the base must 
be replenished with electrons, which are supplied by the external battery in the form 
of a small base current IB, as shown in Figure 6.48d. In addition, the base current 
also has to supply the electrons injected from the base into the emitter, that is, 
IE(electron), and shown as electron diffusion in the emitter in Figure 6.48d. The number 
of holes entering the base per unit time is represented by IE(hole), and the number 
recombining per unit time is then IE(hole)(τt∕τh). Thus, IB is

 IB = (τt

τh)IE(hole) + IE(electron) = γ 

τt

τh

 IE + (1 − γ)IE [6.63]

which further simplifies to IE − IC; the difference between the emitter current and 
the collector current is the base current. (This is exactly what we expect from  Kirchoff’s 
current law.)
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 The ratio of the collector current to the base current is defined as the current 

gain β of the transistor.17 By using Equations 6.57, 6.62, and 6.63, we can relate 
β to α:

 β =
IC

IB

=
α

1 − α
≈

γτh

τt

 [6.64]

 The base–collector junction in Figure 6.48b is reverse biased, which leads to a 
leakage current into the collector terminal even in the absence of an emitter current. 
This leakage current is due to thermally generated EHPs in the depletion region WBC 
being drifted by the internal field, as schematically illustrated in Figure 6.48d. Sup-
pose that we open circuit the emitter (IE = 0). Then the collector current is simply 
the leakage current, denoted by ICBO. The base current is then −ICBO (flowing out 
from the base terminal). In the presence of an emitter current IE, we have

 IC = αIE + ICBO [6.65]

 IB = (1 − α)IE − ICBO [6.66]

 Equations 6.65 and 6.66 give the collector and base currents in terms of the 
input current IE, which in turn depends on VEB. They only hold when the collector 
junction is reverse biased and the emitter junction is forward biased, which is defined 
as the active region of the BJT. It should be emphasized that what constitutes the 
transistor action is the control of IE, and hence IC, by VEB.
 The dc characteristics of the CB-connected BJT as in Figure 6.48b are normally 
represented by plotting the collector current IC as a function of VCB for various fixed 
values of the emitter current. A typical example of such dc characteristics for a pnp 
transistor is illustrated in Figure 6.49. The following characteristics are apparent. The 
collector current when IE = 0 is the CB junction leakage current ICBO, typically a 
fraction of a microampere. As long as the collector is negatively biased with respect 
to the base, the CB junction is reverse biased and the collector current is given by 

 17 β is a useful parameter when the transistor is used in what is called the common emitter (CE) configuration, in 
which the input current is made to flow into the base of the transistor, and the collector current is made to flow 
in the output circuit.
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IC = αIE + ICBO, which is close to the emitter current when IE ≫ ICBO. When the 
polarity of VCB is changed, the CB junction becomes forward biased. The collector 
junction is then like a forward-biased diode and the collector current is the difference 
between the forward-biased CB junction current and the forward-biased EB junction 
current. As they are in opposite directions, they subtract.
 We note that IC increases slightly with the magnitude of VCB even when IE is 
constant. In our treatment above IC did not directly depend on VCB, which simply 
reverse biased the collector junction to collect the diffusing holes. In our discussions 
we assumed that the base width WB does not depend on VCB. This is only approxi-
mately true. Suppose that we increase the reverse bias VCB (for example, from −5 to 
−10 V). Then the base–collector depletion width WBC also increases, as schematically 
depicted in Figure 6.50. Consequently the base width WB gets slightly narrower, 
which leads to a slightly shorter base transit time τt. The base transport factor αT in 
Equation 6.61 and hence α are then slightly larger, which leads to a small increase 
in IC. The modulation of the base width WB by VCB is not very strong, which means 
that the slopes of the IC versus VCB lines at a fixed IE are very small in Figure 6.49. 
The base width modulation by VCB is called the Early effect.

A pnp TRANSISTOR Consider a pnp Si BJT that has the following properties. The emit-
ter region mean acceptor doping is 2 × 1018 cm−3, the base region mean donor doping is 
1  ×  1016 cm−3, and the collector region mean acceptor doping is 1 × 1016 cm−3. The hole 
drift mobility in the base is 400 cm2 V−1 s−1, and the electron drift mobility in the emitter 
is 200 cm2 V−1 s−1. The transistor emitter and base neutral region widths are about 2 μm 
each when the transistor is under normal operating conditions, that is, when the EB junction 
is forward biased and the BC junction is reverse biased. The effective cross-sectional area of 
the device is 0.02 mm2. The hole lifetime in the base is approximately 400 ns. Assume that 
the emitter has 100 percent injection efficiency, γ = 1. Calculate the CB current transfer ratio 
α and the current gain β. What is the emitter–base voltage if the emitter current is 1 mA?

 EXAMPLE 6.18

x

pn(x)

pn(0)
Base SCL

pn(x)

VCB = –5 V

VCB = –10 V

WB WBC

W′B W′BC

Figure 6.50 The Early effect.

When the BC reverse bias increases, the depletion 

width WBC increases to WʹBC, which reduces the base 

width WB to WʹB. As pn(0) is constant (constant VEB), 

the minority carrier concentration gradient becomes 

steeper and the collector current, IC increases.
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SOLUTION

The hole drift mobility μh = 400 cm2 V−1 s−1 (minority carriers in the base). From the Einstein 
relationship we can easily find the diffusion coefficient of holes,

 Dh = (kT

e )μh = (0.02585 V)(400 cm2 V−1 s−1) = 10.34 cm2 s−1

The minority carrier transit time τt across the base is

 τt =
W2

B

2Dh

=
(2 × 10−4 cm)2

2(10.34 cm2 s−1)
= 1.93 × 10−9 s  or  1.93 ns

The base transport factor and hence the CB current gain is

 α = γαT = 1 −
τt

τh

= 1 −
1.93 × 10−9 s
400 × 10−9 s

= 0.99517

The current gain β of the transistor is

 β =
α

1 − α
=

0.99517
1 − 0.99517

= 206.2

The emitter current is due to holes diffusing in the base (γ = 1),

 IE = IEO exp(eVEB

kT )
where

  IEO =
eADhPno

WB

=
eADhn

2
i

NdWB

  =
(1.6 × 10−19 C)(0.02 × 10−2 cm2) (10.34 cm s−1) (1.0 × 1010 cm−3)2

(1 × 1016 cm−3) (2 × 10−4 cm)
  = 1.66 × 10−14 A

 Thus,

 VEB =
kT

e
 ln( IE

IEO
) = (0.02585 V) ln( 1 × 10−3 A

1.66 × 10−14 A) = 0.64 V

 The major assumption is γ = 1, which is generally not true, as shown in Example 6.19. 
The actual α and hence β will be smaller due to less than 100 percent emitter injection. Note 
also that WB is the neutral region width, that is, the region of base outside the depletion 
regions. It is not difficult to calculate the depletion layer widths within the base, which are 
about 0.2 μm on the emitter side and roughly about 0.7 μm on the collector side, so that the 
total base width junction to junction is 2 + 0.2 + 0.7 = 2.9 μm.
 The transit time of minority carriers across the base is τt. If the input signal changes 
before the minority carriers have diffused across the base, then the collector current cannot 
respond to the changes in the input. Thus, if the frequency of the input signal is greater than 
1∕τt, the minority carriers will not have time to transit the base and the collector current will 
remain unmodulated by the input signal. One can set the upper frequency limit at ∼1∕τt which 
is 518 MHz.
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EMITTER INJECTION EFFICIENCY γ

a. Consider a pnp transistor with the parameters as defined in Figure 6.48. Show that the 
injection efficiency of the emitter, defined as

 γ =
Emitter current due to minority carriers injected into the base

Total emitter current

 is given by

 γ =
1

1 +
NdWBμe(emitter)

NaWE 
μh(base)

b. How would you modify the CB current gain α to include the emitter injection efficiency?
c. Calculate the emitter injection efficiency for the pnp transistor in Example 6.18, which 

has an acceptor doping of 2 × 1018 cm−3 in the emitter, donor doping of 1 × 1016 cm−3 
in the base, emitter and base neutral region widths of 2 μm, and a minority carrier life-
time of 400 ns in the base. What are its α and β taking into account the emitter injection 
efficiency?

SOLUTION

When the BE junction is forward biased, holes are injected into the base, giving an emitter 
current IE(hole), and electrons are injected into the emitter, giving an emitter current IE(electron). 
The total emitter current is therefore

 IE = IE(hole) + IE(electron)

 Only the holes injected into the base are useful in giving a collector current because only 
they can reach the collector. Injection efficiency is defined as

 γ =
IE(hole)

IE(hole) + IE(electron)
=

1

1 +
IE(electron)

IE(hole)

But, provided that WE and WB are shorter than minority carrier diffusion lengths,

 IE(hole) =
eADh(base)n

2
i

NdWB

 exp(eVEB

kT )  and  IE(electron) =
eADe(emitter)n

2
i

NaWE

 exp(eVEB

kT )
 When we substitute into the definition of γ and use D = μkT∕e, we obtain

 γ =
1

1 +
NdWB μe(emitter)

NaWE μh(base)

 The hole component of the emitter current is given as γIE. Of this, a fraction αT = 
(1  −  τt∕τh) will give a collector current. Thus, the emitter-to-collector current transfer ratio 
α, taking into account the emitter injection efficiency, is

 α = γ(1 −
τt

τh
)

 EXAMPLE 6.19

Emitter-to-

collector 

current 

transfer ratio



 6 .1 1  BIPOLAR TRANSISTOR (BJT) 607

 In the emitter, Na(emitter) = 2 × 1018 cm−3 and μe(emitter) = 200 cm2 V−1 s−1, and in the base, 
Nd (base) = 1 × 1016 cm−3 and μh(base) = 400 cm2 V−1 s−1. The emitter injection efficiency is

 γ =
1

1 +
(1 × 1016) (2)(200)

(2 × 1018) (2)(400)

= 0.99751

 The transit time τt = W 2
B∕2Dh = 1.93 × 10−9 s (as before), so the overall α is

 α = 0.99751(1 −
1.93 × 10−9

400 × 10−9 ) = 0.99269

and the overall β is

 β =
α

(1 − α)
= 135.8

 The same transistor with 100 percent emitter injection in Example 6.18 had a β of 206. 
It is clear that the emitter injection efficiency γ and the base transport factor αT have comparable 
impacts in controlling the overall gain in this example. We neglected the recombination of 
electrons and holes in the EB depletion region. In fact, if we were to also consider this 
recombination component of the emitter current, IE(hole) would have to be even smaller com-
pared with the total IE, which would make γ and hence β even lower.

6.11.2 COMMON BASE AMPLIFIER

According to Equation 6.56 the emitter current depends exponentially on VEB,

 IE = IEO exp(eVEB

kT ) [6.67]

It is therefore apparent that small changes in VEB lead to large changes in IE. Since 
IC ≈ IE, we see that small variations in VEB cause large changes in IC in the collec-
tor circuit. This can be fruitfully used to obtain voltage amplification as shown in 
Figure 6.51. The battery VCC, through RC, provides a reverse bias for the base– 
collector junction. The dc voltage VEE forward biases the EB junction, which means 
that it provides a dc current IE. The input signal is the ac voltage veb applied in series 
with the dc bias voltage VEE to the EB junction. The applied signal veb modulates 
the total voltage VEB across the EB junction and hence, by virtue of Equation 6.55, 
modulates the injected hole concentration pn(0) up and down about the dc value 
determined by VEE as depicted in Figure 6.51. This variation in pn(0) alters the con-
centration gradient and therefore gives rise to a change in IE, and hence a nearly 
identical change in IC. The change in the collector current can be converted to a 
voltage change by using a resistor RC in the collector circuit as shown in Figure 6.51. 
However, the output is commonly taken between the collector, and the base and this 
voltage VCB is
 VCB = −VCC + RCIC

 Increasing the emitter–base voltage VEB (by increasing veb) increases IC, which 
increases VCB. Since we are interested in ac signals, that voltage variation across CB 
is tapped out through a dc blocking capacitor in Figure 6.51.
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 For simplicity we will assume that changes δVEB and δIE in the dc values of VEB 
and IE are small, which means that δVEB and δIE can be related by differentiating 
Equation 6.67. We are hence tacitly assuming an operation under small signals. 
Further, we will take the changes to represent the ac signal magnitudes, veb = δVEB, 
ie = δIE, ic = δIC ≈ δIE ≈ ie, vcb = δVCB.
 The output signal voltage vcb corresponds to the change in VCB,

 vcb = δVCB = RC δIC = RC δIE

 The variation in the emitter current δIE depends on the variation δVEB in VEB, 
which can be determined by differentiating Equation 6.67,

 
δIE

δVEB

=
e

kT
 IE

 By definition, δVEB is the input signal veb. The change δIE in IE is the input 
signal current (ie) flowing into the emitter as a result of δVEB. Therefore, the quantity 
δVEB∕δIE represents an ac input resistance re seen by the source veb.

 re =
δVEB

δIE

=
kT

eIE

=
25

IE(mA)
 [6.68]

The output signal is then

 vcb = RC δIE = RC 

veb

re

so the voltage amplification is

 AV =
vcb

veb

=
RC

re

 [6.69]

Small  
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IE + ie
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VEE IB + ib
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pn(x)

IC + ic
Output

RC

VCC

vcb(t)

Figure 6.51 A pnp transistor operated in the active region in the common base 

amplifier configuration.

The applied (input) signal veb modulates the dc voltage across the EB junction and 

hence modulates the injected hole concentration up and down about the dc value 

pn(0). The solid line shows pn(x) when only the dc bias VEE is present. The dashed lines 

show how pn(x) is modulated up and down by the signal veb superimposed on VEE.
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 18 Various saturation effects are ignored in this approximate discussion.

A COMMON BASE AMPLIFIER Consider a pnp Si BJT that has been connected as in Fig-
ure 6.51. The BJT has a β = 135 and has been biased to operate with a 10 mA collector 
current. What is the small-signal input resistance? What is the required RC that will provide 
a voltage gain of 100? What is the base current? What should be the VCC in Figure 6.51? 
Suppose VCC = −6 V, what is the largest swing in the output voltage VCB in Figure 6.51 as 
the input signal is increased and decreased about the bias point VEE, taken as 0.65 V?

SOLUTION

The emitter and collector currents are approximately the same. From Equation 6.68,

 re =
25

IE (mA)
=

25
10

= 2.5 Ω

 The voltage gain AV from Equation 6.69 is

 AV =
RC

re

  or  100 =
RC

2.5 Ω

so a gain of 100 requires RC = 250 Ω.

 Base current IB =
IC

β
=

10 mA
135

= 0.074 mA  or  74 μA

 There is a dc voltage across RC given by IC RC = (0.010 A)(250 Ω) = 2.5 V. VCC has to 
provide the latter voltage across RC and also a sufficient voltage to keep the BC junction 
reverse biased at all times under normal operation. Let us set VCC = −6 V. Thus, in the 
absence of any input signal veb, VCB is set to −6 V + 2.5 V = −3.5 V. As we increase the 
signal veb, VEB and hence IC increase until the collector point C becomes nearly zero,18 that 
is, VCB = 0, which occurs when IC is maximum at ICmax = ∣VCC∣∕RC or 24 mA. As veb 
decreases, so does VEB and hence IC. Eventually IC will simply become zero, and point C will 
be at −6 V, so VCB = VCC. Thus, VCB can only swing from −3.5 V to 0 V (for increasing 
input until IC = ICmax), or from −3.5 to −6 V (for decreasing input until IC = 0).

6.11.3 COMMON EMITTER (CE) DC CHARACTERISTICS

An npn bipolar transistor when connected in the common emitter (CE) configuration 
has the emitter common to both the input and output circuits, as shown in Figure 
6.52a. The dc voltage VBE forward biases the BE junction and thereby injects elec-
trons as minority carriers into the base. These electrons diffuse to the collector 
junction where the field E sweeps them into the collector to constitute the collector 
current IC. VBE controls the current IE and hence IB and IC. The advantage of the CE 
configuration is that the input current is the current flowing between the ac source 
and the base, which is the base current IB. This current is much smaller than the 

 EXAMPLE 6.20

To obtain a voltage gain we obviously need RC > re, which is invariably the case by 
the appropriate choice of IE, hence re, and RC. For example, when the BJT is biased so 
that IE is 10 mA and re is 2.5 Ω, and if RC is chosen to be 50 Ω, then the gain is 20.
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emitter current by about a factor of β. The output current is the current flowing 
between VCE and the collector, which is IC. In the CE configuration, the dc voltage 
VCE must be greater than VBE to reverse bias the collector junction and collect the 
diffusing electrons in the base.
 The dc characteristics of the BJT in the CE configuration are normally given as 
IC versus VCE for various values of fixed base currents IB, as shown in Figure 6.52b. 
The characteristics can be readily understood by Equations 6.65 and 6.66. We should 
note that, in practice, we are essentially adjusting VBE to obtain the desired IB because, 
by Equation 6.66,
 IB = (1 − α)IE − ICBO

and IE depends on VBE via Equation 6.67.
 Increasing IB requires increasing VBE, which increases IC. Using Equations 6.65 
and 6.66, we can obtain IC in terms of IB alone,

 IC = βIB +
1

(1 − α)
ICBO

or
 IC = βIB + ICEO [6.70]

where

 ICEO =
ICBO

(1 − α)
≈ βICBO

is the leakage current into the collector when the base is open circuited. This is much 
larger in the CE circuit than in the CB configuration.
 Even when IB is kept constant, IC still exhibits a small increase with VCE, which, 
according to Equation 6.70 indicates an increase in the current gain β with VCE. This 

x

C

E

B

(a)

0

1

2

3

5 10

4

(b)

E

IC Output

np(0)

Electron
diffusion

IE

VBE

Input

IB

np(x)

VCE

ICEO

VCE

IC (mA)

IB =
0.03 mA

0.02 mA

0.01 mA

0

Figure 6.52 (a) An npn transistor operated in the active region in the common emitter configuration. The input current 

is the current that flows between VBE and the base which is IB. (b) DC I−V characteristics of the npn bipolar transistor in 

the CE configuration. (Exaggerated to highlight various effects.)
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Figure 6.53 An npn transistor operated in 

the active region in the common emitter  

amplifier configuration.

The applied signal vbe modulates the dc voltage 

across the BE junction and hence modulates 

the injected electron concentration up and 

down about the dc value np(0). The solid line 

shows np(x) when only the dc bias VBB is  

present. The dashed line shows how np(x) is 

modulated up by a positive small signal vbe  

superimposed on VBB.

is due to the Early effect or modulation of the base width by VCB, shown in Figure 6.50. 
Increasing VCE increases VCB, which increases WBC, reduces WB, and hence shortens 
τt. The resulting effect is a larger β (≈ τh∕τt).
 When VCE is less than VBE, the collector junction becomes forward biased and 
Equation 6.70 is not valid. The collector current is then the difference between for-
ward currents of emitter and collector junctions. The transistor operating in this 
region is said to be saturated.

6.11.4 LOW-FREQUENCY SMALL-SIGNAL MODEL

The npn bipolar transistor in the CE (common emitter) amplifier configuration is 
shown in Figure 6.53. The input circuit has a dc bias VBB to forward bias the base–
emitter (BE) junction and the output circuit has a dc voltage VCC (larger than VBB) 
to reverse bias the base–collector (BC) junction through a collector resistor RC. 
The actual reverse bias voltage across the BC junction is VCE − VBE, where VCE is

 VCE = VCC − ICRC

 An input signal in the form of a small ac signal vbe is applied in series with the 
bias voltage VBB and modulates the voltage VBE across the BE junction about its dc 
value VBB. The varying voltage across the BE modulates np(0) up and down about 
its dc value, which leads to a varying emitter current and hence to an almost identi-
cally varying collector current in the output circuit. The variation in the collector 
current is converted to an output voltage signal by the collector resistance RC. Note 
that increasing VBE increases IC, which leads to a decrease in VCE. Thus, the output 
voltage is 180° out of phase with the input voltage.
 Since the BE junction is forward biased, the relationship between IE and VBE is 
exponential,

 IE = IEO exp(eVBE

kT ) [6.71]

Emitter 

current  

and VBE
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where IEO is a constant. We can differentiate this expression to relate small varia-
tions in IE and VBE as in the presence of small signals superimposed on dc values. 
For small signals, we have vbe = δVBE, ib = δIB, ie = δIE, ic = δIC. Then from Equa-
tion 6.70 we see that δIC = β δIB, so ic = βib. Since α ≈ 1, ie ≈ ic.
 What is the advantage of the CE circuit over the common base (CB) configura-
tion? First, the input current is the base current, which is about a factor of β smaller 
than the emitter current. The ac input resistance of the CE circuit is therefore a 
factor of β higher than that of the CB circuit. This means that the amplifier does not 
load the ac source; the input resistance of the amplifier is much greater than the 
internal (or output) resistance of the ac source at the input. The small-signal input 
resistance rbe is

 rbe =
vbe

ib

=
δVBE

δIB

≈ β 

δVBE

δIE

=
βkT

eIE

≈
β25

IC(mA)
 [6.72]

where we differentiated Equation 6.71.
 The output ac signal vce develops across the CE and is tapped out through a 
capacitor. Since VCE = VCC − ICRC, as IC increases, VCE decreases. Thus,

 vce = δVCE = −RC δIC = −RCic

 The voltage amplification is

 AV =
vce

vbe

=
−RCic

rbeib

=
−RCβ

rbe

≈ −
RCIC(mA)

25
 [6.73]

which is the same as that in the CB configuration. However, in the CE configuration 
the output to input current ratio ic∕ib = β, whereas this is almost unity in the CB 
configuration. Consequently, the CE configuration provides a greater power ampli-
fication, which is the second advantage of the CE circuit.
 The input signal vbe gives rise to an output current ic. This input voltage to 
output current conversion is defined in a parameter called the mutual conductance, 
or transconductance, gm.

 gm =
ic

vbe

≈
δIE

δVBE

=
IE(mA)

25
=

1
re

 [6.74]

 The voltage amplification of the CE amplifier is then

 AV = −gmRC [6.75]

 We generally find it convenient to use a small-signal equivalent circuit for the 
low-frequency behavior of a BJT in the CE configuration. Between the base and 
emitter, the applied ac source voltage vs sees only an input resistance of rbe, as shown 
in Figure 6.54. To underline the importance of the transistor input resistance, the 
output (or the internal) resistance Rs of the ac source is also shown. In the output 
circuit there is a voltage-controlled current source ic which generates a current of 
gmvbe. The current ic passes through the load (or collector) resistance RC across which 
the voltage signal develops. As we are only interested in ac signals, the batteries 
are taken as a short-circuit path for the ac current, which means that the internal 

CE voltage 

gain

Transconduc-

tance

CE input 

resistance

Voltage gain
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S

Small-signal equivalent circuitAC source Load
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RC
vce

ic = gmvbe

rbevbevin
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vs Figure 6.54 Low-frequency small-signal  

simplified equivalent circuit of the bipolar transistor 

in the CE configuration with a load resistor RC in 

the collector circuit.

resistances of the batteries are taken as zero. This model, of course, is valid only 
under normal and active operating conditions and small signals about dc values, and 
at low frequencies.
 The bipolar transistor general dc current equation IC = βIB, where β ≈ τh∕τt is 
a material-dependent constant, implies that the ac small-signal collector current is

 δIC = βδIB  or  ic = βib

 Thus the CE dc and ac small-signal current gains are the same. This is a reason-
able approximation in the low-frequency range, typically at frequencies below 1∕τh. 
It is useful to have a relationship between β, gm, and rbe. Using Equations 6.72 and 
6.74, we have

 β = gmrbe [6.76]

 In transistor data books, the dc current gain IC∕IB is denoted as hFE whereas 
the small-signal ac current gain ic∕ib is denoted as hfe. Except at high frequencies, 
hfe ≈ hFE.

β at low 

frequencies

CE LOW-FREQUENCY SMALL-SIGNAL EQUIVALENT CIRCUIT Consider a BJT with a β 
of 100, used in a CE amplifier in which the collector current is 2.5 mA and RC is 1 kΩ. If 
the ac source has an rms voltage of 1 mV and an output resistance Rs of 50 Ω, what is the 
rms output voltage? What is the input and output power and the overall power amplification?

SOLUTION

As the collector current is 2.5 mA, the input resistance and the transconductance are

 rbe =
β25

IC(mA)
=

(100)(25)
2.5

= 1000 Ω

and

 gm =
IC(mA)

25
=

2.5
25

= 0.1 A/V

 EXAMPLE 6.21
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 The magnitude of the voltage gain of the BJT small-signal equivalent circuit is

 AV =
vce

vbe

= gmRC = (0.1)(1000) = 100

 When the ac source is connected to the B and E terminals (Figure 6.54), the input resis-
tance rbe of the BJT loads the ac source, so vbe across BE is

 vbe = vs

rbe

(rbe + Rs)
= (1 mV)

1000 Ω
(1000 Ω + 50 Ω)

= 0.952 mV

The output voltage (rms) is, therefore,

 vce = AVvbe = 100(0.952 mV) = 95.2 mV

 The loading effect makes the output less than 100 mV. To reduce the loading of the ac 
source, we need to increase rbe, i.e., reduce the collector current, but that also reduces the 
gain. So to keep the gain the same, we need to reduce IC and increase RC. However, RC can-
not be increased indefinitely because RC itself is loaded by the input of the next stage and, 
in addition, there is an incremental resistance between the collector and emitter terminals 
(typically ~100 kΩ) that shunts RC (not shown in Figure 6.54).
 The power amplification of the CE BJT itself is

 AP =
icvce

ibvbe

= βAV = (100)(100) = 10,000

The input power into the BE terminals is

 Pin = vbeib =
v2

be

rbe

=
(0.952 × 10−3 V)2

1000 Ω
= 9.06 × 10−10 W  or  0.906 nW

The output power is

 Pout = PinAP = (9.06 × 10−10)(10,000) = 9.06 × 10−6 W  or  9.06 μW

6.12  JUNCTION FIELD EFFECT TRANSISTOR (JFET)

6.12.1 GENERAL PRINCIPLES

The basic structure of the junction field effect transistor (JFET) with an n-type channel 
(n-channel) is depicted in Figure 6.55a. An n-type semiconductor slab is provided with 
contacts at its ends to pass current through it. These terminals are called source (S) and 
drain (D). Two of the opposite faces of the n-type semiconductor are heavily p-type 
doped to some small depth so that an n-type channel is formed between the source and 
drain terminals, as shown in Figure 6.55a. The two p+ regions are normally electrically 
connected and are called the gate (G). As the gate is heavily doped, the depletion 
layers extend almost entirely into the n-channel, as shown in Figure 6.55a. For simplic-
ity we will assume that the two gate regions are identical (both p+ type) and that the 
doping in the n-type semiconductor is uniform. We will define the n-channel to be the 
region of conducting n-type material contained between the two depletion layers.
 The basic and idealized symmetric structure in Figure 6.55a is useful in explain-
ing the principle of operation as discussed later but does not truly represent the 
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structure of a typical practical device. A simplified schematic sketch of the cross 
section of a more practical device (as, for example, fabricated by the planar technol-
ogy) is shown in Figure 6.55b where it is apparent that the two gate regions do not 
have identical doping and that, except for one of the gates, all contacts are on  
one surface.
 We first consider the behavior of the JFET with the gate and source shorted 
(VGS = 0), as shown in Figure 6.56a. The resistance between S and D is essentially 
the resistance of the conducting n-channel between A and B, RAB. When a positive 
voltage is applied to D with respect to S (VDS > 0), then a current flows from D to 
S, which is called the drain current ID. There is a voltage drop along the channel, 
between A and B, as indicated in Figure 6.56a. The voltage in the n-channel is zero 
at A and VDS at B. As the voltage along the n-channel is positive, the p+n junctions 
between the gates and the n-channel become progressively more reverse-biased from 
A to B. Consequently the depletion layers extend more into the channel and thereby 
decrease the thickness of the conducting channel from A to B.
 Increasing VDS increases the widths of the depletion layers, which penetrate more 
into the channel and hence result in more channel narrowing toward the drain. The 
resistance of the n-channel RAB therefore increases with VDS. The drain current therefore 
does not increase linearly with VDS but falls below it because

 ID =
VDS

RAB

n
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Figure 6.55 (a) The basic structure of the junction field effect transistor 

(JFET) with an n-channel. The two p+ regions are electrically connected and 

form the gate. (b) A simplified sketch of the cross section of a more practical 

n-channel JFET.
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and RAB increases with VDS. Thus ID versus VDS exhibits a sublinear behavior, as 
shown in the VDS < 5 V region in Figure 6.57.
 As VDS increases further, the depletion layers extend more into the channel and 
eventually, when VDS = VP (= 5 V), the two depletion layers around B meet at 
point  P at the drain end of the channel, as depicted in Figure 6.56b. The channel 
is then said to be “pinched off” by the two depletion layers. The voltage VP is called 
the pinch-off voltage. It is equal to the magnitude of reverse bias needed across 
the p+n junctions to make them just touch at the drain end. Since the actual bias 
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voltage across the p+n junctions at the drain end (B) is VGD, the pinch-off occurs 
whenever

 VGD = −VP [6.77]

 In the present case, gate to source is shorted, VGS = 0, so VGD = −VDS and pinch-
off occurs when VDS = VP (5 V). The drain current from pinch-off onwards, as shown 
in Figure 6.57, does not increase significantly with VDS for reasons given below. 
Beyond VDS = VP, there is a short pinched-off channel of length ℓpo.
 The pinched-off channel is a reverse-biased depletion region that separates the 
drain from the n-channel, as depicted in Figure 6.58. There is a very strong electric 
field E in this pinched-off region in the D to S direction. This field is the vector sum 
of the fields from positive donors to negative acceptors in the depletion regions of 
the channel and the gate on the drain side. Electrons in the n-channel drift toward 
P, and when they arrive at P, they are swept across the pinched-off channel by E. 
This process is similar to minority carriers in the base of a BJT reaching the collec-
tor junction depletion region, where the internal field there sweeps them across the 
depletion layer into the collector. Consequently the drain current is actually deter-
mined by the resistance of the conducting n-channel over Lch from A to P in Figure 6.58 
and not by the pinched-off channel.
 As VDS increases, most of the additional voltage simply drops across ℓpo as this 
region is depleted of carriers and hence highly resistive. Point P, where the depletion 
layers first meet, moves slightly toward A, thereby slightly reducing the channel 
length Lch. Point P must still be at a potential VP because it is this potential that just 
makes the depletion layers touch. Thus the voltage drop across Lch remains as VP. 
Beyond pinch-off then

 ID =
VP

RAP

  (VDS > VP)

 Since RAP is determined by Lch, which decreases slightly with VDS, ID increases 
slightly with VDS. In many cases, ID is conveniently taken to be saturated at a value 
IDSS for VDS > VP. Typical ID versus VDS behavior is shown in Figure 6.57.

Pinch-off 

condition

G
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P

E

Pinched-off channel

ID = 10 mA

VDS > 5 V
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Figure 6.58 The pinched-off channel 

and conduction for VDS > VP (= 5 V).
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 We now consider what happens when a negative voltage, say VGS = −2 V, is 
applied to the gate with respect to the source, as shown in Figure 6.59a with VDS = 0. 
The p+n junctions are now reverse biased from the start, the channel is narrower, 
and the channel resistance is now larger than in the VGS = 0 case. The drain current 
that flows when a small VDS is applied, as in Figure 6.59b, is now smaller than in 
the VGS = 0 case as apparent in Figure 6.57. The p+n junctions are now progressively 
more reverse biased from VGS at the source end to VGD = VGS − VDS at the drain end. 
We therefore need a smaller VDS (= 3 V) to pinch off the channel, as shown in 
Figure 6.59c. When VDS = 3 V, the G to D voltage VGD across the p+n junctions at 
the drain end is −5 V, which is −VP, so the channel becomes pinched off. Beyond 
pinch-off, ID is nearly saturated just as in the VGS = 0 case, but its magnitude is 
obviously smaller as the thickness of the channel at A is smaller; compare Figures 6.56 
and 6.59. In the presence of VGS, as apparent from Figure 6.57, the pinch-off occurs 
at VDS = VDS(sat), and from Equation 6.77.

 VDS(sat) = VP + VGS [6.78]

where VGS is a negative voltage (reducing VP). Beyond pinch-off when VDS > VDS(sat), 
the point P where the channel is just pinched still remains at potential VDS(sat), given 
by Equation 6.78.
 For VDS > VDS(sat), ID becomes nearly saturated at a value denoted as IDS, which 
is indicated in Figure 6.57. When G and S are shorted (VGS = 0), IDS is called IDSS 
(which stands for IDS with shorted gate to source). Beyond pinch-off, with negative 
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VGS, the drain current ID is

 ID ≈ IDS ≈
VDS(sat)

RAP(VGS)
=

VP + VGS

RAP (VGS)
  VDS > VDS(sat) [6.79]

where RAP(VGS) is the effective resistance of the conducting n-channel from A to P 

(Figure 6.59b), which depends on the channel thickness and hence on VGS. The 
resistance increases with more negative gate voltage as this increases the reverse bias 
across the p+n junctions, which leads to the narrowing of the channel. For example, 
when VGS = −4 V, the channel thickness at A becomes narrower than in the case 
with VGS = −2 V, thereby increasing the resistance, RAP, of the conducting channel 
and therefore decreasing IDS. Further, there is also a reduction in the drain current 
by virtue of VDS(sat) decreasing with negative VGS, as apparent in Equation 6.79. 
Figure 6.57 shows the effect of the gate voltage on the ID versus VDS behavior. The 
two effects, that from VDS(sat) and that from RAP(VGS) in Equation 6.79, lead to IDS 
almost decreasing parabolically with −VGS.
 When the gate voltage is such that VGS = −VP (= −5 V) with the source and 
drain shorted (VDS = 0), then the two depletion layers touch over the entire channel 
length and the whole channel is closed, as illustrated in Figure 6.60. The channel is 
said to be off. The only drain current that flows when a VDS is applied is due to the 
thermally generated carriers in the depletion layers. This current is very small.
 Figure 6.57 summarizes the full ID versus VDS characteristics of the n-channel 
JFET at various gate voltages VGS. It is apparent that IDS is relatively independent of 
VDS and that it is controlled by the gate voltage VGS, as expected by Equation 6.79. 
This is analogous to the BJT in which the collector current IC is controlled by the 
base–emitter bias voltage VBE. Figure 6.61a shows the dependence of IDS on the gate 
voltage VGS. The transistor action is the control of the drain current IDS, in the drain–
source (output) circuit by the voltage VGS in the gate–source (input circuit), as shown 
in Figure 6.61b. This control is only possible if VDS > VDS(sat). When VGS = −Vp, the 
drain current is nearly zero because the channel has been totally pinched off. This 
gate–source voltage is denoted by VGS(off) as the drain current has been switched off. 
Furthermore, we should note that as VGS reverse biases the p+n junction, the current 
into the gate IG is the reverse leakage current of these junctions. It is usually very 
small. In some JFETs, IG is as low as a fraction of a nanoampere. We should also 
note that the circuit symbol for the JFET, as shown in Figure 6.55a, has an arrow 
to identify the gate and the pn junction direction.

G

DS

VGS = –5 V

p+ SCL
n

VDS

Figure 6.60 When VGS = −5 V, the depletion layers 

close the whole channel from the start, at VDS = 0.

As VDS is increased, there is a very small drain current, 

which is the small reverse leakage current due to thermal 

generation of carriers in the depletion layers.
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 Is there a convenient relationship between IDS and VGS? If we calculate the effec-
tive resistance RAP of the n-channel between A and P, we can obtain its dependence 
on the channel thickness, and thus on the widths of the depletion layers and hence 
on VGS. We can then find IDS from Equation 6.79. It turns out that a simple parabolic 
dependence seems to represent the data reasonably well,

 IDS = IDSS[1 − ( VGS

VGS(off))]
2

 [6.80]

where IDSS is the drain current when VGS = 0 (Figure 6.61) and VGS(off) is defined as 
−VP, that is, that gate–source voltage that just pinches off the channel. The pinch-off 
voltage VP here is a positive quantity because it was introduced through VDS(sat). 
VGS(off) however is negative, −VP. We should note two important facts about the JFET. 
Its name originates from the effect that modulating the electric field in the reverse-
biased depletion layers (by changing VGS) varies the depletion layer penetration into 
the channel and hence the resistance of the channel. The transistor action hence can 
be thought of as being based on a field effect. Since there is a p+n junction between 
the gate and the channel, the name has become JFET. This junction in reverse bias 
provides the isolation between the gate and channel.
 Secondly, the region beyond pinch-off, where Equations 6.79 and 6.80 hold, is 
commonly called the current saturation region, as well as constant current 

region and pentode region. The term saturation should not be confused with 
similar terms used for saturation effects in bipolar transistors. A saturated BJT can-
not be used as an amplifier, but JFETs are invariably used as amplifiers in the 
saturated current region.

6.12.2 JFET AMPLIFIER

The transistor action in the JFET is the control of IDS by VGS, as shown in Figure 6.61. 
The input circuit is therefore the gate–source circuit containing VGS and the output 
circuit is the drain–source circuit in which the drain current IDS flows. The JFET is 
almost never used with the pn junction between the gate and channel forward biased 
(VGS > 0) as this would lead to a very large gate current and near shorting of the 

JFET 
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Figure 6.61 (a) Typical IDS versus VGS  

characteristics of a JFET. (b) The dc circuit 

where VGS in the gate–source circuit (input) 

controls the drain current IDS in the drain–source 

(output) circuit in which VDS is kept constant 

and large (VDS > VP).
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gate to source voltage. With VGS limited to negative voltages, the maximum current 
in the output circuit can only be IDSS, as shown in Figure 6.61a. The maximum input 
voltage VGS should therefore give an IDS less than IDSS.
 Figure 6.62a shows a simplified illustration of a typical JFET voltage amplifier. 
As the source is common to both the input and output circuits, this is called a  
common source (CS) amplifier. The input signal is the ac source vgs connected in 
series with a negative dc bias voltage VGG of −1.5 V in the GS circuit. First we will 
find out what happens when there is no ac signal in the circuit (vgs = 0). The dc 
supply (−1.5 V) in the input provides a negative dc voltage to the gate and therefore 
gives a dc current IDS in the output circuit (less than IDSS). Figure 6.62b shows that 
when VGS = −1.5 V, point Q on the IDS versus VGS characteristics gives IDS = 4.9 mA. 
Point Q, which determines the dc operation, is called the quiescent point.

 The ac source vgs is connected in series with the negative dc bias voltage VGS. It 
therefore modulates VGS up and down about −1.5 V with time, as shown in Figure 6.62b. 
Suppose that vgs varies sinusoidally between −0.5 V and +0.5 V. Then, as shown in 
Figure 6.62b when vgs is −0.5 V (point A), VGS = −2.0 V and the drain current is 
given by point A on the IDS–VGS curve and is about 3.6 mA. When vgs is +0.5 V 
(point B), then VGS = −1.0 V and the drain current is given by point B on the IDS–VGS 
curve and is about 6.4 mA. The input variation from −0.5 V to +0.5 V has thus been 
converted to a drain current variation from 3.6 mA to 6.4 mA as indicated in Fig-
ure 6.62b. We could have just as easily calculated the drain current from Equation 6.80. 
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Table 6.6 summarizes what happens to the drain current as the ac input voltage is 
varied about zero.
 The change in the drain current with respect to its dc value is the output signal 
current denoted as id. Thus at A,

 id = 3.6 − 4.9 = −1.3 mA

and at B,

 id = 6.4 − 4.9 = 1.5 mA

The variation in the output current is not quite symmetric as that in the input signal 
vgs because the IDS–VGS relationship, Equation 6.80, is not linear.
 The drain current variations in the DS circuit are converted to voltage variations 
by the resistance RD. The voltage across DS is

 VDS = VDD − IDS RD [6.81]

where VDD is the bias battery voltage in the DS circuit. Thus, variations in IDS result 
in variations in VDS that are in the opposite direction or 180° out of phase. The ac 
output voltage between D and S is tapped out through a capacitor C, as shown in 
Figure 6.62a. The capacitor C simply blocks the dc. Suppose that RD = 2000 Ω and 
VDD = 18 V, then using Equation 6.81 we can calculate the dc value of VDS and also 
the minimum and maximum values of VDS, as shown in Table 6.6.
 It is apparent that as vgs varies from −0.5 V, at A, to +0.5 V, at B, VDS varies 
from 10.8 V to 5.2 V, respectively. The change in VDS with respect to dc is what 
constitutes the output signal vds, as only the ac is tapped out. From Equation 6.81, 
the change in VDS is related to the change in IDS by

 vds = −RDid [6.82]

Thus, the output, vds, changes from −3.0 V to 2.6 V. The peak-to-peak voltage ampli-
fication is

 AV(pk-pk) =
ΔVDS

ΔVGS

=
vds(pk-pk)

vgs(pk-pk)
=

−3 V − (2.6 V)
0.5 V − (−0.5 V)

= −5.6

 The negative sign represents the fact that the output and input voltages are out 
of phase by 180°. This can also be seen from Table 6.6 where a negative vgs results 
in a positive vds. Even though the ac input signal vgs is symmetric about zero, ±0.5 V, 

Table 6.6 Voltage and current in the common source amplifier of Figure 6.62a

 vgs VGS IDS id  vds Voltage

 (V) (V) (mA) (mA) VDS = VDD – IDSRD (V) Gain Comment

 0 −1.5 4.9 0  8.2 0  dc conditions, point Q
 −0.5 −2.0 3.6 −1.3 10.8 +2.6 −5.2 Point A
 +0.5 −1.0 6.4 +1.5  5.2 −3.0 −6 Point B

 NOTE: VDD = 18 V and RD = 2000 Ω.
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the ac output signal vds is not symmetric, which is due to the IDS versus VGS curve 
being nonlinear, and thus varies between −3.0 V and 2.6 V. If we were to calculate 
the voltage amplification for the most negative input signal, we would find −5.2, 
whereas for the most positive input signal, it would be −6. The peak-to-peak voltage 
amplification, which was −5.6, represents a mean gain taking both negative and 
positive input signals into account.
 The amplification can of course be increased by increasing RD, but we must 
maintain VDS at all times above VDS(sat) (beyond pinch-off) to ensure that the drain 
current IDS in the output circuit is only controlled by VGS in the input circuit.
 When the signals are small about dc values, we can use differentials to represent 
small signals. For example, vgs = δVGS, id = δIDS, vds = δVDS, and so on. The varia-
tion δIDS due to δVGS about the dc value may be used to define a mutual transcon-

ductance gm (sometimes denoted as gfs) for the JFET,

 gm =
dIDS

dVGS

≈
δIDS

δVGS

=
id

vgs

This transconductance can be found by differentiating Equation 6.80,

 gm =
dIDS

dVGS

= −
2IDSS

VGS(off)[1 − ( VGS

VGS(off))] = −
2[IDSSIDS]1∕2

VGS(off)
 [6.83]

 The output signal current is

 id = gmvgs

so using Equation 6.82, the small-signal voltage amplification is

 AV =
vds

vgs

=
−RD(gmvgs)

vgs

= −gmRD [6.84]

 Equation 6.84 is only valid under small-signal conditions in which the variations 
about the dc values are small compared with the dc values themselves. The negative 
sign indicates that vds and vgs are 180° out of phase.

Definition of 

JFET trans-

conductance

JFET trans-

conductance

Small-signal 

voltage gain

THE JFET AMPLIFIER Consider the n-channel JFET common source amplifier shown 
in  Figure 6.62a. The JFET has an IDSS of 10 mA and a pinch-off voltage VP of 5 V as in 
Figure 6.62b. Suppose that the gate dc bias voltage supply VGG = −1.5 V, the drain circuit 
supply VDD = 18 V, and RD = 2000 Ω. What is the voltage amplification for small signals? 
How does this compare with the peak-to-peak amplification of −5.6 found for an input signal 
that had a peak-to-peak value of 1 V?

SOLUTION

We first calculate the operating conditions at the bias point with no ac signals. This cor-
responds to point Q in Figure 6.62b. The dc bias voltage VGS across the gate to source is 
−1.5 V. The resulting dc drain current IDS can be calculated from Equation 6.80 with 
VGS(off) = −VP = −5 V:

 IDS = IDSS[1 − ( VGS

VGS(off))]
2

= (10 mA)[1 − (−1.5
−5 )]

2

= 4.9 mA

 EXAMPLE 6.22
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 The transconductance at this dc current (at Q) is given by Equation 6.83,

 gm = −
2(IDSS IDS)1∕2

VGS(off)
= −

2[(10 × 10−3) (4.9 × 10−3) ]1∕2

−5
= 2.8 × 10−3 A∕V

 The voltage amplification of small signals about point Q is

 AV = −gmRD = −(2.8 × 10−3)(2000) = −5.6

 This turns out to be the same as the peak-to-peak voltage amplification we calculated in 
Table 6.6. When the input ac signal vgs varies between −0.5 and +0.5 V, as in Table 6.6, the 
output signal is not symmetric. It varies between −3 V and 2.8 V, so the voltage gain depends 
on the input signal. The amplifier is then said to exhibit nonlinearity.

6.13   METAL-OXIDE-SEMICONDUCTOR FIELD EFFECT 

TRANSISTOR (MOSFET)

6.13.1 FIELD EFFECT AND INVERSION

The metal-oxide-semiconductor field effect transistor is based on the effect of a field 
penetrating into a semiconductor. Its operation can be understood by first considering 
a parallel plate capacitor with metal electrodes and a vacuum as insulation in between, 
as shown in Figure 6.63a. When a voltage V is applied between the plates, charges 
+Q and −Q (where Q = CV) appear on the plates and there is an electric field given 
by E = V∕L. The origins of these charges are the conduction electrons for −Q and 
exposed positively charged metal ions for +Q. Metallic bonding is based on all the 
valence electrons forming a sea of conduction electrons and permeating the space between 
metal ions that are fixed at crystal lattice sites. Since the electrons are mobile, they are 
readily displaced by the field. Thus, in the lower plate E displaces some of the conduc-
tion electrons to the surface to form −Q. In the top plate E displaces some of the electrons 
from the surface into the bulk to expose positively charged metal ions to form +Q.
 Suppose that the plate area is 1 cm2 and spacing is 0.1 μm and that we apply 2 V 
across it. The capacitance C is 8.85 nF and the magnitude of charge Q on each plate 
is 1.77 × 10−8 C, which corresponds to 1.1 × 1011 electrons. A typical metal such 
as copper has something like 2 × 1015 atoms per cm2 on the surface. Thus, there 
will be that number of positive metal ions and electrons on the surface (assuming 
one conduction electron per atom). The charges +Q and −Q can therefore be gener-
ated by the electrons and metal ions at the surface alone. For example, if one in 
every 1.7 × 104 electrons on the surface moves one atomic spacing (∼0.3 nm) into 
the bulk, then the surface will have a charge of +Q due to exposed positive metal 
ions. It is clear that, for all practical purposes, the electric field does not penetrate 
into the metal and terminates at the metal surface.
 The same is not true when one of the electrodes is a semiconductor, as shown 
in Figure 6.63b where the “capacitor” now is of a metal-insulator-semiconductor 
(MOS) device. Suppose that we replace the lower metal in Figure 6.63a with a p-type 
semiconductor with an acceptor concentration of 1015 cm−3. The number of acceptor 
atoms on the surface19 is 1 × 1010 cm−2. We may assume that at room temperature 

 19 Surface concentration of atoms (atoms per unit area) can be found from nsurf ≈ (nbulk)
2∕3.
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Figure 6.63 The field effect. (a) In a metal-air-metal capacitor, all the charges reside on the 

surface. (b) Illustration of field penetration into a p-type semiconductor. (c) As the field  

increases, eventually when V > Vth, an inversion layer is created near the surface in which 

there are conduction electrons.

all the acceptors are ionized and thus negatively charged. It is immediately apparent 
that we do not have a sufficient number of negative acceptors at the surface to gen-
erate the charge −Q. We must therefore also expose negative acceptors in the bulk, 
which means that the field must penetrate into the semiconductor. Holes in the 
surface region of the semiconductor become repelled toward the bulk and thereby 
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expose more negative acceptors. We can estimate the width W into which the field 
penetrates since the total negative charge exposed eAWNa must be Q. We find that 
W is of the order of 1 μm, which is something like 4000 atomic layers. Our conclu-
sion is that the field penetrates into a semiconductor by an amount that depends on 
the doping concentration.
 The penetrating field into the semiconductor drifts away most of the holes in 
this region and thereby exposes negatively charged acceptors to make up the charge 
−Q. The region into which the field penetrates has lost holes and is therefore depleted 
of its equilibrium concentration of holes. We refer to this region as a depletion layer. 
As long as p > n even though p ≪ Na, this region still has p-type characteristics as 
holes are in the majority.
 If the voltage increases further, −Q also increases in magnitude, as the field 
becomes stronger and penetrates more into the semiconductor but eventually it 
becomes more difficult to make up the charge −Q by simply extending the deple-
tion layer width W into the bulk. It becomes possible (and more favorable) to attract 
conduction electrons into the depletion layer and form a thin electron layer of width 
Wn near the surface. The charge −Q is now made up of the fixed negative charge 
of acceptors in Wa and of conduction electrons in Wn, as shown in Figure 6.63c. 
Further increases in the voltage do not change the width Wa of the depletion layer 
but simply increase the electron concentration in Wn. Where do these electrons come 
from as the semiconductor is doped p-type? Some are attracted into the depletion 
layer from the bulk, where they were minority carriers. But most are thermally 
generated by the breaking of Si–Si bonds (i.e., across the bandgap) in the depleted 
layer. Thermal generation in the depletion layer generates EHPs that become sepa-
rated by the field. The holes are then drifted by the field into the bulk and the 
electrons toward the surface. Recombination of the thermally generated electrons 
and holes with other carriers is greatly reduced because the depletion layer has so 
few carriers. Since the electron concentration in the electron layer exceeds the hole 
concentration and this layer is within a normally p-type semiconductor, we call this 
an inversion layer.

 It is now apparent that increasing the field in the metal-insulator-semiconductor 
device first creates a depletion layer and then an inversion layer at the surface when 
the voltage exceeds some threshold value Vth. This is the basic principle of the field 
effect device. As long as V > Vth, any increase in the field and hence ∣−Q∣ leads to 
more electrons in the inversion layer, whereas the width of the depletion layer Wa 
and hence the quantity of fixed negative charge remain constant. The insulator 
between the metal and the semiconductor, that is, a vacuum in Figure 6.63, is typi-
cally SiO2 in many devices.

6.13.2 ENHANCEMENT MOSFET

Figure 6.64 shows the basic structure of an enhancement n-channel MOSFET device 
(NMOSFET). A metal-insulator-semiconductor structure is formed between a p-type 
Si substrate and a metal electrode, which is called the gate (G). The insulator is the 
SiO2 oxide grown during fabrication. There are two n+ doped regions at the ends of 
the MOS device that form the source (S) and drain (D). A metal contact is also made 
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to the p-type Si substrate (or the bulk), which in many devices is connected to the 
source terminal as shown in Figure 6.64. Further, many MOSFETs have a degener-
ately doped polycrystalline Si material as the gate that serves the same function as 
the metal electrode.
 With no voltage applied to the gate, S to D is an n+pn+ structure that is always 
reverse biased whatever the polarity of the source to drain voltage. However, if 
the substrate (bulk) is connected to the source, a negative VDS will forward 
bias  the  n+p junction between the drain and the substrate. As the n-channel 
 MOSFET device is not normally used with a negative VDS, we will not consider 
this polarity.
 When a positive voltage less than Vth is applied to the gate, VGS < Vth, as shown 
in Figure 6.65a, the p-type semiconductor under the gate develops a depletion layer 
as a result of the expulsion of holes into the bulk, just as in Figure 6.63b. Since S 
and D are isolated by a low-conductivity p-doped region that has a depletion layer 
from S to D, no current can flow for any positive VDS.
 With VDS = 0, as soon as VGS is increased beyond the threshold voltage Vth, 
an n-channel inversion layer is formed within the depletion layer under the gate 
and immediately below the surface, as shown in Figure 6.65b. This n-channel 
links the two n+ regions of source and drain. We then have a continuous n-type 
material with electrons as mobile carriers between the source and drain. When a 
small VDS is applied, a drain current ID flows that is limited by the resistance of 
the n-channel Rn-ch:

 ID =
VDS

Rn-ch
 [6.85]

Thus, ID initially increases with VDS almost linearly, as shown in Figure 6.65b.
 The voltage variation along the channel is from zero at A (source end) to VDS at 
B (drain end). The gate to the n-channel voltage is then VGS at A and VGD = VGS − 
VDS at B. Thus point A depends only on VGS and remains undisturbed by VDS. As 
VDS increases, the voltage at B (VGD) decreases and thereby causes less inversion. 
This means that the channel gets narrower from A to B and its resistance Rn-ch, 
increases with VDS. ID versus VDS then falls increasingly below the ID ∝ VDS line. 
Eventually when the gate to n-channel voltage at B decreases to just below Vth, the 
inversion layer at B disappears and a depletion layer is exposed, as illustrated in 
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Figure 6.65c. The n-channel becomes pinched off at this point P. This occurs when 
VDS = VDS(sat), satisfying

 VGD = VGS − VDS(sat) = Vth [6.86]

 It is apparent that the whole process of the narrowing of the n-channel and its 
eventual pinch-off is similar to the operation of the n-channel JFET. When the drift-
ing electrons in the n-channel reach P, the large electric field within the very narrow 
depletion layer at P sweeps the electrons across into the n+ drain. The current is 
limited by the supply of electrons from the n-channel to the depletion layer at P, 
which means that it is limited by the effective resistance of the n-channel between 
A and P.
 When VDS exceeds VDS(sat), the additional VDS drops mainly across the highly 
resistive depletion layer at P, which extends slightly to P′ toward A, as shown in 
Figure 6.65d. At P′, the gate to channel voltage must still be just Vth as this is the 
voltage required to just pinch off the channel and just eliminate inversion. The wid-
ening of the depletion layer (from B to P′) at the drain end with VDS, however, is 
small compared with the channel length AB. The resistance of the channel from A 
to P′ does not change significantly with increasing VDS, which means that the drain 
current ID is then nearly saturated at IDS,

 ID ≈ IDS ≈
VDS(sat)

RAP′n-ch
  VDS > VDS(sat) [6.87]

 As VDS(sat) depends on VGS, so does IDS. The overall IDS versus VDS characteristics 
for various fixed gate voltages VGS of a typical enhancement MOSFET is shown in 
Figure 6.66a. It can be seen that there is only a slight increase in IDS with VDS 
beyond VDS(sat). The IDS versus VGS when VDS > VDS(sat) characteristics are shown in 
Figure 6.66b. It is apparent that as long as VDS > VDS(sat), the saturated drain current 
IDS in the source–drain (or output) circuit is almost totally controlled by the gate 
voltage VGS in the source–gate (or input) circuit. This is what constitutes the MOSFET 

0

5

10

0 5 10

(b)

0

5

10

0 10 20 30

8 V

6 V

5 V

(a)

4 V

ID (mA)

VDS VGS

IDS (mA)

VDS(sat)

Saturation, ID ≈ IDS

VGS = 10 V

VDS = 20 V

Vth = 4 V

Figure 6.66 (a) Typical ID versus VDS 

characteristics of an enhancement 

MOSFET (Vth = 4 V) for various fixed 

gate voltages VGS. (b) Dependence of 

IDS on VGS at a given VDS (>VDS(sat)).



630 C H A P T E R  6  ∙ SEMICONDUCTOR DEVICES

action. Variations in VGS then lead to variations in the drain current IDS ( just as in 
the JFET), which forms the basis of the MOSFET amplifier. The term enhancement 
refers to the fact that a gate voltage exceeding Vth is required to enhance a conduct-
ing channel between the source and drain. This contrasts with the JFET where the 
gate voltage depletes the channel and decreases the drain current.
 The experimental relationship between IDS and VGS (when VDS > VDS(sat)) has 
been found to be best described by a parabolic equation similar to that for the JFET, 
except that now VGS enhances the channel when VGS > Vth so IDS exists only when 
VGS > Vth,

 IDS = K(VGS − Vth)
2 [6.88]

where K is a constant. For an ideal MOSFET, it can be expressed as

 K =
Zμeε

2Ltox
 [6.89]

where μe is the electron drift mobility in the channel, L and Z are the length and 
width of the gate controlling the channel, and ε and tox are the permittivity (εrεo) 
and thickness of the oxide insulation under the gate. According to Equation 6.88, 
IDS is independent of VDS. The shallow slopes of the ID versus VDS lines beyond 
VDS(sat) in Figure 6.66a can be accounted for by writing Equation 6.88 as

 IDS = K(VGS − Vth)
2(1 + λVDS) [6.90]

where λ is a constant that is typically 0.01 V−1. If we extend the IDS versus VDS lines, 
they intersect the −VDS axis at 1∕λ, which is called the Early voltage. It should be 
apparent that IDSS, which is IDS with the gate and source shorted (VGS = 0), is zero 
and is not a useful quantity in describing the behavior of the enhancement MOSFET.
 The drift mobility μe in Equation 6.89 represents the drift of electrons in the 
channel near the surface of the semiconductor. This region also has the field from 
the gate penetrating into it as well as a longitudinal field along the channel. μe is 
not the same as the drift mobility in the bulk of p-Si but depends on the field 
penetrating  into the channel, and defects and dopants in this region, especially near 
the semiconductor–oxide interface. μe is therefore a field effect mobility and should 
be viewed as an effective mobility in the channel.

Enhancement 

NMOSFET

Enhancement 

NMOSFET

Enhancement 

NMOSFET 

constant

THE ENHANCEMENT NMOSFET A particular discrete enhancement NMOS transistor has 
a gate with a width (Z) of 50 μm, length (L) of 10 μm, and SiO2 thickness of 450 Å. The 
relative permittivity of SiO2 is 3.9. Its threshold voltage is 4 V. Estimate the drain current 
when VGS = 8 V and VDS = 20 V, given λ = 0.01. The effective electron drift mobility μe is 
roughly 700 cm2 V−1 s−1.

SOLUTION

Since VDS > Vth, we can assume that the drain current is saturated and we can use the IDS 
versus VGS relationship in Equation 6.90,

 IDS = K(VGS − Vth)
2(1 + λVDS)

 EXAMPLE 6.23
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where the constant K is given by Equation 6.89

 K =
Zμeεrεo

2Ltox
=

(50 × 10−6) (700 × 10−4) (3.9 × 8.85 × 10−12)

2(10 × 10−6) (450 × 10−10)
= 0.000134 AV−1

 When VGS = 8 V and VDS = 20 V, with λ = 0.01, from Equation 6.90,

 IDS = 0.000134(8 − 4)2[1 + (0.01)(20)]

 = 0.0026 A  or  2.6 mA

6.13.3 THRESHOLD VOLTAGE

The threshold voltage is an important parameter in MOSFET devices. Its control in 
device fabrication is therefore essential. Figure 6.67a shows an idealized MOS struc-
ture where all the electric field lines from the metal pass through the oxide and 
penetrate the p-type semiconductor. The charge −Q is made up of fixed negative 
acceptors in a surface region of Wa and of conduction electrons in the inversion layer 
at the surface, as shown in Figure 6.67a. The voltage drop across the MOS structure, 
however, is not uniform. As the field penetrates the semiconductor, there is a voltage 
drop Vsc across the field penetration region of the semiconductor by virtue of  
E = −dV∕dx, as shown in Figure 6.67a. The field terminates on both electrons in the 
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Figure 6.67 (a) The threshold voltage and the ideal MOS 

structure. (b) In practice, there are several charges in the 

oxide and at the oxide–semiconductor interface that affect 

the threshold voltage: Qmi = mobile ionic charge (e.g., Na+), 

Qot = trapped oxide charge, Qf = fixed oxide charge, and 

Qit = charge trapped at the interface.
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inversion layer and acceptors in Wa, so within the semiconductor E is not uniform 
and therefore the voltage drop is not constant. But the field in the oxide is uniform, 
as we assumed there were no charges inside the oxide. The voltage drop across the 
oxide is constant and is Vox, as shown in Figure 6.67a. If the applied voltage is V1, 
we must have Vsc + Vox = V1. The actual voltage drop Vsc across the semiconductor 
determines the condition for inversion. We can show this as follows. If the acceptor 
doping concentration is 1016 cm−3, then the Fermi level EF in the bulk of the p-type 
semiconductor must be 0.347 eV below EFi in intrinsic Si. To make the surface 
n-type we need to shift EF at the surface to go just above EFi. Thus we need to shift 
EF from bulk to surface by at least 0.347 eV. We have to bend the energy band by 
0.347 eV at the surface. Since the voltage drop across the semiconductor is Vsc and 
the corresponding electrostatic PE change is eVsc, this must be 0.347 eV or Vsc = 
0.347 V. The gate voltage for the start of inversion will then be Vox + 0.347 V. By 
inversion, however, we generally infer that the electron concentration at the surface 
is comparable to the hole concentration in the bulk. This means that we actually 
have to shift EF above EFi by another 0.347 eV, so the gate threshold voltage Vth 
must be Vox + 0.694 V.
 In practice there are a number of other important effects that must be considered 
in evaluating the threshold voltage. Invariably there are charges both within the oxide 
and at the oxide–semiconductor interface that alter the field penetration into the 
semiconductor and hence the threshold voltage needed at the gate to cause inversion. 
Some of these are depicted in Figure 6.67b and can be qualitatively summarized as 
follows.
 There may be some mobile ions within the SiO2, such as alkaline ions (Na+, 
K+), which are denoted as Qmi in Figure 6.67b. These may be introduced unintention-
ally, for example, during cleaning and etching processes in the fabrication. In addi-
tion there may be various trapped (immobile) charges within the oxide Qot due to 
structural defects, for example, an interstitial Si+. Frequently these oxide trapped 
charges are created as a result of radiation damage (irradiation by X-rays or other 
high-energy beams). They can be reduced by annealing the device.
 A significant number of fixed positive charges (Qf) exist in the oxide region 
close to the interface. They are believed to originate from the nonstoichiometry of 
the oxide near the oxide–semiconductor interface. They are generally attributed to 
positively charged Si+ ions. During the oxidation process, a Si atom is removed from 
the Si surface to react with the oxygen diffusing in through the oxide. When the 
oxidation process is stopped suddenly, there are unfulfilled Si ions in this region. Qf 
depends on the crystal orientation and on the oxidation and annealing processes. The 
semiconductor to oxide interface itself is a sudden change in the structure from 
crystalline Si to amorphous oxide. The semiconductor surface itself will have various 
defects, as discussed in Chapter 1. There is some inevitable mismatch between the 
two structures at the interface, and consequently there are broken bonds, dangling 
bonds, point defects such as vacancies and Si+, and other defects at this interface 
that trap charges (e.g., holes). All these interface-trapped charges are represented as 
Qit in Figure 6.67b. Qit depends not only on the crystal orientation but also on the 
chemical composition of the interface. Both Qf and Qit overall represent a positive 
charge that effectively reduces the gate voltage needed for inversion. They are smaller 



 6 .1 3  METAL-OXIDE-SEMICONDUCTOR FIELD EFFECT TRANSISTOR (MOSFET) 633

for the (100) surface than the (111) surface, so (100) is the preferred surface for the 
Si MOS device.
 In addition to various charges in the oxide and at the interface shown in Fig-
ure 6.67b, there will also be a voltage difference, denoted as VFB, between the semi-
conductor surface and the metal surface, even in the absence of an applied voltage. 
VFB arises from the work function difference between the metal and the p-type semi-
conductor, as discussed in Chapter 4. The metal work function is generally smaller 
than the semiconductor work function, which means that the semiconductor surface 
will have an accumulation of electrons and the metal surface will have positive 
charges (exposed metal ions). The gate voltage needed for inversion will therefore 
also depend on VFB. Since VFB is normally positive and Qf and Qit are also positive, 
there may already be an inversion layer formed at the semiconductor surface even 
without a positive gate voltage. The fabrication of an enhancement MOSFET then 
requires special fabrication procedures, such as ion implantation, to obtain a positive 
and predictable Vth.
 The simplest way to control the threshold gate voltage is to provide a separate 
electrode to the bulk of an enhancement MOSFET, as shown in Figure 6.64, and to 
apply a bias voltage to the bulk with respect to the source to obtain the desired Vth 
between the gate and source. This technique has the disadvantage of requiring an 
additional bias supply for the bulk and also adjusting the bulk to source voltage 
almost individually for each MOSFET.

6.13.4 ION IMPLANTED MOS TRANSISTORS AND POLY-SI GATES

The most accurate method of controlling the threshold voltage is by ion implantation, 
as the number of ions that are implanted into a device and their location can be 
closely controlled. Furthermore, ion implantation can also provide a self-alignment 
of the edges of the gate electrode with the source and drain regions. In the case of 
an n-channel enhancement MOSFET, it is generally desirable to keep the p-type 
doping in the bulk low to avoid small VDS for reverse breakdown between the drain 
and the bulk (see Figure 6.64). Consequently, the surface, in practice, already has 
an inversion layer (without any gate voltage) due to various fixed positive charges 
residing in the oxide and at the interface, as shown in Figure 6.67b (positive Qf and 
Qit and VFB). It then becomes necessary to implant the surface region under the gate 
with boron acceptors to remove the electrons and restore this region to a p-type 
behavior.
 The ion implantation process is carried out in a vacuum chamber where the required 
impurity ions are generated and then accelerated toward the device. The energy of 
the arriving ions and hence their penetration into the device can be readily controlled. 
Typically, the device is implanted with B acceptors under the gate oxide, as shown 
in Figure 6.68. The distribution of implanted acceptors as a function of distance into 
the device from the surface of the oxide is also shown in the figure. The position of 
the peak depends on the energy of the ions and hence on the accelerating voltage. The 
peak of the concentration of implanted acceptors is made to occur just below the 
surface of the semiconductor. Since ion implantation involves the impact of energetic 
ions with the crystal structure, it results in the inevitable generation of various defects 
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within the implanted region. The defects are almost totally eliminated by annealing 
the device at an elevated temperature. Annealing also broadens the acceptor implanted 
region as a result of increased diffusion of implanted acceptors.
 Ion implantation also has the advantage of providing self-alignment of the drain 
and source with the edges of the gate electrode. In a MOS transistor, it is important 
that the gate electrode extends all the way from the source to the drain regions so 
that the channel formed under the gate can link the two regions; otherwise, an 
incomplete channel will be formed. To avoid the possibility of forming an incomplete 
channel, it is necessary to allow for some overlap, as shown in Figure 6.69a, between 
the gate and source and drain regions because of various tolerances and variations 
involved in the fabrication of a MOSFET by conventional masking and diffusional 
techniques. The overlap, however, results in additional capacitances between the gate 
and source and the gate and drain and adversely affects the high-frequency (or tran-
sient) response of the device. It is therefore desirable to align the edges of the gate 
electrode with the source and drain regions. Suppose that the gate electrode is made 
narrower so that it does not extend all the way between the source and drain regions, 
as shown in Figure 6.69b. If the device is now ion implanted with donors, then donor 
ions passing through the thin oxide will extend the n+ regions up to the edges of the 
gate and thereby align the drain and source with the edges of the gate. The thick 
metal gate is practically impervious to the arriving donor ions.
 Another method of controlling Vth is to use silicon instead of a metal for the 
gate electrode. This technique is called silicon gate technology. Typically, the silicon 
for the gate is vacuum deposited (e.g., by chemical vapor deposition using silane 
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gas) onto the oxide, as shown in Figure 6.70. As the oxide is noncrystalline, the 
Si gate is polycrystalline (rather than a single crystal) and is therefore called a poly-Si 

gate. Normally it is heavily doped to ensure that it has sufficiently low resistivity to 
avoid RC time constant limitations in charging and discharging the gate capacitance 
during transient or ac operations. The advantage of the poly-Si gate is that its work 
function depends on the doping (type and concentration) and can be controlled so 
that VFB and hence Vth can also be controlled. There are also additional advantages 
in using the poly-Si gate. For example, it can be raised to high temperatures during 
fabrication whereas a metal such as Al would melt at 660 °C. It can be used as a 
mask over the gate region of the semiconductor during the formation of the source 
and drain regions. If ion implantation is used to deposit donors into the semiconduc-
tor, then the n+ source and drain regions are self-aligned with the poly-Si gate, as 
shown in Figure 6.70.

ADDITIONAL TOPICS

6.14  pin DIODES, PHOTODIODES, AND SOLAR CELLS

The pin Si diode is a device that has a structure with three distinct layers: a heavily 
doped thin p+-type layer, a relatively thick intrinsic (i-Si) layer, and a heavily doped 
thin n+-type layer, as shown in Figure 6.71a. For simplicity we will assume that the 
i-layer is truly intrinsic, or at least doped so lightly compared with p+ and n+ layers 
that it behaves almost as if intrinsic. The intrinsic layer is much wider than the p+ 
and n+ regions, typically 5–50 μm depending on the particular application. When 
the structure is first formed, holes diffuse from the p+-side and electrons from the 
n+-side into the i-Si layer where they recombine and disappear. This leaves behind 
a thin layer of exposed negatively charged acceptor ions in the p+-side and a thin 
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 Courtesy of Hamamatsu.

layer of exposed positively charged donor ions in the n+-side as shown in Figure 6.71b. 
The two charges are separated by the i-Si layer of thickness W. There is a uniform 
built-in field Eo in the i-Si layer from the exposed positive ions to the exposed 
negative ions as illustrated in Figure 6.71c. (Since there is no net space charge in 
the i-layer, from dE∕dx = ρ∕εoεr = 0, the field must be uniform.) In contrast, the 
built-in field in the depletion layer of a pn junction is not uniform. With no applied 
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bias, the equilibrium is maintained by the built-in field Eo which prevents further 
diffusion of majority carriers from the p+ and n+ layers into the i-Si layer. A hole 
that manages to diffuse from the p+-side into the i-layer is drifted back by Eo, so the 
net current is zero. As in the pn junction, there is also a built-in potential Vo from 
the edge of the p+-side depletion region to the edge of the n+-side depletion region. 
Vo (like Eo) provides a potential barrier against further net diffusion of holes from 
the p+-side and electrons from the n+-side into the i-layer and maintains the equilib-
rium in the open circuit (net current being zero) as in the pn junction. It is apparent 
from Figure 6.71c that, in the absence of an applied voltage, Eo ≈ Vo∕W.
 One of the distinct advantages of pin diodes is that the depletion layer capaci-
tance is very small and independent of the voltage. The separation of two very thin 
layers of negative and positive charges by a fixed distance, width W of the i-Si layer, 
is the same as that in a parallel plate capacitor. The junction or depletion layer 

capacitance of the pin diode is simply given by

 Cdep =
εoεr A

W
 [6.91]

where A is the cross-sectional area and εoεr is the permittivity of the semiconductor 
(Si), respectively. Further, since the width W of the i-Si layer is fixed by the structure, 
the junction capacitance does not depend on the applied voltage in contrast to that 
of the pn junction. Cdep is typically of the order of a picofarad in fast pin photodiodes, 
so with a 50 Ω resistor, the RCdep time constant is about 50 ps.
 When a reverse bias voltage Vr is applied across the pin device, it drops almost 
entirely across the width of the i-Si layer. The depletion layer widths of the thin 
sheets of acceptor and donor charges in the p+ and n+ sides are negligible compared 
with W. The reverse bias Vr increases the built-in voltage to Vo + Vr as shown in 
Figure 6.71d. The field E in the i-Si layer is still uniform and increases to

 E ≈
Vr

W
  (Vr ≫ Vo)  [6.92]

Since the width of the i-layer in a pin device is typically much larger than the deple-
tion layer width in an ordinary pn junction, the pin devices usually have higher 
breakdown voltages, which makes them useful where high breakdown voltages are 
required.
 In pin photodetectors, the pin structure is designed so that photon absorption 
occurs primarily over the i-Si layer. The photogenerated EHPs in the i-Si layer are 
then separated by the field E and drifted toward the n+ and p+ sides, respectively, 
as illustrated in Figure 6.71d. While the photogenerated carriers are drifting through 
the i-Si layer, they give rise to an external photocurrent which is easily detected as 
a voltage across a small sampling resistor R in Figure 6.71d (or detected by a current-
to-voltage converter). The response time of the pin photodiode is determined by the 
transit times of the photogenerated carriers across the width W of the i-Si layer. 
Increasing W allows more photons to be absorbed, which increases the output signal 
per input light intensity, but it slows down the speed of response because carrier 
transit times become longer.

Junction 
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 The simple pn junction photodiode has two major drawbacks. Its junction or 
depletion layer capacitance is not sufficiently small to allow photodetection at high 
modulation frequencies. This is an RC time constant limitation. Secondly, its deple-
tion layer is at most a few microns. This means that at long wavelengths where the 
penetration depth of light is greater than the depletion layer width, the majority of 
photons are absorbed outside the depletion layer where there is no field to separate 
the EHPs and drift them. The photodetector efficiency is correspondingly low at 
these long wavelengths. These problems are substantially reduced in the pin photo-
diode.20 The pin photovoltaic devices, such as a-Si:H solar cells, are designed to have 
the photogeneration occur in the i-layer as in the case of photodetectors. Obviously, 
there is no external applied bias, and the built-in field Eo separates the EHPs and 
drives the photocurrent.

6.15   SEMICONDUCTOR OPTICAL AMPLIFIERS  

AND LASERS

All practical semiconductor laser diodes are double heterostructures (DH) whose 
energy band diagrams are similar to the LED diagram in Figure 6.25. The energy 
band diagram of a forward biased DH laser diode is shown in Figure 6.72a and b. 
In this case the semiconductors are AlGaAs with Eg ≈ 2.0 eV and GaAs with Eg ≈ 
1.4 eV. The p-GaAs region is a thin layer, typically 0.1–0.2 μm, and constitutes the 
active layer in which stimulated emissions take place. Both p-GaAs and p-AlGaAs 
are heavily p-type doped and are degenerate with the Fermi level EFp in the valence 
band. When a sufficiently large forward bias is applied, Ec of n-AlGaAs moves very 
close to the Ec of p-GaAs which leads to a large injection of electrons from the CB 

 20 The pin photodiode was invented by J. Nishizawa and his research group in Japan in 1950.

Izuo Hayashi and Morton Panish at Bell  
Labs (1971) were able to design the first 
semiconductor laser that operated continuously 
at room temperature. (Notice the similarity of 
the energy band diagram on the chalkboard 
with that in Figure 6.72.)

 © Nokia Corporation.
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of n-AlGaAs into p-GaAs as shown in Figure 6.72b. In fact, with a sufficient large 
forward bias, Ec of AlGaAs can be moved above the Ec of GaAs, which causes an 
enormous electron injection from n-AlGaAs into the CB of p-GaAs. These injected 
electrons, however, are confined to the CB of p-GaAs since there is a barrier ΔEc 
between p-GaAs and p-AlGaAs due to the change in the bandgap.
 The p-GaAs layer is degenerately doped. Thus, the top of its valence band (VB) 
is full of holes, or it has all the electronic states empty above the Fermi level EFp in 
this layer. The large forward bias injects a very large concentration of electrons from 
n-AlGaAs into the conduction band of p-GaAs. Consequently, as shown in Figure 6.72c, 
there is a large concentration of electrons in the CB and totally empty states at the top 
of the VB, which means that there is a population inversion. An incoming photon with 
an energy hfo just above Eg can stimulate a conduction electron in the p-GaAs layer 
to fall down from the CB to the VB and emit a photon by stimulated emission as 
depicted in Figure 6.72c. Such a transition is a photon-stimulated electron–hole recom-
bination, or a lasing recombination. Thus, an avalanche of stimulated emissions in the 
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active layer provides an optical amplification of photons with hfo in this layer. The 
amplification depends on the extent of population inversion and hence on the diode 
forward current. The device operates as a semiconductor optical amplifier which 
amplifies an optical signal that is passed through the active layer. There is a threshold 
current below which there is no stimulated emission and no optical amplification.
 To construct a semiconductor laser with a self-sustained lasing emission we 
have to incorporate the active layer into an optical cavity just as in the case of the 
HeNe laser in Chapter 3. The optical cavity with reflecting ends, reflects the coher-
ent photons back and forward and encourages their constructive interference within 
the cavity as depicted in Figure 6.73. This leads to a buildup of high-energy elec-
tromagnetic oscillations in the cavity. Some of this electromagnetic energy in the 
cavity is tapped out as output radiation by having one end of the cavity as partially 
reflecting. For example, one type of optical cavity, as shown in Figure 6.73, has a 
special reflector, called a Bragg distributed reflector (BDR), at one end to reflect 
only certain wavelengths back into the cavity.21 A BDR is a periodic corrugated 
structure, like a reflection grating, etched in a semiconductor that reflects only cer-
tain wavelengths that are related to the corrugation periodicity. This Bragg reflector 
has a corrugation periodicity such that it reflects only one desirable wavelength that 
falls within the optical gain of the active region. This wavelength selective reflection 
leads to only one possible electromagnetic radiation mode existing in the cavity, 
which leads to a very narrow output spectrum: a single-mode output, that is, only 
one peak in the output spectrum shown in Figure 3.47. Semiconductor lasers that 
operate with only one mode in the radiation output are called single-mode or single-

frequency lasers; the spectral linewidth of a single-mode laser output is typically 
∼0.1 nm, which should be compared with an LED spectral width of 120 nm operat-
ing at a 1550 nm emission.
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Figure 6.73 Semiconductor lasers have an optical cavity to build up the required electromagnetic oscillations.

In this example, one end of the cavity has a Bragg distributed reflector, a reflection grating, that reflects only certain 

wavelengths back into the cavity.

 21 Partial reflections of waves from the corrugations in the DBR can interfere constructively and constitute a 
reflected wave only for certain wavelengths, called Bragg wavelengths, that are related to the periodicity of the 
corrugations. A DBR acts like a reflection grating in optics.
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 The double heterostructure has further advantages. Wider bandgap semiconduc-
tors generally have lower refractive indices, which means AlGaAs has a lower refrac-
tive index than that of GaAs. The change in the refractive index defines an optical 
dielectric waveguide that confines the photons to the active region of the optical 
cavity and thereby reduces photon losses and increases the photon concentration. 
This increase in the photon concentration increases the rate of stimulated emissions 
and the efficiency of the laser.
 To achieve the necessary stimulated emissions from a laser diode and build up 
the necessary optical oscillations in the cavity (to overcome all the optical losses) the 
current must exceed a certain threshold current Ith as shown in Figure 6.74a. The 
optical power output at a current I is then very roughly proportional to I − Ith. There 
is still some weak optical power output below Ith, but this is simply due to spontane-
ous recombinations of injected electrons and holes in the active layer; the laser diode 
behaves like a “poor” LED below Ith. The output light from an LED however increases 
almost in proportion to the diode current. Figure 6.74b compares the output spectrum 
from the two devices. Remember that the output light from the laser diode is coherent 

radiation, whereas that from an LED is a stream of incoherent photons.
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DEFINING TERMS

Active layer in a double heterostructure (in a light 
emitting diode) is the layer in which most of the radia-
tive recombination takes place and where photons are 
generated

Antireflection coating reduces light reflection from a 
surface.

Avalanche breakdown is the enormous increase in 
the reverse current in a pn junction when the applied 
reverse field is sufficiently high to cause the generation 
of EHPs by impact ionization in the space charge layer.

Accumulation occurs when an applied voltage to the 
gate (or metal electrode) of a MOS device causes the 
semiconductor under the oxide to have a greater num-
ber of majority carriers than the equilibrium value. 
Majority carriers have been accumulated at the surface 
of the semiconductor under the oxide.

Active device is a device that exhibits gain (current or 
voltage, or both) and has a directional electronic func-
tion. Transistors are active devices, whereas resistors, 
capacitors, and inductors are passive devices.
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Diffusion is the flow of particles of a given species 
from high- to low-concentration regions by virtue of 
their random thermal motions.

Diffusion (storage) capacitance is the pn junction 
capacitance due to the diffusion and storage of minor-
ity carriers in the neutral regions when a forward bias 
is applied.

Double heterostructure (DH) is a semiconductor 
structure in which there are two heterojunctions be-
tween wider and narrower bandgap materials; the nar-
rower Eg semiconductor is usually sandwiched between 
two wider Eg materials.

Dynamic (incremental) resistance rd of a diode is 
the change in the voltage across the diode per unit 
change in the current through the diode rd = dV∕dI. 
It  is the low-frequency ac resistance of the diode.  
Dynamic conductance gd is the reciprocal dynamic  
resistance: gd = 1∕rd.

Emitter junction is the metallurgical junction between 
the emitter and the base.

Enhancement MOSFET is a MOSFET device that 
needs a gate to source voltage above the threshold volt-
age to form a conducting channel between the source 
and the drain. In the absence of a gate voltage, there is 
no conduction between the source and drain. In its 
usual mode of operation, the gate voltage enhances the 
conductance of the source to drain inversion layer and 
increases the drain current.

Epitaxial layer is a thin layer of crystal that has been 
grown on the surface of another crystal which is usu-
ally a substrate, a mechanical support for the new crys-
tal layer. The atoms of the new layer bond to follow the 
crystal pattern of the substrate, so the crystal structure 
of the epitaxial layer is matched with the crystal struc-
ture of the substrate.

Epitaxy is the growth of a layer of single crystal mate-
rial on top of a single crystal substrate in such a way 
that the new layer has the same structure as the sub-
strate crystal.

External quantum efficiency is the optical power 
emitted from a light emitting device per unit electric 
input power.

Extraction efficiency is the efficiency with which in-
ternally generated photons (by direct recombination) in 

Base width modulation (the Early effect) is the 
modulation of the base width by the voltage appearing 
across the base–collector junction. An increase in the 
base to collector voltage increases the collector junc-
tion depletion layer width, which results in the narrow-
ing of the base width.
Bipolar junction transistor (BJT) is a transistor 
whose normal operation is based on the injection of 
carriers from the emitter into the base region, where 
they become minority carriers, and their subsequent 
diffusion to the collector, where they give rise to a col-
lector current. The voltage between the base and the 
emitter controls the collector current.
Built-in field is the internal electric field in the deple-
tion region of a pn junction that is maximum at the 
metallurgical junction. It is due to exposed negative 
acceptors on the p-side and positive donors on the  
n-side of the junction.
Built-in voltage (Vo) is the voltage across a pn junc-
tion, going from a p- to n-type semiconductor, in an 
open circuit.
Channel is the conducting strip between the source 
and drain regions of a MOSFET.
Chip is a piece (or a volume) of a semiconductor crys-
tal that contains many integrated active and passive 
components to implement a circuit.
Collector junction is the metallurgical junction be-
tween the base and the collector of a bipolar transistor.
Confining (or confinement) layer in a heterostruc-
ture is next to the active layer in which electrons are to 
be confined; the confining layer introduces a step  
increase in Ec to prevent the electrons passing from the 
active layer into the confining layer.
Critical electric field is the field in the space charge 
(or depletion) region at reverse breakdown (avalanche 
or Zener).
Depletion layer (or space charge layer, SCL) is a 
region around the metallurgical junction where recom-
bination of electrons and holes has depleted this region 
of its large number of equilibrium majority carriers.
Depletion (space charge) layer capacitance is the 
incremental capacitance (dQ∕dV ) due to the change in 
the exposed dopant charges in the depletion layer as a 
result of the change in the voltage across the pn junction.
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the photon may or may not escape the device to the 
outside.

Inversion occurs when an applied voltage to the gate 
(or metal electrode) of a MOS device causes the semi-
conductor under the oxide to develop a conducting 
layer (or a channel) at the surface of the semiconductor. 
The conducting layer has opposite polarity carriers to 
the bulk semiconductor and hence is termed an inver-
sion layer.

Ion implantation is a process that is used to bombard 
a sample in a vacuum with ions of a given species of 
atom. First the dopant atoms are ionized in a vacuum 
and then accelerated by applying voltage differences to 
impinge on a sample to be doped. The sample is 
grounded to neutralize the implanted ions.

Isoelectronic impurity atom has the same valency as 
the host atom.

Law of the junction relates the injected minority car-
rier concentration just outside the depletion layer to the 
applied voltage. For holes in the n-side, it is

pn(0) = pno exp(eV

kT)
where pn(0) is the hole concentration just outside the 
depletion layer.

Linearly graded junction is a pn junction in which 
the net dopant concentration changes linearly with dis-
tance from the metallurgical junction. It maybe one-
sided or symmetric.

Linewidth is the width of the intensity versus wave-
length spectrum, usually between the half-intensity 
points, emitted from a light emitting device.

Long diode is a pn junction with neutral regions lon-
ger than the minority carrier diffusion lengths.

Luminous flux is a measure of the visual brightness 
in lumens (lm), which takes into account not only the 
emitted radiant flux (optical power) but also the spec-
tral sensitivity of the human eye.

Metallurgical junction is where there is an effective 
junction between the p-type and n-type doped regions 
in the crystal. It is where the donor and acceptor con-
centrations are equal or where there is a transition from 
n- to p-type doping.

a light emitting diode can be extracted from the device 
to form the emitted light.

Field effect transistor (FET) is a transistor whose 
normal operation is based on controlling the conduc-
tance of a channel between two electrodes by the ap-
plication of an external field. The effect of the applied 
field is to control the current flow. The current is due to 
majority carrier drift from the source to the drain and 
is controlled by the voltage applied to the gate.

Fill factor (FF) is a figure of merit for a solar cell that 
represents, as a percentage, the maximum power ImVm 
available to an external load as a fraction of the ideal 
theoretical power determined by the product of the 
short circuit current Isc and the open circuit voltage 
Voc : FF = (ImVm)∕(IscVoc).

Forward bias is the application of an external voltage 
to a pn junction such that the positive terminal is con-
nected to the p-side and the negative to the n-side. The 
applied voltage reduces the built-in potential.

Heterojunction is a junction between different semi-
conductor materials, for example, between GaAs and 
AlGaAs ternary alloy. There may or may not be a 
change in the doping.

Homojunction is a junction between differently 
doped regions of the same semiconducting material, 
for example, a pn junction in the same silicon crystal; 
there is no change in the bandgap energy Eg.

Hyperabrupt pn junction typically has one side 
heavily doped and the dopant concentration Nd on the 
other side is large near the metallurgical junction  
M and decays as Nd ∝ xm where x is the distance from 
M and m is between −1 and −3∕2.

Impact ionization is the process by which a high 
electric field accelerates a free charge carrier (electron 
in the CB), which then impacts with a Si–Si bond to 
generate a free EHP. The impact excites an electron 
from Ev to Ec.

Integrated circuit (IC) is a chip of a semiconductor 
crystal in which many active and passive components 
have been miniaturized and integrated together to form 
a sophisticated circuit.

Internal quantum efficiency (IQE) is the efficiency 
with which each injected electron in a light emitting 
device can recombine and emit a photon internally; 
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Radiative lifetime (τr) is the recombination time of a 
minority carrier with a majority carrier in which a pho-
ton is emitted; a direct recombination lifetime. 1∕τr is 
the probability of direct recombination per unit time.

Recombination current flows under forward bias 
to  replenish the carriers recombining in the space 
charge (depletion) layer. Typically, it is described by 
I = Iro[exp(eV∕2kT ) − 1].

Reverse bias is the application of an external voltage 
to a pn junction such that the positive terminal is con-
nected to the n-side and the negative to the p-side. The 
applied voltage increases the built-in potential.

Reverse saturation current is the reverse current that 
would flow in a reverse-biased ideal pn junction obey-
ing the Shockley equation.

Shockley diode equation relates the diode current to 
the diode voltage through I = Io[exp(eV∕kT ) − 1]. It is 
based on the injection and diffusion of injected minor-
ity carriers by the application of a forward bias.

Short diode is a pn junction in which the neutral re-
gions are shorter than the minority carrier diffusion 
lengths.

Small-signal equivalent circuit of a transistor re-
places the transistor with an equivalent circuit that con-
sists of resistances, capacitances, and dependent 
sources (current or voltage). The equivalent circuit rep-
resents the transistor behavior under small-signal ac 
conditions. The batteries are replaced with short cir-
cuits (or their internal resistances). Small signals imply 
small variations about dc values.

Substrate is a single mechanical support that carries 
active and passive devices. For example, in integrated 
circuit technology, typically, many integrated circuits 
are fabricated on a single silicon crystal wafer that 
serves as the substrate.

Thermal generation current is the current that 
flows in a reverse-biased pn junction as a result of the 
thermal generation of EHPs in the depletion layer that 
become separated and swept across by the built-in 
field.

Threshold voltage is the gate voltage needed to estab-
lish a conducting channel between the source and drain 
of an enhancement MOST (metal-oxide-semiconductor 
transistor).

Metal-oxide-semiconductor transistor (MOST) is a 
field effect transistor in which the conductance be-
tween the source and drain is controlled by the voltage 
supplied to the gate electrode, which is insulated from 
the channel by an oxide layer.

Minority carrier injection is the flow of electrons 
into the p-side and holes into the n-side of a pn junction 
when a voltage is applied to reduce the built-in voltage 
across the junction.

MOS is short for a metal-insulator-semiconductor 
structure in which the insulator is typically silicon ox-
ide. It can also be a different type of dielectric; for ex-
ample, it can be the nitride Si3N4.

NMOS is an enhancement type n-channel MOSFET.

Nonradiative lifetime (τnr) is the recombination time 
of a minority carrier with a majority carrier in which 
there is no emission of a photon; 1∕τr is the probability 
of indirect recombination per unit time.

One-sided pn junction has one side heavily doped 
and the other side lightly doped as in the p+n junction 
where the p-side is much more heavily doped than the 
n-side; the depletion region is nearly all in the n-side.

Passive device or component is a device that exhibits 
no gain and no directional function. Resistors, capaci-
tors, and inductors are passive components.

Photocurrent is the current generated by a light- 
receiving device when it is illuminated.

Pinch-off voltage is the gate to source voltage needed 
to just pinch off the conducting channel between the 
source and drain with no source to drain voltage ap-
plied. It is also the source to drain voltage that just 
pinches off the channel when the gate and source are 
shorted. Beyond pinch-off, the drain current is almost 
constant and controlled by VGS.

PMOS is an enhancement type p-channel MOSFET.

Poly-Si gate is short for a polycrystalline and highly 
doped Si gate.

Quantum well is a very thin layer of lower bandgap 
semiconductor that is sandwiched by two wider band-
gap semiconductors.

Radiant flux is the optical power (W), that is, the 
flow of electromagnetic (radiation) energy per unit 
time.
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voltage of a pn junction diode depends on the bandgap 
of the semiconductor and the device structure.

Varshni equation describes the dependence of the 
bandgap Eg of a semiconductor on the temperature; 
Eg = Ego − AT 2∕(B + T ).

Zener breakdown is the enormous increase in the re-
verse current in a pn junction when the applied voltage 
is sufficient to cause the tunneling of electrons from 
the valence band in the p-side to the conduction band 
in the n-side. Zener breakdown occurs in pn junctions 
that are heavily doped on both sides so that the deple-
tion layer width is narrow.

Transistor is a three-terminal solid-state device in 
which a current flowing between two electrodes is con-
trolled by the voltage between the third and one of the 
other terminals or by a current flowing into the third 
terminal.

Transistor action is the control of the output current 
such as the collector current IC in a BJT by the input 
voltage, that is VEB through IC ∝ exp(eVEB∕kT ).

Turn-on, or cut-in, voltage of a diode is the voltage 
beyond which there is a substantial increase in the cur-
rent. The turn-on voltage of a Si diode is about 0.6 V 
whereas it is about 1 V for a GaAs LED. The turn-on 

QUESTIONS AND PROBLEMS

6.1 The pn junction Consider an abrupt Si pn+ junction that has 1015 acceptors cm−3 on the p-side and 
1019 donors on the n-side. The minority carrier recombination times are τe = 500 ns for electrons in 
the p-side and τh = 2.5 ns for holes in the n-side. The cross-sectional area is 1 mm2. Assuming a 
long diode, calculate the current I through the diode at room temperature when the voltage V across 
it is 0.6 V. What are V∕I and the incremental resistance (rd) of the diode and why are they different?

*6.2 The Si pn junction Consider a long pn junction diode with an acceptor doping Na of 1018 cm−3 on 
the p-side and donor concentration of Nd on the n-side. The diode is forward biased and has a voltage 
of 0.6 V across it. The diode cross-sectional area is 1 mm2. The minority carrier recombination time 
τ depends on the dopant concentration Ndopant(cm−3) through the following very approximate relation

 τ ≈
5 × 10−7

(1 + 2 × 10−17 Ndopant)

 The dependence of the drift mobility on the dopant concentration is given by Equation 5.95 and Table 5.4
a. Suppose that Nd = 1015 cm−3. Then the depletion layer extends essentially into the n-side and 

we have to consider minority carrier recombination time τh in this region. Calculate the diffusion 
and recombination contributions to the total diode current. What is your conclusion?

b. Suppose that Nd = Na = 1018 cm−3. Then W extends equally to both sides and, further, τe = τh 
Calculate the diffusion and recombination contributions to the diode current. What is your 
conclusion?

6.3 A Si p+n junction Consider an abrupt Si p+n junction which has 2 × 1015 donors cm−3 on the n-side 
and 5 × 1017 acceptors on the p-side. The minority carrier recombination times are τh ≈ 400 ns for 
holes in the n-side and τe ≈ 50 ns for electrons in the p+-side. The cross sectional area is 0.1 mm2. 
Assume a long diode. The thermal generation time τg in the depletion region is 2 μs. Assume that 
the reverse current is dominated by the thermal generation rate in the depletion region. (a) Calculate 
the forward current at 27 °C when the voltage across the diode is 0.6 V. (b) Estimate the forward 
current at 57 °C when the voltage across the diode is still 0.6 V. (c) Calculate the voltage across the 
diode at 57 °C if the forward current in (a) at 27 °C is kept constant. (d) What is the reverse current 
at 27 °C when the diode voltage is −5 V? (e) Estimate the reverse current at 57 °C when the diode 
voltage is −5 V. Note: Assume that the forward current is determined by the Shockley equation 
(minority carrier diffusion).

6.4 InP pn junction InP solar cells have potential for application in space as they have a high radiation-
damage resistance compared with a number of other semiconductors. Consider an InP pn junction 
that has been doped with Na = 1 × 1017 cm−3 on the p-side and Nd = 1 × 1017 cm−3 on n-side. Direct 
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recombination coefficient B ≈ 4 × 10−16 m3 s−1, cross sectional area A = 1 mm × 1 mm. Assume that 
the nonradiative (indirect recombination) minority carrier lifetime, due to defects and impurities, is 
roughly 60 ns in the whole crystal and assume a long diode. What is the diode current due to diffu-
sion in the neutral regions and recombination in the SCL at 300 K when the forward voltage across 
the diode is 0.70 and 0.90 V? Use Table 5.4 to find the electron and hole drift motilities in InP and 
Table 5.1 for ni and εr.

6.5 GaAs pn junction Consider a GaAs pn junction that has been doped with Na = 1 × 1017 cm−3 on 
the p-side and Nd = 1 × 1015 cm−3 on n-side. Direct recombination coefficient B ≈ 2 × 10−16 m3 s−1 
and cross sectional area A = 1 mm × 1 mm. The indirect (nonradiative) recombination time is roughly 
200 ns. What is the diode current due to diffusion in the neutral regions and recombination in the 
SCL at 300 K when the forward voltage across the diode is 0.80 and 1.1 V? Use Table 5.4 to find 
the electron and hole drift motilities in GaAs and Table 6.1 for ni and εr.

6.6 Junction capacitance of a pn junction The capacitance (C) of a reverse-biased abrupt Si p+n 
junction has been measured as a function of the reverse bias voltage Vr as listed in Table 6.7. 
The  parasitic capacitance has been subtracted from the measurements so that C represents the 
depletion region capacitance. The pn junction cross-sectional area is 500 μm × 500 μm. By plot-
ting 1∕C2 versus Vr, obtain the built-in potential Vo and the donor concentration Nd in the n-region. 
What is Na?

Table 6.7 Capacitance at various values of reverse bias (Vr)

Vr (V) 1 2 3 5 10 15 20
C (pF) 38.3 30.7 26.4 21.3 15.6 12.9 11.3

Table 6.8 Capacitance of a reverse biased diffused pn junction Si diode at 24 °C

Vr (V) 0.20 0.30 0.40 0.70 1.0 2.0 3.0 4.0 5.0 6.0 7.0
C (pF) 53.8 50.4 48.6 43.0 40.6 34.9 31.3 30.2 28.3 26.7 25.9

6.7 Diffused pn junction Si diode Table 6.8 provides data on the capacitance C between the terminals 
of a reverse biased, diffused-junction Si diode at various reverse voltages Vr. (This is a commercial 
Si diode in the 1N5400 series.) The stray capacitance within the measurement system, including the 
packaging capacitance between the terminals, is estimated to be 3.5 ± 0.5 pF. Plot 1∕C3

dep versus Vr 
and Cdep versus (Vr + Vo) on a log–log plot; and show that this is a diffused pn junction. Find the 
built-in voltage Vo and hence B. What is the depletion layer width? What is your conclusion?

6.8 Silicon carbide (SiC) Silicon carbide is a high-temperature wide-bandgap semiconductor from 
which one can fabricate devices that can operate at high temperatures, high frequencies and sustain 
high breakdown voltages. SiC devices can be used in harsh environments and at high temperatures. 
Consider a SiC pn junction that has been fabricated by ion implanting donors into a particular type 
of SiC crystal, called 6H-SiC. A p-type SiC wafer is implanted with donors to convert the implanted 
region into n-type. The wafer p-type doping is 8 × 1015 cm−3. The n-side doping is very high, around 
3 × 1019, so that this is a one-sided pn+ type of junction. Table 6.9 gives the junction capacitance 
versus reverse voltage data on this device. The device area A = 3.26 × 10−4 cm2. What is the built-in 
voltage from Equation 6.6? Is Equation 6.6 applicable? Assume that the built-in voltage is approximately 
as calculated from Equation 6.6. Calculate the capacitance of this pn+ junction at Vr = 14.8 V by 



 QUESTIONS AND PROBLEMS 647

Table 6.9 Capacitance of a reverse biased 6H-SiC pn+ junction

Vr (V) 1.12 3.00 4.90 6.90 10.9 14.8 32.7 40.7 58.5 88.4
C (pF) 3.58 2.96 2.68 2.40 2.08 1.86 1.39 1.28 1.14 0.98

 NOTE: Data selectively extracted from Gardner J.A., et al, Journal of Applied Physics, 83, 5118 (1998).

Table 6.10 Capacitance of a reverse biased Si varactor diode

Vr (V) 1.01  1.50  2.01  2.50 3.00 3.51 4.00
C (pF) 17.36 13.42 10.56 8.53 6.94 5.77 4.84

 NOTE: Data extracted from the data sheet of Infineon BBY57 hyperabrupt Si tuning diode series.

assuming it is an abrupt junction and compare with the value in Table 6.9. Plot C against (Vr + Vo) 
on a log–log plot and find m in Equation 6.29. What is your conclusion? 6H-SiC is a polymorph 
of  SiC with the hexagonal unit cell (Wurtzite) and has Eg ≈ 3.0 eV, Nc ≈ 8.9 × 1019 cm−3, Nv = 
2.5 × 1019 cm−3, εr = 9.66.

*6.9 Linearly graded and abrupt junctions Consider a linearly graded junction in which Nd − Na = 
Bxm. If V is the voltage across device, show that the field at the junction Emax and the width of the 
depletion region W are given by,

 Emax = −
eBW 

2

8ε
  and  Vo − V =

eBW 
3

12ε

 Using one of the above equations and Equation 6.31 to eliminate B, show that

 W 
2
o =

6εVo

eni exp(eVo∕2kT)

 Consider a linearly graded Si pn junction that has Vo = 0.60 V. What are B and Wo for this device? 
What is Nd − Na at the end of the depletion region at x = Wo∕2? Consider now an abrupt pn junction 
that is symmetric and has the same built-in voltage. What are the depletion layer width and dopant 
concentrations for the abrupt junction device? What is your conclusion?

6.10 Varactors The varactor diode (varicap) is a pn junction whose depletion layer capacitance is used 
in tuning circuits or in circuits where the capacitance can be adjusted by an applied voltage, for 
example in voltage-controlled oscillators. It is typically used at radio frequencies from MHz to several 
GHz, including UHF. The data sheet of one particular commercial varactor provides the junction 
capacitance as a function of reverse voltage over its intended voltage range (1–4 V) as summarized 
in Table 6.10. Assume the built-in voltage is 0.75 V and find m in the doping concentration profile 
Nd(x) = Bxm. Reanalyze the data by assuming that there is a stray capacitance of 0.5 pF. What is m? 
What is your conclusion?

Linearly graded 

junction field 

and width

Linearly  

graded junction 

depletion width 

and built-in 

voltage

6.11 Injected minority carrier charge and dc current for long and short diodes Consider a one-sided 
pn junction with heavier doping on the p-side. The injected minority carriers (holes) represent an 
injected excess minority carrier charge Qh in the neutral region as shown in Figure 6.17. (There is 
also excess majority carrier charge so the region is neutral.) Show that

 Qh = Iτh for a long diode  and  Qh = Iτt for a short diode
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 in which τt is the diffusion time, or the transit time of holes across the width of the neutral n-region, 
that is, τt = ℓn

2∕2Dh. What is your conclusion? Show that the diffusion capacitance in the two cases 
are given by
 rdCdiff = τh for a long diode and rdCdiff = τt

 What is your conclusion?

6.12 Temperature dependence of diode properties

a. Consider the reverse current in a pn junction. Show that

 
δIrev

Irev
≈ ( Eg

ηkT)δT

T

 where η = 2 for Si and GaAs, in which thermal generation in the depletion layer dominates the 
reverse current, and η = 1 for Ge, in which the reverse current is due to minority carrier diffusion 
to the depletion layer. It is assumed that Eg ≫ kT at room temperature. Order the semiconductors 
Ge, Si, and GaAs according to the sensitivity of the reverse current to temperature.

b. Consider a forward-biased pn junction carrying a constant current I. Show that the change in 
the voltage across the pn junction per unit change in the temperature is given by

 
dV

dT
= −(Vg − V

T )
   where Vg = Eg∕e is the energy gap expressed in volts. Calculate typical values for dV∕dT for Ge, 

Si, and GaAs assuming that, typically, V = 0.2 V for Ge, 0.6 V for Si, and 0.9 V for GaAs. What 
is your conclusion? Can one assume that, typically, dV∕dT ≈ −2 mV °C−1 for these diodes?

6.13 Avalanche breakdown in Si pn junction The breakdown field for one-sided pn junction devices 
can be expressed as22

 Ebr(V μm−1) =
40

1 − (1∕3)log10(Nd∕1016)

 in which E is in V μm−1 and Nd is the dopant concentration in cm−3 on the lightly doped side. Consider 
a Si pn junction in which acceptor and donor concentrations are 5 × 1018 cm−3 and 4 × 1016 cm−3, 
respectively. What is the breakdown voltage of this diode? One simple estimate of the breakdown 
voltage is through
 Vbr ≈ 60(Nd∕1016)−3∕4

 How does your calculated breakdown voltage compare with the above estimate?

6.14 Breakdown voltage of a pn junction and bandgap According to Sze and Gibbons (1966), the 
breakdown voltage of an abrupt one-sided pn junction depends on the dopant concentration Nd on the 
lightly doped sided through

 Vbr ≈ 60(Eg∕1.1)6∕5(Nd∕1016)−3∕4

 in which Eg is the bandgap of the semiconductor in eV, and Nd is in cm−3. Consider a pn junction that 
has Na = 5 × 1018 cm−3 and Nd = 4 × 1016 cm−3. Find Vbr for a diode that is fabricated in SiC for 
which Eg ≈ 3 eV. What is the corresponding Vbr for a diode fabricated in Si? What is your conclusion?

6.15 Design of a pn junction diode Design an abrupt Si pn+ junction that has a reverse breakdown 
voltage of 100 V and provides a current of 10 mA when the voltage across it is 0.6 V. Assume that, 
if Ndopant is in cm−3, the minority carrier recombination time is roughly given by

 τ ≈
5 × 10−7

(1 + 2 × 10−17 Ndopant)

 Mention any assumptions made.

Breakdown field 

in one-sided pn 

junction

Breakdown 

voltage in one-

sided pn junction

Breakdown 

voltage in one-

sided pn junction 

and bandgap

 22 Both equations in this question are from S.M. Sze, Semiconductor Physics, 2nd Edition, Wiley (New York, 1981), 
Chapter 2.
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6.16 Energy distribution of electrons in the conduction band of a semiconductor and LED emission 

spectrum

a. Consider the energy distribution of electrons nE(E) in the conduction band (CB). Assuming that 
the density of states gCB(E) ∝ (E − Ec)

1∕2 and using Boltzmann statistics f(E) ≈ exp[−(E − EF)∕kT], 
show that the energy distribution of the electrons in the CB can be written as

 nE(x) = Cx1∕2 exp(−x)

 where x = (E − Ec)∕kT is electron energy in terms of kT measured from Ec, and C is a temperature-
dependent constant (independent of E).

b. Setting arbitrarily C = 1, plot nE versus x. Where is the maximum, and what is the full width 
at half maximum (FWHM), i.e., between half maximum points?

c. Show that the average electron energy in the CB is 3
2  kT, by using the definition of the average,

 xaverage =
)
∞

0
xnE dx

)
∞

0
nE dx

 where the integration is from x = 0 (Ec) to say x = 10 (far away from Ec where nE → 0). You 
need to use numerical integration.

d. Show that the maximum in the energy distribution is at x = 1
2  or at Emax = 1

2  kT  above Ec.
e. Consider the recombination of electrons and holes in GaAs. The recombination involves the 

emission of a photon. Given that both electron and hole concentrations have energy distributions 
in the conduction and valence bands, respectively, sketch schematically the expected light inten-
sity emitted from electron and hole recombinations against the photon energy. What is your 
conclusion?

6.17 LED output spectrum Given that the width of the relative light intensity between half-intensity 
points versus photon energy spectrum of an LED is typically ∼2kT, what is the linewidth Δλ in the 
output spectrum in terms of the peak emission wavelength? Calculate the spectral linewidth Δλ of 
the output radiation from a green LED emitting at 570 nm at 300 K.

6.18 LED output wavelength variations Show that the change in the emitted wavelength λ with tem-
perature T from an LED is approximately given by

 
dλ
dT

≈ −
hc

E2
g
(dEg

dT )
 where Eg is the bandgap. Consider a GaAs LED. The bandgap of GaAs at 300 K is 1.42 eV which 

changes (decreases) with temperature as dEg∕dT = −4.5 × 10−4 eV K−1. What is the change in the 
emitted wavelength if the temperature change is 10 °C? What is the change if you take the peak 
emitted photon energy as Eg + (1/2)kT?

6.19 Linewidth of direct recombination LEDs Experiments carried out on various direct bandgap semi-
conductor LEDs give the output spectral linewidth (between half-intensity points) listed in Table 6.11. 
What is m in Equation 6.40?

Table 6.11  Linewidth Δλ1∕2 between half-points in the output spectrum (intensity vs. wavelength) 

of GaAs and AlGaAs LEDs

 Peak wavelength of emission λ (nm)

 650 810 820 890 950 1150 1270 1500

Δλ1∕2 (nm) 22 36 40 50 55 90 110 150
Material (direct Eg) AlGaAs AlGaAs AlGaAs GaAs GaAs InGaAsP InGaAsP InGaAsP
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6.20 AlGaAs LED emitter An AlGaAs LED emitter for use in a local optical fiber network has the 
output spectrum shown in Figure 6.31. It is designed for peak emission at 822 nm at 25 °C.
a. Why does the peak emission wavelength increase with temperature?
b. What is the bandgap of AlGaAs in this LED?
c. The bandgap Eg of the ternary alloys AlxGa1−x As follows the empirical expression

 Eg(eV) = 1.424 + 1.266x + 0.266x2

 What is the composition of the AlGaAs in this LED?

6.21 Varshni equation and the change in the bandgap with temperature The Varshni equation 
describes the change in the energy bandgap Eg of a semiconductor with temperature T as given by 
Equation 6.41,

 Eg = Ego − AT 2∕(B + T )

 where Ego is Eg at 0 K, and A and B are constants. Show that

 
dEg

dT
= −

AT(T + 2B)

(B + T)2 = −
(Ego − Eg)

T (T + 2B

T + B )
 For GaAs, Ego = 1.519 eV, A = 5.41 × 10−4 eV K−1, B = 204 K. What is dEg∕dT for GaAs? Find 

the shift in the emitted wavelength from a GaAs LED per 1 °C change at room temperature (300 K). 
Find the emission wavelength at 27 °C and −30 °C.

6.22 Emission from doped indirect bandgap semiconductors Table 6.12 gives the linewidth Δλ1∕2 
for various visible LEDs based on GaAsP. Radiative recombination is obtained by appropriately 
doping the material. Using Equation 6.40 at 25 °C, calculated m for each LED. What is your 
conclusion?

Table 6.12  Linewidth Δλ1∕2 between half points in the output spectrum (intensity vs. wavelength) 

of various visible LEDs using GaAsP

Peak Wavelength of Emission (λ) nm 565 583 600 635

Δλ1∕2 nm 28 36 40 40
Color Green Yellow Orange Red
Material GaP(N) GaAsP(N) GaAs (N) GaAsP

6.23 LED efficiencies Consider an AlGaAs LED that emits at 890 nm for use in instrumentation. The 
active region has been doped p-type with 4 × 1017 cm−3 of acceptors and the nonradiative lifetime is 
about 60 ns. At a forward current of 50 mA, the voltage across it is 1.4 V, and the emitted optical 
power is 10 mW. Calculate the power conversion efficiency (PCE), internal quantum efficiency (IQE), 
external quantum efficiency (EQE), and estimate the light extraction efficiency (EE). For AlGaAs, 
B ≈ 1 × 10−16 m3 s−1.

6.24 LED luminous flux

a. A particular deep blue LED manufactured emits an optical power of 453 mW at 455 nm when 
the current is 350 mA and the forward voltage is 3.2 V. What are the power conversion efficiency, 
external quantum efficiency, and the luminous efficacy?

b. A particular green LED based on InGaN MQW active region emits at a wavelength of 528 nm. 
At an LED current of 350 mA, the forward voltage is 3.2 V. The emitted luminous flux is 93 lm. 
What are the power conversion efficiency, external quantum efficiency, luminous efficacy, and 
the emitted optical power (radiant flux)?
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c. A particular red LED emits 320 mW of optical power at 657 nm when the current is 400 mA 
and the forward voltage is 2.15 V. What are the power conversion efficiency, external quantum 
efficiency, and the luminous efficacy?

6.25 LED luminous flux Consider three LEDs emitting in the blue, green and red at wavelengths 
450 nm, 550 nm, and 650 nm, respectively. The luminous flux from the green LED is 70 lm. 
What should be  the emitted optical power from the blue and red LEDs with respect to the green 
LED so they look just as bright as the green LED?

6.26 Solar cell driving a load

a. A Si solar cell of area 2.5 cm × 2.5 cm is connected to drive a load R as in Figure 6.42a. It has 
the I–V characteristics in Figure 6.41. Suppose that the load is 2 Ω and it is used under a light 
intensity of 800 W m−2. What are the current and voltage in the curcuit? What is the power 
delivered to the load? What is the efficiency of the solar cell in this circuit?

b. What should the load be to obtain maximum power transfer from the solar cell to the load at 
800 W m−2 illumination? What is this load at 400 W m−2?

c. Consider using a number of such solar cells to drive a calculator that needs a minimum of 3 V 
and draws 3 mA at 3–4 V. It is to be used at a light intensity of about 400 W m−2. How many 
solar cells would you need and how would you connect them?

6.27 Open circuit voltage A solar cell under an illumination of 1000 W m−2 has a short circuit current 
Isc of 50 mA and an open circuit output voltage Voc of 0.65 V. What are the short circuit current and 
open circuit voltages when the light intensity is halved? Assume η = 1.

*6.28 Maximum power from a solar cell Suppose that the power delivered by a solar cell, P = IV, is 
maximum when I = Im and V = Vm. Suppose that we define normalized voltage and current for 
maximum power as

 v =
Vm

ηVT

  and  i =
Im

Isc

 where η is the ideality factor, VT = kT∕e is called the thermal voltage (0.026 V at 300 K), and Isc = −Iph. 
Suppose that voc = Voc∕(ηVT) is the normalized open circuit voltage. Under illumination with the solar 
cell delivering power with V > ηVT,

 P = IV = [−Iph + Io exp( V

ηVT
)]V

 One can differentiate P = IV with respect to V, set it to zero for maximum power, and find expres-
sions for Im and Vm for maximum power. One can then use the open circuit condition (I = 0) to relate 
Voc to Io. Show that maximum power occurs when

 v = voc − ln(v + 1)  and  i = 1 − exp[−(voc − v)]

 Consider a solar cell with η = 1.5, Voc = 0.60 V, and Iph = 35 mA, with an area of 1 cm2. Find i and 
v, and hence the current Im and voltage Vm for maximum power. (Note: Solve the first equation 
numerically or graphically to find v ≈ 12.76.) What is the fill factor?

6.29 Series resistance The series resistance causes a voltage drop when a current is drawn from a solar 
cell. By convention, the positive current is taken to flow into the device. (If calculations yield a 
negative value, it means that, physically, the current is flowing out, which is the actual case under 
illumination.) If V is the actual voltage across the solar cell output (accessed by the user), then the 
voltage across the diode is V − I Rs. The solar cell equation becomes

 I = −Iph + Id = −Iph + Io exp(e(V − IRs)
ηkT )

 Plot I versus V for a Si solar cell that has η = 1.5 and Io = 3 × 10−6 mA, for an illumination such 
that Iph = 10 mA for Rs = 0, 20 and 50 Ω. What is your conclusion?

Normalized 

solar cell 

voltage and 

current

Power delivered 

by solar cell

Maximum power 

delivery

Solar cell with 

series resistance
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6.30 Shunt resistance Consider the shunt resistance Rp of a solar cell. Whenever there is a voltage V at 
the terminals of the solar cell, the shunt resistance draws a current V∕Rp. Thus, the total current as 
seen at the terminals (and flowing in by convention) is

 I = −Iph + Id +
V

Rp

= −Iph + Io exp( eV

ηkT) +
V

Rp

= 0

 Plot I versus V for a polycrystalline Si solar cell that has η = 1.5 and Io = 3 × 10−6 mA, for an 
illumination such that Iph = 10 mA. Use Rp = ∞, 1000, 100 Ω. What is your conclusion?

*6.31 Series connected solar cells Consider two identical solar cells connected in series. There are two 
Rs in series and two pn junctions in series. If I is the total current through the devices, then the volt-
age across one pn junction is Vd = 1

2[V − I(2Rs) ]  so that the current I flowing into the combined 
solar cells is

 I ≈ −Iph + Io exp[V − I(2Rs)
2ηVT

]  Vd > η(kT

e )
 where VT = kT∕e is the thermal voltage. Rearranging, for two cells in series,

 V = 2ηVT ln(I + Iph

Io
) + 2Rs I

 whereas for one cell,

 V = ηVT ln(I + Iph

Io
) + RsI

 Suppose that the cells have the properties Io = 25 × 10−6 mA, η = 1.5, Rs = 20 Ω, and both are 
subjected to the same illumination so that Iph = 10 mA. Plot the individual I–V characteristics and 
the I–V characteristics of the two cells in series. Find the maximum power that can be delivered by 
one cell and two cells in series. Find the corresponding voltage and current at the maximum power 
point.

6.32 A solar cell used in Eskimo Point The intensity of light arriving at a point on Earth, where the 
solar latitude is α can be approximated by the Meinel and Meinel equation:

 I = 1.353(0.7)(cosecα)0.678

 kW m−2

 where cosec α = 1∕(sin α). The solar latitude α is the angle between the sun’s rays and the horizon. 
Around September 23 and March 22, the sun’s rays arrive parallel to the plane of the equator. What 
is the maximum power available for a photovoltaic device panel of area 1 m2 if its efficiency of 
conversion is 10 percent?

  A manufacturer’s characterization tests on a particular Si pn junction solar cell at 27 °C specifies 
an open circuit output voltage of 0.45 V and a short circuit current of 400 mA when illuminated 
directly with a light of intensity 1 kW m−2. The fill factor for the solar cell is 0.73. This solar cell 
is to be used in a portable equipment application near Eskimo Point (Canada) at a geographical lati-
tude (ϕ) of 63°. Calculate the open circuit output voltage and the maximum available power when 
the solar cell is used at noon on September 23 when the temperature is around −10 °C. What is the 
maximum current this solar cell can supply to an electronic equipment? What is your conclusion? 
(Note: α + ϕ = π∕2, and assume η = 1 and that Io ∝ n2

i.)

6.33 The BJT and the injection efficiency Consider a pnp transistor in a common base configuration 
and under normal operating conditions. The emitter-base junction is forward biased and the base– 
collector junction is reverse biased. Consider the total emitter current IE through the EB junction, 
which has diffusion (so) and recombination (ro) components as follows:

 IE = IE(so) exp(eVEB

kT ) + IE(ro) exp(eVEB

2kT )

Two solar cells 

in series

One solar cell

Two solar

cells in series

Solar cell with

shunt resistance
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6.34 The BJT and the energy band diagram Consider an npn BJT in the common base configuration, 
and draw the energy band diagram for this BJT. Your diagram should clearly show the Fermi level 
EFn and EFp in the n- and p-regions, and the variation in Ec and Ev through the transistor. Below 
this diagram draw the energy band diagram when the BJT has a forward bias of 0.6 V across the 
EB junction and a reverse bias (perhaps 12 V) across the BC junction. How does the collector 
current depend on the base width W and how does the current due to holes injected into the emit-
ter (hole contribution to the emitter current) depend on the conductivity of the emitter and the 
diffusion coefficient of holes in the emitter? Does your diagram change for common emitter  
configuration?

6.35 Characteristics of an npn Si BJT Consider an idealized silicon npn bipolar transistor with the 
properties in Table 6.13. Assume uniform doping in each region. The emitter and base widths are 
between metallurgical junctions (not neutral regions). The cross-sectional area is 100 μm × 100 μm. 
The transistor is biased to operate in the normal active mode. The base–emitter forward bias voltage 
is 0.65 V and the reverse bias base–collector voltage is 18 V.

William Shockley with the energy band diagram for an npn BJT. The application of  
a forward bias leads to the injection of electrons into the base where they diffuse 
toward the collector. The current is proportional to the gradient of the electron 
concentration and hence to the reciprocal of the base width W. Why is the hole current 
injected from the base into the emitter is inversely proportional to Lpσn where Lp is the 
hole diffusion length and σn the conductivity of the n-type emitter region?

 © Nokia Corporation.

 Only the hole component of the diffusion current (first term) can contribute to the collector current. 
Show that when Na(E) ≫ Nd(B), the emitter injection efficiency γ is given by

 γ ≈ [1 +
IE(ro)

IE(so)
 exp(−

eVEB

2kT )]
−1

 Suppose that we take IE(so) ≈ 10−13 A and IE(ro) ≈ 10−11 A. Find γ at VEB = 0.4 and 0.7 V? What is 
your conclusion? Assume that the emitter junction has a heavily doped p-side (emitter) and lightly 
doped n-side (base).
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a. Calculate the depletion layer width extending from the collector into the base and also from the 
emitter into the base. What is the width of the neutral base region?

b. Calculate α and hence β for this transistor, assuming unity emitter injection efficiency. How do 
α and β change with VCB?

c. What is the emitter injection efficiency and what are α and β, taking into account that the emit-
ter injection efficiency is not unity?

d. What are the emitter, collector, and base currents?
e. What is the collector current when VCB = 19 V but VEB = 0.65 V? What is the incremental col-

lector output resistance defined as ΔVCB∕ΔIC?
f. Do you expect the same α and β at a lower VEB, for example at VEB = 0.4 V?
g. Estimate the cut-off frequency of this transistor in the CB configuration. (Consider what 1∕τt 

represents.)

*6.36 Bandgap narrowing and emitter injection efficiency Heavy doping in semiconductors leads 
to what is called bandgap narrowing which is an effective narrowing of the bandgap Eg. If ΔEg 
is the reduction in the bandgap, then for an n-type semiconductor, according to Lanyon and 
Tuft  (1979),

 ΔEg(meV) = 22.5( n

1018)
1∕2

 where n (in cm−3) is the concentration of majority carriers which is equal to the dopant concentration 
if they are all ionized (for example, at room temperature). The new effective intrinsic concentration 
nieff due to the reduced bandgap is given by

 n2
ieff = NcNv exp[−

(Eg − ΔEg)

kT ] = n2
i  exp(ΔEg

kT )
 where ni is the intrinsic concentration in the absence of emitter bandgap narrowing.
  The equilibrium electron and hole concentrations nno and pno, respectively, obey

 nnopno = n2
ieff

 where nno = Nd since nearly all donors would be ionized at room temperature.
  Consider a Si npn bipolar transistor operating under normal active conditions with the base– 

emitter forward biased, and the base–collector reverse biased. The transistor has narrow emitter and 
base regions. The emitter neutral region width WE is 1 μm, and the donor doping is 1019 cm−3. The 
width WB of the neutral base region is 1 μm, and the acceptor doping is 1017 cm−3. Assume that WE 
and WB are less than the minority carrier diffusion lengths in the emitter and the base.
a. Obtain an expression for the emitter injection efficiency taking into account the emitter bandgap 

narrowing effect above.
b. Calculate the emitter injection efficiency with and without the emitter bandgap narrowing.
c. Calculate the common emitter current gain β with and without the emitter bandgap narrowing 

effect given a perfect base transport factor (αT = 1).

Bandgap 

narrowing

Bandgap 

narrowing

Mass action law 

with bandgap 

narrowing

Table 6.13 Properties of an npn BJT

  Hole   Electron

Emitter Emitter Lifetime Base  Lifetime Collector

 Width Doping  in Emitter Width Base Doping in Base Doping

5 μm 3 × 1018 cm−3 10 ns 5 μm 1 × 1016 cm−3 400 ns 1 × 1016 cm−3
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6.38 The JFET Consider an n-channel JFET that has a symmetric p+n gate–channel structure as shown 
in Figures 6.55a and 6.75. Let L be the gate length, Z the gate width, and 2a the channel thickness. 
The pinch-off voltage is given by Question 6.37. The drain saturation current IDSS is the drain current 
when VGS = 0. This occurs when VDS = VDS(sat) = VP (Figure 6.57), so IDSS = VPGch, where Gch is the 
conductance of the channel between the source and the pinched-off point (Figure 6.58). Taking into 
account the shape of the channel at pinch-off, if Gch is about one-third of the conductance of the free 
or unmodulated (rectangular) channel, show that

 IDSS = VP[1
3

 
(eμe Nd) (2a)Z

L ]
 A particular n-channel JFETwith a symmetric p+n gate–channel structure has a pinch-off voltage of 

3.9 V and an IDSS of 5.5 mA. If the gate and channel dopant concentrations are Na = 1019 cm−3 and 
Nd = 1015 cm−3, respectively, find the channel thickness 2a and Z∕L. If L = 10 μm, what is Z? What 
is the gate–source capacitance when the JFET has no voltage supplies connected to it?

6.39 The JFET amplifier Consider an n-channel JFET that has a pinch-off voltage (VP) of 5 V and  
IDSS = 10 mA. It is used in a common source configuration as in Figure 6.62a in which the gate to 
source bias voltage (VGS) is −1.5 V. Suppose that VDD = 25 V.
a. If a small-signal voltage gain of 10 is needed, what should be the drain resistance (RD)? What 

is VDS?
b. If an ac signal of 1 V peak-to-peak is applied to the gate in series with the dc bias voltage, what 

will be the ac output voltage peak-to-peak? What is the voltage gain for positive and negative 
input signals? What is your conclusion?

Channel
thickness

Source
a

W
p+

Gate Depletion
region

Drain

p+

n-channel

Figure 6.75 A symmetric JFET.

6.37 The JFET pinch-off voltage Consider the symmetric n-channel JFET shown in Figure 6.75. The 
width of each depletion region extending into the n-channel is W. The thickness, or depth, of the 
channel, defined between the two metallurgical junctions, is 2a. Assuming an abrupt pn junction and 
VDS = 0, show that when the gate to source voltage is −Vp the channel is pinched off where

 Vp =
a2eNd

2ε
− Vo

 where Vo is the built-in potential between p+n junction and Nd is the donor concentration of the 
channel.

  Calculate the pinch-off voltage of a JFET that has an acceptor concentration of 1019 cm−3 in the 
p+ gate, a channel donor doping of 1016 cm−3, and a channel thickness (depth) 2a of 2 μm.
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6.40 The enhancement NMOSFET amplifier Consider an n-channel Si enhancement NMOS transis-
tor that has a gate width (Z ) of 150 μm, channel length (L) of 10 μm, and oxide thickness (tox) 
of 500 Å. The channel has μe = 700 cm2 V−1 s−1 and the threshold voltage (Vth) is 2 V (εr = 3.9 
for SiO2).
a. Calculate the drain current when VGS = 5 V and VDS = 5 V and assuming λ = 0.01.
b. What is the small-signal voltage gain if the NMOSFET is connected as a common source ampli-

fier, as shown in Figure 6.76, with a drain resistance RD of 2.2 kΩ, the gate biased at 5 V with 
respect to source (VGG = 5 V) and VDD is such that VDS = 5 V? What is VDD? What will happen 
if the drain supply is smaller?

c. Estimate the most positive and negative input signal voltages that can be amplified if VDD is 
fixed at the above value in part (b).

d. What factors will lead to a higher voltage amplification?

C

G

D

S

Output
signal

RD

IDS

vds

Blk
VDS

vgs

Input
signal

VGG

VGS

VDD

Figure 6.76 NMOSFET amplifier.

*6.41 Ultimate limits to device performance

a. Consider the speed of operation of an n-channel FET-type device. The time required for an 
electron to transit from the source to the drain is τt = L∕vd, where L is the channel length 
and  vd is the drift velocity. This transit time can be shortened by shortening L and increas-
ing vd. As the field increase, the drift velocity eventually saturates at about vdsat = 105 m s−1 
when the field in the channel is equal to Ec ≈ 106 V m−1. A short τt requires a field that is at 
least Ec.
1. What is the change in the PE of an electron when it traverses the channel length L from 

source to drain if the voltage difference is VDS?
2. This energy must be greater than the energy due to thermal fluctuations, which is of the 

order of kT. Otherwise, electrons would be brought in and out of the drain due to thermal 
fluctuations. Given the minimum field and VDS, what is the minimum channel length and 
hence the minimum transit time?

b. Heisenberg’s uncertainty principle relates the energy and the time duration in which that energy 
is possessed through a relationship of the form (Chapter 3) ΔE Δt > ħ. Given that during the 
transit of the electron from the source to the drain its energy changes by eVDS, what is the short-
est transit time τ satisfying Heisenberg’s uncertainty principle? How does it compare with your 
calculation in part (a)?
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Solar cell panels on the International Space Station.

 SOURCE: STS-108 Crew, NASA.

c. How does electron tunneling limit the thickness of the gate oxide and the channel length in a 
MOSFET? What would be typical distances for tunneling to be effective? (Consider the example 
on tunneling in Chapter 3.)



Electrical discharges in transformer oil  
at switching impulse voltage. A needle  
electrode was placed in the center of the 
figure, and a large plane electrode was 
placed under the photo film and a layer  
of insulating material. The needle voltage  
is positive.

 Courtesy of Wolfgang Hauschild,  
Dresden, Germany.

The electronic circuit board behind the 
screen of a Tektronix oscilloscope clearly 
shows how prevalent and important 
capacitors are in electronics engineering. 
There are several different types of 
capacitors such as ceramic, polyester 
and electrolytic, in this circuit board.

 Courtesy of Junyi Yang.
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C H A P T E R

7

Dielectric Materials and Insulation

The familiar parallel plate capacitor equation with free space as an insulator is 
given by

 C =
εo A

d

where εo is the absolute permittivity, A is the plate area, and d is the separation 
between the plates. If there is a material medium between the plates, then the capac-
itance, the charge storage ability per unit voltage, increases by a factor of εr, where 
εr is called the dielectric constant of the medium or its relative permittivity. The 
increase in the capacitance is due to the polarization of the medium in which 
positive and negative charges are displaced with respect to their equilibrium posi-
tions. The opposite surfaces of the dielectric medium acquire opposite surface charge 
densities that are related to the amount of polarization in the material. An important 
concept in dielectric theory is that of an electric dipole moment p, which is a 
measure of the electrostatic effects of a pair of opposite charges +Q and −Q sepa-
rated by a finite distance a, and so is defined by

 p = Qa

Although the net charge is zero, this entity still gives rise to an electric field in space 
and also interacts with an electric field from other sources. The relative permittivity 
is a material property that is frequency dependent. Some capacitors are designed to 
work at low frequencies, whereas others have a wide frequency range. Furthermore, 
even though they are regarded as energy storage devices, all practical capacitors 
exhibit some losses when used in an electric circuit. These losses are no different 
than I2R losses in a resistor carrying a current. The power dissipation in a practical 
capacitor depends on the frequency, and for some applications it can be an important 
factor. A defining property of a dielectric medium is not only its ability to increase 
capacitance but also, and equally important, its insulating behavior or low conductivity 
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so that the charges are not conducted from one plate of the capacitor to the other 
through the dielectric. Dielectric materials often serve to insulate current-carrying 
conductors or conductors at different voltages. Why can we not simply use air as 
insulation between high-voltage conductors? When the electric field inside an insu-
lator exceeds a critical field called the dielectric strength, the medium suffers 
dielectric breakdown and a large discharge current flows through the dielectric. Some 
40 percent of utility generator failures are linked to insulation failures in the gen-
erator. Dielectric breakdown is probably one of the oldest electrical engineering 
problems and that which has been most widely studied and never fully explained.

7.1   MATTER POLARIZATION AND RELATIVE 

PERMITTIVITY

7.1.1 RELATIVE PERMITTIVITY: DEFINITION

We first consider a parallel plate capacitor with vacuum as the dielectric medium 
between the plates, as shown in Figure 7.1a. The plates are connected to a constant 
voltage supply V. Let Qo be the charge on the plates. This charge can be easily 
measured. The capacitance Co of the parallel plate capacitor in free space, as in 
Figure 7.1a, is defined by

 Co =
Qo

V
 [7.1]

 The electric field, directed from high to low potential, is defined by the gradient 
of the potential E = −dV∕dx. Thus, the electric field E between the plates is just 
V∕d where d is the separation of the plates.

Definition of 

Capacitance

Co+Qo –Qo

V

(a)

+Q –QC

V

(c)

Dielectric

i(t) 

V

(b)

E E

Figure 7.1 (a) Parallel plate capacitor with free space between the plates. (b) As a slab of 

insulating material is inserted between the plates, there is an external current flow indicating 

that more charge is stored on the plates. (c) The capacitance has been increased due to 

the insertion of a medium between the plates.
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 Consider now what happens when a dielectric slab (a slab of any nonconducting 
material) is inserted into this parallel plate capacitor, as shown in Figure 7.1b and c 
with V kept the same. During the insertion of the dielectric slab, there is an external 
current flow that indicates that there is additional charge being stored on the plates. 
The charge on the electrodes increases from Qo to Q. We can easily measure the extra 
charge Q − Qo flowing from the battery to the plates by integrating the observed cur-
rent in the circuit during the process of insertion, as shown in Figure 7.1b. Because 
there is now a greater amount of charge stored on the plates, the capacitance of the 
system in Figure 7.1c is larger than that in Figure 7.1a by the ratio Q to Qo. The 
relative permittivity, or the dielectric constant, εr is defined to reflect this increase 
in the capacitance or the charge storage ability by virtue of having a dielectric medium. 
If C is the capacitance with the dielectric medium as in Figure 7.1c, then by definition

 εr =
Q

Qo

=
C

Co

 [7.2]

 The increase in the stored charge is due to the polarization of the dielectric by 
the applied field, as explained below. It is important to remember that when the 
dielectric medium is inserted, the electric field remains unchanged, provided that the 
insulator fills the whole space between the plates as shown in Figure 7.1c. The volt-
age V remains the same and therefore so does the gradient V∕d, which means that 
E remains constant.

7.1.2 DIPOLE MOMENT AND ELECTRONIC POLARIZATION

An electrical dipole moment is simply a separation between a negative and positive 
charge of equal magnitude Q as shown in Figure 7.2. If a is the vector from the 
negative to the positive charge, the electric dipole moment is defined as a vector by

 p = Qa [7.3]

 The region that contains the +Q and −Q charges has zero net charge. Unless 
the two charge centers coincide, this region will nonetheless, by virtue of the defini-
tion in Equation 7.3, contain a dipole moment.
 The net charge within a neutral atom is zero. Furthermore, on average, the cen-
ter of negative charge of the electrons coincides with the positive nuclear charge, 
which means that the atom has no net dipole moment, as indicated in Figure 7.3a. 
However, when this atom is placed in an external electric field, it will develop an 
induced dipole moment. The electrons, being much lighter than the positive nucleus, 
become easily displaced by the field, which results in the separation of the negative 
charge center from the positive charge center, as shown in Figure 7.3b. This separation 
of negative and positive charges and the resulting induced dipole moment are termed 

Definition of 

relative 

permittivity

Definition  

of dipole 

moment

+Q–Q

a
p = Q a

Qnet = 0 Figure 7.2 The definition of electric 

dipole moment.
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polarization. An atom is said to be polarized if it possesses an effective dipole 
moment, that is, if there is a separation between the centers of negative and positive 
charge distributions.
 The induced dipole moment depends on the electric field causing it. We define 
a quantity called the polarizability α to relate the induced dipole moment pinduced to 
the field E causing it,

 pinduced = αE [7.4]

where α is a coefficient called the polarizability of the atom. It depends on the 
polarization mechanism. Since the polarization of a neutral atom involves the dis-
placement of electrons, α is called electronic polarization and denoted as αe. Inas-
much as the electrons in an atom are not rigidly fixed, all atoms possess a certain 
amount of electronic polarizability.
 In the absence of an electric field, the center of mass C of the orbital motions 
of the electrons coincides with the positively charged nucleus O and the electronic 
dipole moment is zero as in Figure 7.3a. Suppose that the atom has Z number of 
electrons orbiting the nucleus and all the electrons are contained within a certain 
sphere region of radius ro. When an electric field E is applied, the light electrons 
become displaced in the opposite direction to E so that their center of mass C is 
shifted by some distance x with respect to the nucleus at O, which we take to be the 
origin as shown in Figure 7.3b. As the electrons are “pushed” away by the applied 
field, the Coulombic attraction between the electrons and nuclear charge “pulls in” 
the electrons; tries to restore the electron cloud back to its original position. The 
force on the electrons, due to E, trying to separate them away from the nuclear charge 
is ZeE as shown in Figure 7.3b. The restoring force Fr, which is the Coulombic 
attractive force between the electrons and the nucleus, can be taken to be proportional 
to the displacement x.1 The restoring force is obviously zero when C coincides with 
O(x = 0). We can write Fr = −βx where β is a constant and the negative sign indi-
cates that Fr is always directed toward the nucleus O. In equilibrium, the net force 
on the negative charge center is zero as shown in Figure 7.3b,

 ZeE = βx

Atomic
nucleus

(+Ze)

Electron
cloud
(−Ze)

ro

C = Center of
negative charge

CO

E

pinduced

O

O

x

x
−Ze+Ze

ZeE βx

Er

(a) A neutral atom in E = 0 (b) Induced dipole moment in a field

➒

βx ZeE

E

C

Figure 7.3 The origin of electronic polarization.

 1 See Example 7.1
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from which x is known. Therefore, the magnitude of the induced electronic dipole 
moment pe is given by

 pe = (Ze)x = (Z 
2e2

β )E  [7.5]

 As expected pe is proportional to the applied field. The electronic dipole moment 
in Equation 7.5 is valid under static conditions, that is, when the electric field is a 
dc field. The term in the parentheses in Equation 7.5 is the electronic polarizability. 
We can use elementary electrostatics to find β by assuming that the negative charge 
Ze is uniformly distributed within the atomic radius ro. We can then calculate the 
electric field Er at x from center of negative charge C. The force ZeEr on the nucleus 
would be pulling the nucleus toward C, which is the same force that pulls the nega-
tive charge center C toward O as indicated in Figure 7.3b. We can therefore find β 
as shown in Example 7.1, and then substitute for β in Equation 7.5 with the final 
result that αe is given by

 αe ≈ 4πεor
3
o [7.6]

 Notice that polarizability depends on the atomic size only in this simple classical 

view. Suppose that we suddenly remove the applied electric field polarizing the atom. 

There is then only the restoring force −βx, which always acts to pull the electrons 

toward the nucleus O. The equation of motion of the negative charge center is then

 −βx = Zme

d 
2x

dt2

 Thus, the displacement at any time is sinusoidal and given by

 x(t) = xo cos(ωot)

where

 ωo = ( β

Zme
)

1∕2

is the oscillation frequency of the center of mass of the electron cloud about the 

nucleus and xo is the displacement before the removal of the field. After the removal 

of the field, the electronic charge cloud executes simple harmonic motion about the 

nucleus with a frequency determined by ωo; called electronic polarization resonance 

frequency.2 It is analogous to a mass on a spring being pulled and let go. The sys-

tem then executes simple harmonic motion. The oscillations of course die out with 

time. In the atomic case, a sinusoidal displacement x(t) above implies that the elec-

tronic charge cloud has an acceleration that is also sinusoidal with cos(ωot). It is 

well known from classical electromagnetism that an accelerating charge radiates 

Electronic 

polarization

Classical 

atomic 

polarizability

Electronic 

polarization 

resonance 

frequency

 2 The term natural frequency refers to a system’s characteristic frequency of oscillation when it is excited.  
A mass attached to a spring and then let go will execute simple harmonic motion with a certain natural frequency 
ωo. If we then decide to oscillate this mass with an applied force, the maximum energy transfer will occur when 
the applied force has the same frequency as ωo; the system will be put in resonance. ωo is also a resonant 
frequency. Strictly, ω = 2πf is the angular frequency and f is the frequency. It is quite common to simply refer  
to ω as a frequency because the literature is dominated by ω; the meaning should be obvious within context.
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electromagnetic energy just like a radio antenna. Consequently, the oscillating charge 
cloud loses energy, and thus its amplitude of oscillations decreases. (Recall that the 
average energy is proportional to the square of the amplitude of the displacement.)
 We can substitute for β in Equation 7.5 in terms of ωo and use Equation 7.4 to 
obtain

 αe =
Ze2

meω
2
o

 [7.7]

Static 

electronic 

polarizability 

and resonance

Restoring 

force constant

CLASSICAL ATOMIC POLARIZABILITY Suppose that we take the −Ze charge of all elec-
trons in the atom and uniformly distribute the charge within the atomic radius ro so that the 
net negative space charge density ρe is

 ρe ≈
−Ze

(4π∕3)r3
o

The negative space charge density ρe gives rise to a “restoring” field Er at distance x, as shown 
in Figure 7.3b, whose magnitude increases linearly with distance x from the center C of the 
negative charge as derived in elementary electrostatics, that is,

 Er =
ρe(−x)

3εo

≈
Zex

4πεor
3
o

We had to use −x because x here is measured from O to C whereas in electrostatics x is from 
C to O. Er is directed toward C (along x). The force on the nucleus +Ze at x due to this field 
is ZeEr, which pulls the nucleus toward C and conversely C toward O; this is the restoring 
force Fr. Thus,

 Fr = −(Ze)Er =
(Ze)2x

4πεor
3
o

= −βx

which means that

 β =
(Ze)2

4πεor
3
o

is the term multiplying x, and hence substituting for β in Equation 7.5 leads to Equation 7.6, 
the classical atomic polarizability.
 Table 7.1 provides the radius and the polarizability of each atom in Period 3 from Na 
to Ar. As we know from Chapter 3, the electrons are described by probability distributions 

 EXAMPLE 7.1

Table 7.1 Atomic radii and polarizability in Period 3

 Na Mg Al Si P S Cl Ar

Z 11 12 13 14 15 16 17 18
ro (pm) 190 145 118 111 98 88 79 71
αe (×10−40 F m2) 26.8 11.8 7.56 6.15 4.04 3.26 2.43 1.82
fo (×1015 Hz) 1.71 2.69 3.50 4.03 5.15 5.92 7.07 8.40

 NOTE: Data for αe from Ed. Haynes W.M., CRC Handbook of Chemistry and Physics, 95th Edition, 2014-2015, Boca 
Raton, FL: CRC Press, and ro from typical periodic table data available for the elements online such as Wikipedia.
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and hence the definition of ro in above equations cannot be exact. Nonetheless, Table 7.1 lists 
calculated ro values from well-established techniques and available in most tables of periodic 
elements. We can plot ae versus r3

o as in Figure 7.4. The best line going through the origin 
has the functional form,

 αe = (3.97 × 10−10 F m−1)r3
o

and has a reasonable R2 fit coefficient that confirms the prediction of Equation 7.6. The value 
of 4πεo in Equation 7.6 is 1.11 × 10−10 F m−1, which is also shown in Figure 7.4. It is obvi-
ous that the classical theory predicts the right functional form but fails to predict the magni-
tude by a factor of about 3.5 for these elements.3

 We can also calculate ωo from Equation 7.7. Taking Na with Z = 11,

 ωo = [ Ze2

meαe
]

1∕2

= [ (11)(1.602 × 10−19 C)2

(9.11 × 10−31 kg)(26.8 × 10−40 F m2) ]
1∕2

= 1.08 × 1016 rad s−1

which gives a resonant frequency fo = ωo∕2π = 1.71 × 1015 Hz. Table 7.1 shows that typical 
fo is of the order of 1015 Hz and increases along the period.
 While the classical theory falls short on the magnitude of αe, it does help one understand 
trends in the Periodic Table, along a period, and down a group for example as explored 
further in Question 7.1.

7.1.3 POLARIZATION VECTOR P

When a material is placed in an electric field, the atoms and the molecules of the 
material become polarized, so we have a distribution of dipole moments in the mate-
rial. We can visualize this effect with the insertion of the dielectric slab into the 
parallel plate capacitor, as depicted in Figure 7.5a. The placement of the dielectric 
slab into an electric field polarizes the molecules in the material. The induced dipole 
moments all point in the direction of the field. Consider the polarized medium alone, 
as shown in Figure 7.5b. In the bulk of the material, the dipoles are aligned head to 

 3 The disagreement is sometimes much less egregious and even quite tolerable. The reader, for example, can 
try some rare-earth atoms with many electrons. By the way, there are now very sophisticated numerical quantum 
mechanical techniques that can calculate αe and get the result very close to the experimental value.

αe = Ar
o
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Figure 7.4 Electronic polarizability (αe) versus r3
o for 

the elements in Period 3 from Na to Ar. The dashed 

line is the best fit passing through the origin. The  

classical theory is Equation 7.6.
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tail. Every positive charge has a negative charge next to it and vice versa. There is 
therefore no net charge within the bulk. But the positive charges of the dipoles 
appearing at the right-hand face are not canceled by negative charges of any dipoles 
at this face. There is therefore a surface charge +QP on the right-hand face that 
results from the polarization of the medium. Similarly, there is a negative charge 

−QP with the same magnitude appearing on the left-hand face due to the negative 
charges of the dipoles at this face. We see that charges +QP and −QP appear on the 
opposite surfaces of a material when it becomes polarized in an electric field, as 
shown in Figure 7.5c. These charges are bound and are a direct result of the polar-
ization of the molecules. They are termed surface polarization charges. Figure 7.5c 
emphasizes this aspect of dielectric behavior in an electric field by showing the 
dielectric and its polarization charges only.
 We represent the polarization of a medium by a quantity called polarization P, 

which is defined as the total dipole moment per unit volume,

 P =
1

Volume
[p1 + p2 + … + pN]  [7.8a]

where p1, p2, . . . , pN are the dipole moments induced at N molecules in the volume. 
If pav is the average dipole moment per molecule, then an equivalent definition of 
P is

 P = Npav [7.8b]

where N is the number of molecules per unit volume. There is an important relation-
ship, given below, between P and the polarization charges QP on the surfaces of the 
dielectric. It should be emphasized for future discussions that if polarization arises 
from the effect of the applied field, as shown in Figure 7.5a, which is usually the 
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Bound polarization
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Area = A ptotal

P–QP +QP

d

(c)

E

Figure 7.5 (a) When a dielectric is placed in an electric field, bound polarization charges  

appear on the opposite surfaces. (b) The origin of these polarization charges is the polarization 

of the molecules of the medium. (c) We can represent the whole dielectric in terms of its surface 

polarization charges +QP and −QP.

Definition of 

polarization 

vector

Definition of 

polarization 

vector



 7 .1  MATTER POLARIZATION AND RELATIVE PERMITTIVITY 667

case, pav must be the average dipole moment per atom in the direction of the applied 

field. In that case we often also denote pav as the induced average dipole moment 
per molecule pinduced.
 To calculate the polarization P for the polarized dielectric in Figure 7.5b, we need 
to sum all the dipoles in the medium and divide by the volume Ad, as in Equation 7.8a. 
However, the polarized medium can be simply represented as in Figure 7.5c in terms 
of surface charge +QP and −QP, which are separated by the thickness distance d. We 
can view this arrangement as one big dipole moment ptotal from −QP to +QP. Thus

 ptotal = QPd

Since the polarization is defined as the total dipole moment per unit volume, the 
magnitude of P is

 P =
ptotal

Volume
=

QPd

Ad
=

QP

A

 But QP∕A is the surface polarization charge density σP, so

 P = σp [7.9a]

 Polarization is a vector and Equation 7.9a only gives its magnitude. For the 
rectangular slab in Figure 7.5c, the direction of P is normal to the surface. For +σp 

(right face), it comes out from the surface and for −σP (left face), it is directed into 
the surface. Although Equation 7.9a is derived for one specific geometry, the rect-
angular slab, it can be generalized as follows. The charge per unit area appearing 

on the surface of a polarized medium is equal to the component of the polarization 

vector normal to this surface. If Pnormal is the component of P normal to the surface 
where the polarization charge density is σP, as shown in Figure 7.6, then,

 Pnormal = σp [7.9b]

 The polarization P induced in a dielectric medium when it is placed in an electric 
field depends on the field itself. The induced dipole moment per molecule within the 
medium depends on the electric field by virtue of Equation 7.4. To express the depen-
dence of P on the field E, we define a quantity called the electric susceptibility χe by

 P = χeεoE [7.10]
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 Equation 7.10 shows an effect P due to a cause E and the quantity χe relates the 
effect to its cause. Put differently, χe acts as a proportionality constant. It may depend 
on the field itself, in which case the effect is nonlinearly related to the cause. Further, 
electronic polarizability is defined by

 pinduced = αeE

so

 P = Npinduced = NαeE

where N is the number of molecules per unit volume. Then from Equation 7.10, χe 

and αe are related by

 χe =
1
εo

 Nαe [7.11]

 It is important to recognize the difference between free and polarization (or 
bound) charges. The charges stored on the metal plates in Figure 7.5a are free 
because they result from the motion of free electrons in the metal. For example both 

Qo and Q, before and after the dielectric insertion in Figure 7.1, are free charges that 
arrive on the plates from the battery. The polarization charges +QP and −QP, on the 
other hand, are bound to the molecules. They cannot move within the dielectric or 
on its surface.
 The field E before the dielectric was inserted (Figure 7.1a) is given by

 E =
V

d
=

Qo

Cod
=

Qo

εo A
=

σo

εo

 [7.12]

where σo = Qo∕A is the free surface charge density without any dielectric medium 
between the plates, as in Figure 7.1a.
 After the insertion of the dielectric, this field remains the same V∕d, but the free 
charges on the plates are different. The free surface charge on the plates is now Q. 
In addition there are bound polarization charges on the dielectric surfaces next to 
the plates, as shown in Figure 7.5a. It is apparent that the flow of current during the 
insertion of the dielectric, Figure 7.1b, is due to the additional free charges Q − Qo 

needed on the capacitor plates to neutralize the opposite polarity polarization charges 

QP appearing on the dielectric surfaces. The total charge (see Figure 7.5a) due to 
that on the plate plus that appearing on the dielectric surface, Q − QP, must be the 
same as before, Qo, so that the field, as given by Equation 7.12, does not change 
inside the dielectric, that is,

 Q − QP = Qo

or

 Q = Qo + QP

 Dividing by A, defining σ = Q∕A as the free surface charge density on the plates 
with the dielectric inserted, and using Equation 7.12, we obtain

 σ = εoE + σP
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 Since σP = P and P = χeεoE, Equations 7.9 and 7.10, we can eliminate σP to 
obtain

 σ = εo(1 + χe)E

 From the definition of the relative permittivity in Equation 7.2 we have

 εr =
Q

Qo

=
σ

σo

so substituting for σ and using Equation 7.12 we obtain

 εr = 1 + χe [7.13]

 In terms of electronic polarization, from Equation 7.11, this is

 εr = 1 +
Nαe

εo

 [7.14]

 The significance of Equation 7.14 is that it relates the microscopic polarization 
mechanism that determines αe to the macroscopic property εr.

7.1.4 LOCAL FIELD Eloc AND CLAUSIUS–MOSSOTTI EQUATION

Equation 7.14, which relates εr to electronic polarizability αe is only approximate 
because it assumes that the field acting on an individual atom or molecule is the field 

E, which is assumed to be uniform within the dielectric. In other words, the induced 
polarization, pinduced ∝ E. However, the induced polarization depends on the actual 

field experienced by the molecule. It is apparent from Figure 7.5a that there are 

polarized molecules within the dielectric with their negative and positive charges 

separated so that the field is not constant on the atomic scale as we move through 

the dielectric. This is depicted in Figure 7.7. The field experienced by an individual 

molecule is actually different than E, which represents the average field in the dielec-

tric. As soon as the dielectric becomes polarized, the field at some arbitrary point 

depends not only on the charges on the plates (Q) but also on the orientations of all 
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the other dipoles around this point in the dielectric. When averaged over some dis-
tance, say a few thousand molecules, this field becomes E, as shown in Figure 7.7.
 The actual field experienced by a molecule in a dielectric is defined as the 
local field and denoted by Eloc. It depends not only on the free charges on the 
plates but also on the arrangement of all the polarized molecules around this point. 
In evaluating Eloc we simply remove the molecule from this point and calculate the 
field at this point coming from all sources, including neighboring polarized mol-
ecules, as visualized in Figure 7.7. Eloc will depend on the amount of polarization 
the material has experienced. The greater the polarization, the greater is the local 
field because there are bigger dipoles around this point. Eloc depends on the 
arrangement of polarized molecules around the point of interest and hence depends 
on the crystal structure. In the simplest case of a material with a cubic crystal 
structure, or a liquid (no crystal structure), the local field Eloc acting on a molecule 
increases with polarization as4

 Eloc = E +
1

3εo

P [7.15]

 Equation 7.15 is called the Lorentz field. The induced polarization in the mol-
ecule now depends on this local field Eloc rather than the average field E. Thus

 pinduced = αeEloc

The fundamental definition of electric susceptibility by the equation

 P = χeεoE

is unchanged, which means that εr = 1 + χe, Equation 7.13, remains intact. The 
polarization is defined by P = Npinduced, and pinduced can be related to Eloc and hence 
to E and P. Then

 P = (εr − 1)εoE

can be used to eliminate E and P and obtain a relationship between εr and αe. This 
is the Clausius–Mossotti equation,

 
εr − 1
εr + 2

=
Nαe

3εo

 [7.16]

 This equation allows the calculation of the macroscopic property εr from micro-
scopic polarization phenomena, namely, αe.

 4 This field is called the Lorentz field and the proof, though not difficult, is not necessary for the present 
introductory treatment of dielectrics. This local field expression does not apply to dipolar dielectrics discussed in 
Section 7.3.2. The derivation of Equation 7.15 is given in Section 7.10.
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ELECTRONIC POLARIZABILITY OF A VAN DER WAALS SOLID The electronic polariz-
ability of the Ar atom is 1.7 × 10−40 F m2. What is the static dielectric constant of solid Ar 
(below 84 K) if its density is 1.8 g cm−3?

 EXAMPLE 7.2
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SOLUTION

To calculate εr we need the number of Ar atoms per unit volume N from the density d. If 
Mat = 39.95 is the relative atomic mass of Ar and NA is Avogadro’s number, then

 N =
NAd

Mat
=

(6.02 × 1023 mol−1) (1.8 g cm−3)

(39.95 g mol−1)
= 2.71 × 1022 cm−3

with N = 2.71 × 1028 m−3 and αe = 1.7 × 10−40 F m2, we have

 εr = 1 +
Nαe

εo

= 1 +
(2.71 × 1028) (1.7 × 10−40)

(8.85 × 10−12)
= 1.52

If we use the Clausius–Mossotti equation, we get

 εr =
1 +

2Nαe

3εo

1 −
Nαe

3εo

= 1.63

 The two values are different by about 7 percent. The simple relationship in Equation 7.14 
underestimates the relative permittivity.

7.2  ELECTRONIC POLARIZATION: COVALENT SOLIDS

When a field is applied to a solid substance, the constituent atoms or molecules 
become polarized, as we visualized in Figure 7.5a. The electron clouds within each 
atom become shifted by the field, and this gives rise to electronic polarization. This 
type of electronic polarization within an atom, however, is quite small compared 
with the polarization due to the valence electrons in the covalent bonds within the 
solid. For example, in crystalline silicon, there are electrons shared with neighboring 
Si atoms in covalent bonds, as shown in Figure 7.8a. These valence electrons form 
bonds (i.e., become shared) between the Si atoms because they are already loosely 
bound to their parent atoms. If this were not the case, the solid would be a van der 
Waals solid with atoms held together by secondary bonds (e.g., solid Ar below 83.8 K). 

Si ionic core

Negative charge cloud of valence
electrons

P

E

(a) (b)

Figure 7.8 (a) Valence electrons in covalent 

bonds in the absence of an applied field.  

(b) When an electric field is applied to a covalent 

solid, the valence electrons in the covalent 

bonds are shifted very easily with respect to 

the positive ionic cores. The whole solid  

becomes polarized due to the collective shift in 

the negative charge distribution of the valence 

electrons.



672 C H A P T E R  7  ∙ DIELECTRIC MATERIALS AND INSULATION

In the covalent solid, the valence electrons therefore are not rigidly tied to the ionic 
cores left in the Si atoms. Although intuitively we often view these valence electrons 
as living in covalent bonds between the ionic Si cores, they nonetheless belong to 
the whole crystal because they can tunnel from bond to bond and exchange places 
with each other. We refer to their wavefunctions as delocalized, that is, not localized 
to any particular Si atom. When an electric field is applied, the negative charge 
distribution associated with these valence electrons becomes readily shifted with 
respect to the positive charges of the ionic Si cores, as depicted in Figure 7.8b and 
the crystal exhibits polarization, or develops a polarization vector. One can appreci-
ate the greater flexibility of electrons in covalent bonds compared with those in 
individual ionic cores by comparing the energy involved in freeing each. It takes 
perhaps 1–2 eV to break a covalent bond to free the valence electron, but it takes 
more than 10 eV to free an electron from an individual ionic Si core. Thus, the 
valence electrons in the bonds readily respond to an applied field and become dis-
placed. This type of electronic polarization, due to the displacement of electrons in 
covalent bonds, is responsible for the large dielectric constants of covalent crystals. 
For example εr = 11.9 for the Si crystal and εr = 16 for the Ge crystal.

ELECTRONIC POLARIZABILITY OF COVALENT SOLIDS Consider a pure Si crystal that 
has εr = 11.9.

a. What is the electronic polarizability due to valence electrons per Si atom (if one could 
portion the observed crystal polarization to individual atoms)?

b. Suppose that a Si crystal sample is electroded on opposite faces and has a voltage applied 
across it. By how much is the local field greater than the applied field?

c. What is the resonant frequency fo corresponding to ωo?

 From the density of the Si crystal, the number of Si atoms per unit volume, N, is given 
as 5 × 1028 m−3.

SOLUTION

a. Given the number of Si atoms, we can apply the Clausius–Mossotti equation to find αe

 αe =
3εo

N
 
εr − 1
εr + 2

=
3(8.85 × 10−12)

(5 × 1028)
 
11.9 − 1
11.9 + 2

= 4.17 × 10−40 F m2

 This is larger, for example, than the electronic polarizability of an isolated Ar atom, 
which has more electrons. If we were to take the inner electrons in each Si atom as very 
roughly representing Ne, we would expect their contribution to the overall electronic 
polarizability to be roughly the same as the Ne atom, which is 0.45 × 10−40 F m2.

b. The local field is

 Eloc = E +
1

3εo

P

 But, by definition,

 P = χeεoE = (εr − 1)εoE

 EXAMPLE 7.3
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 Substituting for P,

 Eloc = E +
1
3

(εr − 1)E

 so the local field with respect to the applied field is

 
Eloc

E
=

1
3

(εr + 2) = 4.63

 The local field is a factor of 4.63 greater than the applied field.
c. Since polarization is due to valence electrons and there are four per Si atom, we can use 

Equation 7.7,

 ωo = ( Ze2

meαe
)

1∕2

= [ 4(1.6 × 10−19)2

(9.1 × 10−31) (4.17 × 10−40) ]
1∕2

= 1.65 × 1016 rad s−1

 The corresponding resonant frequency is ωo∕2π or 2.6 × 1015 Hz, which is typically 
associated with electromagnetic waves of wavelength in the ultraviolet region.

7.3  POLARIZATION MECHANISMS

In addition to electronic polarization, we can identify a number of other polarization 
mechanisms that may also contribute to the relative permittivity.

7.3.1 IONIC POLARIZATION

This type of polarization occurs in ionic crystals such as NaCl, KCl, and LiBr. The 
ionic crystal has distinctly identifiable ions, for example, Na+ and Cl−, located at 
well-defined lattice sites, so each pair of oppositely charged neighboring ions has a 
dipole moment. As an example, we consider the one-dimensional NaCl crystal 
depicted as a chain of alternating Na+ and Cl− ions in Figure 7.9a. In the absence 
of an applied field, the solid has no net polarization because the dipole moments of 
equal magnitude are lined up head to head and tail to tail so that the net dipole 
moment is zero. The dipole moment p+ in the positive x direction has the same 

p+ p–

x

p'+ p'–

Cl– Na+

(a)

(b)

E

Figure 7.9 (a) A NaCI chain in the NaCI crystal 

without an applied field. Average or net dipole  

moment per ion is zero. (b) In the presence of an 

applied field, the ions become slightly displaced, 

which leads to a net average dipole moment per ion.
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magnitude as p− in the negative x direction, so the net dipole moment

 pnet = p+ − p− = 0

In the presence of a field E along the x direction, however, the Cl− ions are pushed 
in the −x direction and the Na+ ions in the +x direction about their equilibrium 
positions. Consequently, the dipole moment p+ in the +x direction increases to p′+ 

and the dipole moment p− decreases to p′−, as shown in Figure 7.9b. The net dipole 
moment is now no longer zero. The net dipole moment, or the average dipole 
moment, per ion pair is now (p′+ − p′−), which depends on the electric field E. Thus 
the induced average dipole moment per ion pair pav depends on the field E. The ionic 
polarizability αi is defined in terms of the local field experienced by the ions,

 pav = αiEloc [7.17]

 The larger the αi, the greater the induced dipole moment. Generally, αi is larger 
than the electronic polarizability αe by a factor of 10 or more, which leads to ionic 
solids having large dielectric constants. The polarization P exhibited by the ionic 
solid is therefore given by

 P = Nipav = NiαiEloc

where Ni is the number of ion pairs per unit volume. By relating the local field to 

E and using

 P = (εr − 1)εoE

we can again obtain the Clausius–Mossotti equation, but now due to ionic polarization,

 
εr − 1
εr + 2

=
1

3εo

Niαi [7.18]

 Each ion also has a core of electrons that become displaced in the presence of 
an applied field with respect to their positive nuclei and therefore also contribute to 
the polarization of the solid. This electronic polarization simply adds to the ionic 
polarization. Its magnitude is invariably much smaller than the ionic contribution in 
these solids.

7.3.2 ORIENTATIONAL (DIPOLAR) POLARIZATION

Certain molecules possess permanent dipole moments. For example, the HCl mol-
ecule shown in Figure 7.10a has a permanent dipole moment po from the Cl− ion to 
the H+ ion. In the liquid or gas phases, these molecules, in the absence of an electric 
field, are randomly oriented as a result of thermal agitation, as shown in Figure 7.10b. 
When an electric field E is applied, E tries to align the dipoles parallel to itself, as 
depicted in Figure 7.10c. The Cl− and H+ charges experience forces in opposite 
directions. But the nearly rigid bond between Cl− and H+ holds them together, which 
means that the molecule experiences a torque τ about its center of mass.5 This torque 
acts to rotate the molecule to align po with E. If all the molecules were to simply 

Clausius–

Mossotti 

equation  

for ionic 

polarization

 5 The oppositely directed forces also slightly stretch the Cl−–H+ bond, but we neglect this effect.

Ionic 

polarizability
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rotate and align with the field, the polarization of the solid would be

 P = Npo

where N is the number of molecules per unit volume. However, due to their thermal 
energy, the molecules move around randomly and collide with each other and with 
the walls of the container. These collisions destroy the dipole alignments. Thus the 
thermal energy tries to randomize the orientations of the dipole moments. A snapshot of 
the dipoles in the material in the presence of a field can be pictured as in Figure 7.10d 
in which the dipoles have different orientations. There is, nonetheless, a net average 
dipole moment per molecule pav that is finite and directed along the field. Thus the 
material exhibits net polarization, which leads to a dielectric constant that is determined 
by this orientational polarization.

 To find the induced average dipole moment pav along E, we need to know the 
average potential energy Edip of a dipole placed in a field E and how this compares 
with the average thermal energy 

5
2 kT  per molecule as in the present case of five 

degrees of freedom. Edip represents the average external work done by the field in 
aligning the dipoles with the field. If 5

2 kT  is much greater than Edip, then the average 
thermal energy of collisions will prevent any dipole alignment with the field. If, 
however, Edip is much greater than 

5
2 kT , then the thermal energy is insufficient to 

destroy the dipole alignments.
 A dipole at an angle θ to the field experiences a torque τ that tries to rotate it, 
as shown in Figure 7.10c. Work done dW by the field in rotating the dipole by dθ 

is τ dθ (as in F dx). This work dW represents a small change dE in the potential 
energy of the dipole. No work is done if the dipole is already aligned with E, when 

θ = 0, which corresponds to the minimum in PE. On the other hand, maximum work 
is done when the torque has to rotate the dipole from θ = 180° to θ = 0° (either 

Cl– H+

po

pav = 0

+Q

–Q

F = Q E

F

po = aQ
pav ≠ 0

(a) (b)

(c) (d)

EE

τ

θ

Figure 7.10 (a) A HCI molecule possesses a permanent 

dipole moment po. (b) In the absence of a field, thermal 

agitation of the molecules results in zero net average 

dipole moment per molecule. (c) A dipole such as HCI 

placed in a field experiences a torque that tries to rotate 

it to align po with the field E. (d) In the presence of an 

applied field, the dipoles try to rotate to align with  

the field against thermal agitation. There is now a net 

average dipole moment per molecule along the field.
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clockwise or counterclockwise, it does not matter). The torque experienced by the 
dipole, according to Figure 7.10c, is given by

 τ = (F sin θ)a  or  Epo sin θ

where
 po = aQ

If we take PE = 0 when θ = 0, then the maximum PE is when θ = 180°, or

 Emax = ∫
π

0

poE sin θ dθ = 2poE

 The average dipole potential energy is then 1
2 Emax or poE. For orientational polar-

ization to be effective, this energy must be greater than the average thermal energy. 
The average dipole moment pav along E is directly proportional to the magnitude of 
po itself and also proportional to the average dipole energy to average thermal energy 
ratio, that is,

 pav ∝ po 

po E
5
2 kT

 If we were to do the calculation properly using Boltzmann statistics for the 

distribution of dipole energies among the molecules, that is, the probability that the 

dipole has an energy E is proportional to exp(−E∕kT ), then we would find that when 

poE < kT (generally the case),

 pav =
1
3

 
p2

oE

kT
 [7.19]

 It turns out that the intuitively derived expression for pav is roughly the same as 
Equation 7.19. Strictly, of course, we should use the local field acting on each mol-
ecule, in which case E is simply replaced by Eloc. From Equation 7.19 we can define 
a dipolar orientational polarizability αd per molecule by

 αd =
1
3

 
p2

o

kT
 [7.20]

 It is apparent that, in contrast to the electronic and ionic polarization, dipolar 
orientational polarization is strongly temperature dependent. αd decreases with tem-
perature, which means that the relative permittivity εr also decreases with tempera-
ture. Dipolar orientational polarization is normally exhibited by polar liquids (e.g., 
water, alcohol, acetone, and various electrolytes) and polar gases (e.g., gaseous HCl 
and steam). It can also occur in solids if there are permanent dipoles within the solid 
structure, even if dipolar rotation involves a discrete jump of an ion from one site 
to another, such as in various glasses.

7.3.3 INTERFACIAL POLARIZATION

Interfacial polarization occurs whenever there is an accumulation of charge at an 
interface between two materials or between two regions within a material. The simplest 
example is interfacial polarization due to the accumulation of charges in the dielectric 
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Average 
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Dipolar 
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near one of the electrodes, as depicted in Figure 7.11a and b. Invariably materials, 
however perfect, contain crystal defects, impurities, and various mobile charge car-
riers such as electrons (e.g., from donor-type impurities), holes, or ionized host or 
impurity ions. In the particular example in Figure 7.11a, the material has an equal 
number of positive ions and negative ions, but the positive ions are assumed to be 
far more mobile. For example, if present, the H+ ion (which is a proton) and the Li+ 
ion in ceramics and glasses are more mobile than negative ions in the structure 
because they are relatively small. Under the presence of an applied field, these 
positive ions migrate to the negative electrode. The positive ions, however, cannot 
leave the dielectric and enter the crystal structure of the metal electrode. They there-
fore simply pile up at the interface and give rise to a positive space charge near the 
electrode. These positive charges at the interface attract more electrons to the nega-
tive electrode. This additional charge on the electrode, of course, appears as an 
increase in the dielectric constant. The term interfacial polarization arises because 
the positive charges accumulating at the interface and the remainder of negative 
charges in the bulk together constitute dipole moments that appear in the polarization 
vector P (P sums all the dipoles within the material per unit volume).
 Another typical interfacial polarization mechanism is the trapping of electrons or 
holes at defects at the crystal surface, at the interface between the crystal and the 
electrode. In this case we can view the positive charges in Figure 7.11a as holes and 
negative charges as immobile ionized acceptors. We assume that the contacts are 
blocking and do not allow electrons or holes to be injected, that is, exchanged between 
the electrodes and the dielectric. In the presence of a field, the holes drift to the 
negative electrode and become trapped in defects at the interface, as in Figure 7.11b.
 Grain boundaries frequently lead to interfacial polarization as they can trap 
charges migrating under the influence of an applied field, as indicated in Figure 7.11c. 
In this example, free electrons and holes within the grains have drifted and then 
become trapped at grain boundaries. The result is the development of charges on 

ElectrodeElectrode
Dielectric

Fixed charge
Mobile charge Accumulated charge Grain boundary

or interface

Space charge

Grain

E E E

(a) (b) (c) (d)

Figure 7.11 (a) A crystal with equal number of mobile positive ions and fixed negative ions. In the absence of  

a field, there is no net separation between all the positive charges and all the negative charges. (b) In the  

presence of an applied field, the mobile positive ions migrate toward the negative electrode and accumulate 

there. There is now an overall separation between the negative charges and positive charges in the dielectric. 

The dielectric therefore exhibits interfacial polarization. (c) Grain boundaries and interfaces between different 

materials frequently give rise to interfacial polarization. In this simple example, electrons and holes within 

grains drift and become trapped at the grain boundaries. (d) Positive and negative ions within a grain boundary 

can jump to neighboring vacant sites, aided by the field, and thereby form dipoles within the grain boundary.
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grain surfaces and hence polarization charges on the dielectric surfaces next to the 
electrodes as in Figure 7.11c. If there are no free carriers to drift within the grains, 
there may be trapped charges, even charged impurities, within the grain boundaries. 
Aided by the field, the charges can jump to neighboring vacant sites to form dipoles 
within the grain boundaries as depicted in Figure 7.11d. In both Figure 7.11c and 
d, interfacial polarization leads to polarization charges appearing on the surfaces next 
to the electrodes. Interfaces also arise in heterogeneous dielectric materials, for 
example, when there is a dispersed phase within a continuous phase. The principle 
is then the same as schematically illustrated in Figure 7.11c.

7.3.4 TOTAL POLARIZATION

In the presence of electronic, ionic, and dipolar polarization mechanisms, the average 
induced dipole moment per molecule will be the sum of all the contributions in terms 
of the local field,
 pav = αeEloc + αiEloc + αdEloc

 Each effect adds linearly to the net dipole moment per molecule, a fact verified 
by experiments. Interfacial polarization cannot be simply added to the above equation 
as αif Eloc because it occurs at interfaces and cannot be put into an average polariza-
tion per molecule in the bulk. Further, the fields are not well defined at the interfaces. 
In addition, we cannot use the simple Lorentz local field approximation for dipolar 
materials. That is, the Clausius–Mossotti equation does not work with dipolar dielec-
trics and the calculation of the local field is quite complicated. The dielectric con-
stant εr under electronic and ionic polarizations, however, can be obtained from

 
εr − 1
εr + 2

=
1

3εo

(Neαe + Niαi)  [7.21]

 Table 7.2 summarizes the various polarization mechanisms and the correspond-
ing static (or very low frequency) dielectric constant. Typical examples where one 
mechanism dominates over others are also listed.

Total induced 

dipole 

moment

Clausius–

Mossotti 

equation

Table 7.2 Typical examples of polarization mechanisms

Example Polarization Static εr Comment

Ar gas Electronic 1.0005 Small N in gases: εr ≈ 1

Ar liquid (T < 87.3 K) Electronic 1.53 van der Waals bonding

Si crystal Electronic polarization 11.9 Covalent solid; bond

  due to valence electrons   polarization

NaCl crystal Ionic 5.90 Ionic crystalline solid

CsCl crystal Ionic 7.20 Ionic crystalline solid

Water Orientational 80 Dipolar liquid

Nitromethane (27 °C) Orientational 34 Dipolar liquid

PVC (polyvinyl Orientational 7 Dipole orientations partly  

 chloride)    hindered in the solid
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IONIC AND ELECTRONIC POLARIZABILITY Consider the CsCl crystal which has one Cs+–Cl− 
pair per unit cell and a lattice parameter a of 0.412 nm. The electronic polarizability of Cs+ 
and Cl− ions is 2.7 × 10−40 F m2 and 4.0 × 10−40 F m2, respectively, and the mean ionic 
polarizability per ion pair is 5.8 × 10−40 F m2. What is the dielectric constant at low frequen-
cies and that at optical frequencies?

SOLUTION

The CsCl structure has one cation (Cs+) and one anion (Cl−) in the unit cell. Given the lat-
tice parameter a = 0.412 × 10−9 m, the number of ion pairs Ni per unit volume is 1∕a3 = 1∕ 
(0.412 × 10−9 m) 3 = 1.43 × 1028 m−3. Ni is also the concentration of cations and anions 
individually. From the Clausius–Mossotti equation,

 
εr − 1
εr + 2

=
1

3εo

[Niαe(Cs+ ) + Niαe(CI−) + Niαi]

That is,

 
εr − 1
εr + 2

=
(1.43 × 1028 m−3) (2.7 × 10−40 + 4.0 × 10−40 + 5.8 × 10−40 F m2)

3(8.85 × 10−12 F m−1)

Solving for εr, we find εr = 7.18.
 At high frequencies—that is, near-optical frequencies—the ionic polarization is too slug-
gish to allow ionic polarization to contribute to εr. Thus, εrop, relative permittivity at optical 
frequencies, is given by

 
εrop − 1

εrop + 2
=

1
3εo

[Niαe(Cs+ ) + Niαe(Cl−1) ]

That is,

 
εrop − 1

εrop + 2
=

(1.43 × 1028 m−3) (2.7 × 10−40 + 4.0 × 10−40 F m2)

3(8.85 × 10−12 F m−1)

Solving for εrop, we find εrop = 2.69. This very close to the experimental value εrop = 2.62. 
The low frequency experimental value for εr is 7.20, but this is normally used to deduce αi.

7.4   FREQUENCY DEPENDENCE: DIELECTRIC 

CONSTANT AND DIELECTRIC LOSS

7.4.1 DIELECTRIC LOSS

The static dielectric constant is an effect of polarization under dc conditions. When 
the applied field, or the voltage across a parallel plate capacitor, is a sinusoidal 
signal, then the polarization of the medium under these ac conditions leads to an ac 
dielectric constant that is generally different than the static case. As an example we 
will consider orientational polarization involving dipolar molecules. The sinusoidally 
varying field changes magnitude and direction continuously, and it tries to line up 
the dipoles one way and then the other way and so on. If the instantaneous induced 
dipole moment p per molecule can instantaneously follow the field variations, then 

 EXAMPLE 7.4
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at any instant

 p = αdE [7.22]

and the polarizability αd has its expected maximum value from dc conditions, that is,

 αd =
p2

o

3kT
 [7.23]

 There are two factors opposing the immediate alignment of the dipoles with the 
field. First is that thermal agitation tries to randomize the dipole orientations. Col-
lisions in the gas phase, random jolting from lattice vibrations in the liquid and solid 
phases, for example, aid the randomization of the dipole orientations. Second, the 
molecules rotate in a viscous medium by virtue of their interactions with neighbors, 
which is particularly strong in the liquid and solid states and means that the dipoles 
cannot respond instantaneously to the changes in the applied field. If the field 
changes too rapidly, then the dipoles cannot follow the field and, as a consequence, 
remain randomly oriented. At high frequencies, therefore, αd will be zero as the field 
cannot induce a dipole moment. At low frequencies, of course, the dipoles can 
respond rapidly to follow the field and αd has its maximum value. It is clear that αd 
changes from its maximum value in Equation 7.23 to zero as the frequency of the 
field is increased. We need to find the behavior of αd as a function of frequency ω 
so that we can determine the dielectric constant εr by the Clausius–Mossotti equation.
 Suppose that after a prolonged application, corresponding to dc conditions, the 
applied field across the dipolar gaseous medium is suddenly decreased from Eo to 
E at a time we define as zero, as shown in Figure 7.12. The field E is smaller than 
Eo, so the induced dc dipole moment per molecule should be smaller and given by 
αd(0)E where αd(0) is αd at ω = 0, dc conditions. Therefore, the induced dipole 
moment per molecule has to decrease, or relax, from αd(0)Eo to αd(0)E. In a gas 
medium the molecules would be moving around randomly and their collisions with 
each other and the walls of the container randomize the induced dipole per molecule. 
Thus the decrease, or the relaxation process, in the induced dipole moment is 

t
0

p

t

p – αd(0)E  

E

αd(0)Eo

Eo

E

αd(0)E

Figure 7.12 The applied dc field is suddenly changed from 

Eo to E at time t = 0.

The induced dipole moment p has to decrease from αd(0)Eo 

to a final value of αd(0)E. The decrease is achieved by random 

collisions of molecules in the gas.
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achieved by random collisions. Assuming that τ is the average time, called the relax-

ation time, between molecular collisions, then this is the mean time it takes per 
molecule to randomize the induced dipole moment. If p is the instantaneous induced 
dipole moment, then p − αd(0)E is the excess dipole moment, which must eventually 
disappear to zero through random collisions as t → ∞. It would take an average τ 

seconds to eliminate the excess dipole moment p − αd(0)E. The rate at which the 

induced dipole moment is changing is then −[p − αd(0)E ]∕τ, where the negative 
sign represents a decrease. Thus,

 
dp

dt
= −

p − αd(0)E
τ

 [7.24]

 Although we did not derive Equation 7.24 rigorously, it is nonetheless a good 
first-order description of the behavior of the induced dipole moment per molecule 
in a dipolar medium. Equation 7.24 can be used to obtain the dipolar polarizability 
under ac conditions. For an ac field, we would write

 E = Eo sin(ωt)

and solve Equation 7.24, but in engineering we prefer to use an exponential repre-
sentation for the field

 E = Eo exp( jωt)

as in ac voltages. In this case the impedance of a capacitor C and an inductor L 
become 1∕jωC and jωL, where j represents a phase shift of 90°. With E = Eo exp( jωt) 
in Equation 7.24, we have

 
dp

dt
= −

p

τ
+

αd(0)
τ

 Eo exp(  jωt)  [7.25]

 Solving this we find the induced dipole moment as

 p = αd(ω)Eo exp( jωt)

where αd(ω) is given by

 αd(ω) =
αd(0)

1 + jωτ
 [7.26]

and represents the orientational polarizability under ac field conditions. Polarizabil-
ity αd(ω) is a complex number that indicates that p and E are out of phase.6 Put 
differently, if N is the number of molecules per unit volume, P = Np and E are out 
of phase, as indicated in Figure 7.13a. At low frequencies, ωτ ≪ 1, αd(ω) is nearly 
αd(0), and p is in phase with E. The rate of relaxation 1∕τ is much faster than the 
frequency of the field or the rate at which the polarization is being changed; p then 
closely follows E. At very high frequencies, ωτ ≫ 1, the rate of relaxation 1∕τ is 
much slower than the frequency of the field and p can no longer follow the variations 
in the field.

Dipolar 

relaxation 

equation

Dipole 

relaxation 

equation

Orientational 

polarizability 

and frequency

Applied field

 6 The polarization P lags behind E by some angle ϕ, that is determined by Equation 7.26 as shown in Figure 7.13.
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 We can easily obtain the dielectric constant εr from αd(ω) by using Equation 7.14, 
which then leads to a complex number for εr since αd itself is a complex number. 
By convention, we generally write the complex dielectric constant as

 εr = ε′r − jε″r [7.27]

where ε′r is the real part and ε″r is the imaginary part, both being frequency dependent, 

as shown in Figure 7.13b. The real part ε′r decreases from its maximum value ε′r(0), 

corresponding to αd(0), to 1 at high frequencies when αd = 0 as ω → ∞ in Equa-

tion 7.26. The imaginary part ε″r(ω) is zero at low and high frequencies but peaks 

when ωτ = 1 or when ω = 1∕τ. The real part ε′r represents the relative permittivity 

that we would use in calculating the capacitance, as for example in C = εrεoA∕d. 
The imaginary part ε″r(ω) represents the energy lost in the dielectric medium as the 

dipoles are oriented against random collisions one way and then the other way and 

so on by the field. Consider the capacitor in Figure 7.14, which has this dielectric 

medium between the plates. Then the admittance Y, i.e., the reciprocal of impedance 

of this capacitor, with εr given in Equation 7.27 is

 Y =
jωAεoεr(ω)

d
=

jωAεoε′r(ω)

d
+

ωAεoε″r(ω)

d

which can be written as

 Y = jωC + GP [7.28]

where

 C =
Aεoε′r

d
 [7.29]

Complex 

relative 

permittivity

Admittance  

of a parallel 

plate 

capacitor

Equivalent 

ideal 

capacitance

P = Po sin(ωt – ϕ) 

(a)

ε'r and ε"r

ε"r

1

0.01/τ 0.1/τ 1/τ 10/τ 100/τ

(b)

E = Eo sin ωt

ω

v = Vo sin ωt

ε'r(0)

ε'r

Figure 7.13 (a) An ac field is applied to a dipolar medium. The polarization P(P = Np) is out  

of phase with the ac field. (b) The relative permittivity is a complex number with real (ε′r) and  

imaginary (ε″r ) parts that exhibit relaxation at ω ≈ 1∕τ.
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and

 GP =
ωAεoε″r

d
 [7.30]

is a real number just as if we had a conductive medium with some conductance GP 

or resistance 1∕GP. The admittance of the dielectric medium according to Equa-
tion 7.28 is a parallel combination of an ideal, or lossless, capacitor C, with a rela-
tive permittivity ε′r, and a resistance of RP = 1∕GP as indicated in Figure 7.14. Thus 
the dielectric medium behaves as if Co and RP were in parallel. There is no real 
electric power dissipated in C, but there is indeed real power dissipated in RP because

 Input power = IV = YV 
2 = jωCV 

2 +
V 

2

RP

and the second term is real. Thus the power dissipated in the dielectric medium is 
related to ε″r and peaks when ω = 1∕τ. The rate of energy storage by the field is 
determined by ω whereas the rate of energy transfer to molecular collisions is deter-
mined by 1∕τ. When ω = 1∕τ, the two processes, energy storage by the field and 
energy transfer to random collisions, are then occurring at the same rate, and hence 
energy is being transferred to heat most efficiently. The peak in ε″r versus ω is called 

a relaxation peak, which is at a frequency when the dipole relaxations are at 

the  right rate for maximum power dissipation. This process is known as dielectric 

resonance.

 According to Equation 7.28, the magnitude of GP and hence the energy loss is 

determined by ε″r. In engineering applications of dielectrics in capacitors, we would 

like to minimize ε″r for a given ε′r. We define the relative magnitude of ε″r with respect 

to ε′r through a quantity, tan δ, called the loss tangent (or loss factor), as

 tan δ =
ε″r

ε′r
 [7.31]

which is frequency dependent and peaks just beyond ω = 1∕τ. The actual value of 
1∕τ depends on the material, but typically for liquid and solid media it is in the 
gigahertz range, that is, microwave frequencies. We can easily find the energy per 
unit time—power—dissipated as dielectric loss in the medium. The resistance RP 

Figure 7.14 The dielectric medium behaves like 

an ideal (lossless) capacitor of capacitance C, 

which is in parallel with a conductance GP.v = Vo sin ωt

P = Po sin(ωt – ϕ) 

C

Conductance = Gp = 1/Rp

Equivalent 

parallel 

conductance

Loss tangent
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represents the dielectric loss, so

 Wvol =
Power loss

Volume
=

V 
2

RP

×
1

dA
=

V 
2

d

ωAεoε″r

×
1

dA
=

V 
2

d 
2
ωεoε″r

 Using Equation 7.31 and E = V∕d, we obtain

  Wvol = ωE2εoε′r tan δ [7.32]

 Equation 7.32 represents the power dissipated per unit volume in the polarization 

mechanism: energy lost per unit time to random molecular collisions as heat. It is 

clear that dielectric loss is influenced by three factors: ω, E, and tan δ.

 Although we considered only orientational polarization, in general a dielectric 

medium will also exhibit other polarization mechanisms and certainly electronic 

polarization since there will always be electron clouds around individual atoms, or 

electrons in covalent bonds. If we were to consider the ionic polarizability in ionic 

solids, we would also find αI to be frequency dependent and a complex number. In 

this case, lattice vibrations in the crystal, typically at frequencies ωI in the infrared 

region of the electromagnetic spectrum, will dissipate the energy stored in the 

induced dipole moments just as energy was dissipated by molecular collisions in the 

gaseous dipolar medium. Thus, the energy loss will be greatest when the frequency 

of the polarizing field is the same as the lattice vibration frequency, ω = ωI, which 

tries to randomize the polarization.

 We can represent the general features of the frequency dependence of the real 

and imaginary parts of the dielectric constant as in Figure 7.15. Although the figure 

shows distinctive peaks in ε″r and transition features in ε′r, in reality these peaks and 

various features are broader. First, there is no single well-defined lattice vibration 

frequency but instead an allowed range of frequencies just as in solids where there 

is an allowed range of energies for the electron. Moreover, the polarization effects 
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Figure 7.15 The frequency dependence of the real and imaginary parts of the dielectric constant 

in the presence of interfacial, orientational, ionic, and electronic polarization mechanisms.
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depend on the crystal orientation. In the case of polycrystalline materials, various 
peaks in different directions overlap to exhibit a broadened overall peak. At low 
frequencies the interfacial or space charge polarization features are even broader 
because there can be a number of conduction mechanisms (different species of 
charge carriers and different carrier mobilities) for the charges to accumulate at 
interfaces, each having its own speed. Orientational polarization, especially in many 
liquid dielectrics at room temperature, typically takes place at radio to microwave 
frequencies. In some polymeric materials, this type of polarization involves a limited 
rotation of dipolar side groups attached to the polymeric chain and can occur at much 
lower frequencies depending on the temperature. Figure 7.16 shows two typical 
examples of dielectric behavior, ε′r and ε″r as a function of frequency, for a polymer 

(PET) and an ionic crystal (KCl). Both exhibit loss peaks, peaks in ε″r versus fre-

quency, but for different reasons. The particular polymer, PET (a polyester), exhibits 

orientational polarization due to dipolar side groups, whereas KCl exhibits ionic 

polarization due to the displacement of K+ and Cl− ions. The frequency of the loss 

peak in the case of orientational polarization is highly temperature dependent. For 

the PET example in Figure 7.16 at 115 °C, the peak occurs at around 400 Hz, even 

below typical radio frequencies.
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Figure 7.16 Real and imaginary parts of the dielectric constant, ε′r and ε″r , versus frequency for (a) a polymer, 

PET, at 115 °C and (b) an ionic crystal, KCl, at room temperature.

Both exhibit relaxation peaks but for different reasons.

 SOURCE: Data for (a) from author’s own experiments using a dielectric analyzer (DEA), (b) data extracted from Smart, C., 
Wilkinson, G.R., Karo, A.M., and Hardy, J.R., International Conference on Lattice Dynamics, Copenhagen, 1963, as quoted 
by Martin, D.H., “The Study of the Vibration of Crystal Lattices by Far Infra-Red Spectroscopy,” Advances in Physics, 14,  
no. 53–56, 1965, pp. 39–100.

DIELECTRIC LOSS PER UNIT CAPACITANCE AND THE LOSS ANGLE δ Obtain the dielectric 

loss per unit capacitance in a capacitor in terms of the loss tangent. Obtain the phase difference 

between the current through the capacitor and that through RP. What is the significance of δ?

SOLUTION

We consider the equivalent circuit in Figure 7.14. The power loss in the capacitor is due to 

RP. If V is the rms value of the voltage across the capacitor, then the power dissipated per 

 EXAMPLE 7.5
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unit capacitance Wcap is

 Wcap =
V 

2

RP

×
1
C

= V 
2

 

ωεoε″r A

d
×

d

εoε′r A
= V 

2
 

ωε″r

ε′r

or

 Wcap = V 2ω tan δ

 As tan δ is frequency dependent and peaks at some frequency, so does the power dis-

sipated per unit capacitance. A clear design objective would be to keep Wcap as small as 

possible. Further, for a given voltage, Wcap does not depend on the dielectric geometry. For 

a given voltage and capacitance, we therefore cannot reduce the power dissipation by simply 

changing the dimensions of the dielectric.

 Consider the rms currents through RP and C, Iloss and Icap, respectively, and their ratio,7

 
Iloss

Icap

=
V

RP

×

1

jωC

V
=

ωεoε″r A

d
×

d

jωεoε′r A
= −j tan δ

 As expected, the two are 90° out of phase (−j) and the loss current (through RP) is a 
factor, tan δ, of the capacitive current (through C). The ratio of Icap and the total current, 
Itotal = Icap + Iloss, is

 
Icap

Itotal
=

Icap

Icap + Iloss
=

1

1 +
Iloss

Icap

=
1

1 − j tan δ

 The phase angle between Icap and Itotal is determined by the negative of the phase of the 
denominator term (1 − j tan δ). Thus the phase angle between Icap and Itotal is δ, where Icap 
leads Itotal by δ. δ is also called the loss angle. When the loss angle is zero, Icap and Itotal are 
equal and there is no loss in the dielectric.

 7 These currents are phasors, each with a rms magnitude and phase angle.

DIELECTRIC LOSS PER UNIT CAPACITANCE Consider the three dielectric materials listed 
in Table 7.3 with their dielectric constant ε′r (usually simply stated as εr) and loss factors tan δ. 

At a given voltage, which dielectric will have the lowest power dissipation per unit capaci-

tance at 60 Hz? Is this also true at 1 MHz?

 EXAMPLE 7.6

Table 7.3 Dielectric properties of three insulators

 f = 60 Hz f = 1 MHz

Material ε′r tan δ ω tan δ ε′r tan δ ω tan δ

Polycarbonate 3.17 9 × 10−4 0.34 2.96 1 × 10−2 6.2 × 104

Silicone rubber 3.7 2.25 × 10−2 8.48 3.4 4 × 10−3 2.5 × 104

Epoxy with mineral filler 5 4.7 × 10−2 17.7 3.4 3 × 10−2 18 × 104
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SOLUTION

The power dissipated at a given voltage per unit capacitance depends only on ω tan δ, so we 
do not need to use ε′r. Calculating ω tan δ or (2πf ) tan δ, we find the values listed in the 

table at 60 Hz and 1 MHz. At 60 Hz, polycarbonate has the lowest power dissipation per unit 

capacitance, but at 1 MHz it is silicone rubber.

Table 7.4 Dielectric loss per unit volume for two insulators (κ is the thermal conductivity)

 f = 60 Hz f = 1 MHz

   Loss   Loss κ

Material ε′r tan δ (mW cm−3) ε′r tan δ (W cm−3) (W cm−1 K−1)

XLPE 2.3 3 × 10−4 0.230 2.3 4 × 10−4 5.12 0.005
Alumina 8.5 1 × 10−3 2.84 8.5 1 × 10−3 47.3 0.33

DIELECTRIC LOSS AND FREQUENCY Calculate the heat generated per second due to 
dielectric loss per cm3 of cross-linked polyethylene, XLPE (typical power cable insulator), 
and alumina, Al2O3 (typical substrate in thin- and thick-film electronics), at 60 Hz and 1 MHz 
at a field of 100 kV cm−1. Their properties are given in Table 7.4. What is your conclusion?

SOLUTION

The power dissipated per unit volume is

 Wvol = (2πf )E2εoε′r tan δ

 We can calculate Wvol by substituting the properties of individual dielectrics at the given 

frequency f. For example, for XLPE at 60 Hz,

 Wvol = (2π60 Hz)(100 × 103 × 102 V m−1)2(8.85 × 10−12 F m−1)(2.3)(3 × 10−4)

 = 230 W m−3

 We can convert this into per cm3 by

 W′vol =
Wvol

106
= 0.230 mW cm−3

which is shown in Table 7.4.
 From similar calculations we can obtain the heat generated per second per cm3 as shown 
in Table 7.4. The heats at 60 Hz are small. The thermal conductivity of the insulation and 
its connecting electrodes can remove the heat without substantially increasing the temperature 
of the insulation. At 1 MHz, the heats generated are not trivial. One has to remove 5.12 W 
of heat from 1 cm3 of XLPE and 47.3 W from 1 cm3 of alumina. The thermal conductivity 
κ of XLPE is about 0.005 W cm−1 K−1, whereas that of alumina is almost 100 times larger, 
0.33 W cm−1 K−1. The poor thermal conductivity of polyethylene means that 5.12 W of heat 
cannot be conducted away easily and it will raise the temperature of the insulation until 
dielectric breakdown ensues. In the case of alumina, 47.3 W of heat will substantially increase 
the temperature. Dielectric loss is the mechanism by which microwave ovens heat food. 
Dielectric heating at high frequencies is used in industrial applications such as heating plastics 
and drying wood.

 EXAMPLE 7.7
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7.4.2  DEBYE EQUATIONS, COLE–COLE PLOTS,  

AND EQUIVALENT SERIES CIRCUIT

Consider a dipolar dielectric in which there are both orientational and electronic polariza-
tions, αd and αe, respectively, contributing to the overall polarizability. Electronic polar-
ization αe will be independent of frequency over the typical frequency range of operation 
of a dipolar dielectric, well below optical frequencies. At high frequencies, orientational 
polarization will be too sluggish too respond, αd = 0, and the εr will be εr∞. (The 

subscript “infinity” simply means high frequencies where orientational polarization is 

negligible.) The dielectric constant and polarizabilities are generally related through8

 εr = 1 +
N

εo

 αe +
N

εo

 αd(ω) = εr∞ +
N

εo

 αd(ω)

where we have combined 1 and αe terms to represent the high frequency εr as εr∞. 

Further Nαd(0)∕εo determines the contribution of orientational polarization to the 
static dielectric constant εrdc, so that Nαd(0)∕εo is simply (εrdc − εr∞). Substituting 

for the frequency dependence of αd(ω) from Equation 7.26, and writing εr in terms 

of real and imaginary parts,

 ε′r − jε″r = εr∞ +
N

εo

 
αd(0)

1 + jωτ
= εr∞ +

(εr dc − εr∞)

1 + jωτ
 [7.33]

 We can eliminate the complex denominator by multiplying both the denominator 

and numerator of the right-hand side by 1 − jωτ and equate real and imaginary parts 

to obtain what are known as Debye equations:

 ε′r = εr∞ +
εrdc − εr∞

1 + (ωτ)2
 [7.34a]

and ε″r =
(εrdc − εr∞) (ωτ)

1 + (ωτ)2
 [7.34b]

 Equations 7.34a and b reflect the behavior of ε′r and ε″r as a function of frequency 

shown in Figure 7.13b. The imaginary part ε″r that represents the dielectric loss 

exhibits a peak at ω = 1∕τ which is called a Debye loss peak. Many dipolar gases 
and some liquids with dipolar molecules exhibit this type of behavior. In the case 
of solids the peak is typically much broader because we cannot represent the losses 
in terms of just one single well-defined relaxation time τ; the relaxation in the solid 
is usually represented by a distribution of relaxation times. Further, the simple relax-
ation process that is described in Equation 7.25 assumes that the dipoles do not 
influence each other either through their electric fields or through their interactions 
with the lattice; that is, they are not coupled. In solids, the dipoles can also couple, 
which complicates the relaxation process. Nonetheless, there are also many solids 
whose dielectric relaxation can be approximated by a nearly Debye relaxation or by 
slightly modifying Equation 7.33.

Dielectric 

constant of  

a dipolar 

material

Dipolar 

dielectric 

constant

Debye 

equations for 

real and 

imaginary 

parts

 8 This simple relationship is used because the Lorentz local field equation does not apply in dipolar dielectrics 
and the local field problem is particularly complicated in these dielectrics.
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 In dielectric studies of materials it is quite common to find a plot of the imaginary 
part (ε″r) versus the real part (ε′r) as a function of frequency ω. Such plots are called 

Cole–Cole plots after their originators. The Debye Equations 7.34a and b obviously 

provide the necessary values for ε′r and ε″r to be plotted for the present simple dipolar 

relaxation mechanism that has only a single relaxation time τ. In fact, by simply putting 

in τ = 1 second, we can calculate and plot ε″r versus ε′r for ω = 0 (dc) to ω → ∞ as 

shown in Figure 7.17. The result is a semicircle. While for certain substances, such as 

gases and some liquids, the Cole–Cole plots do indeed generate a semicircle, for many 

dielectrics, the curve is typically flattened and asymmetric, and not a semicircle.9

 The Debye equations lead to a particular RC circuit representation of a dielectric 

material that is quite useful. Suppose that we have a resistance Rs in series with a 

capacitor Cs, both of which are in parallel with the capacitor C∞ as in Figure 7.18. 

Peter Debye (1884–1966) received the 1936 Nobel 
Prize in Chemistry “for his contributions to our 
knowledge of molecular structure through his 
investigations on dipole moments and on the 
diffraction of X-rays and electrons in gases.” The 
Debye heat capacity of solids was described in 
Chapter 4, and represents one of his many other 
contributions. Courtesy of the Division of Rare and 
Manuscript Collections, Cornell University Library. 

 Courtesy of the Division of Rare and Manuscript 
Collections, Cornell University Library. Used with 
permission.

 9 The departure is simply due to the fact that a simple relaxation process with a single relaxation time cannot 
describe the dielectric behavior accurately. (A good overview of non-Debye relaxations is given by Andrew 
Jonscher in J Phys D, 32, R57, 1999.)
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Figure 7.17 Cole–Cole plot is a plot of ε″r versus 

ε′r as a function of frequency ω.

As the frequency is changed from low to high, the 

plot traces out a semicircle.
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Figure 7.18 A capacitor with a dipolar 

dielectric and its equivalent circuit in 

terms of an ideal Debye relaxation.
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If we were to write down the equivalent admittance of this circuit, we would find 
that it corresponds to Equation 7.33, that is, the Debye equation. (The circuit math-
ematics is straightforward and is not reproduced here.) The reader may wonder why 
this circuit is different than the general model shown in Figure 7.14. Any series Rs 
and Cs circuit can be transformed to be equivalent to a parallel Rp and Cp (or Gp and 
C in Figure 7.14) circuit as is well known in circuit theory; the relationships between 
the elements depend on the frequency. Many electrolytic capacitors are frequently 
represented by an equivalent series Rs and Cs circuit as in Figure 7.18. If A is the 
area and d is the thickness of a parallel plate capacitor with a dipolar dielectric, then

 C∞ =
εoεr∞A

d
  Cs =

εo(εrdc − εr∞)A

d
  and  Rs =

τ

Cs

 [7.35]

 Notice that in this circuit model, Rs, Cs, and C∞ do not depend on the frequency, 

which is only true for an ideal Debye dielectric, that with a single relaxation time τ.

 10 Z. C. Xia et al., J Phys Cond Matter, 13, 4359, 2001. The origin of the dipolar activity in this ceramic is quite 
complex and involves an electron hopping ( jumping) from a Mn3+ to Mn4+ ion; we do not need the physical 
details in the example.

Equivalent 

circuit of a 

Debye 

dielectric

Non-Debye 

relaxation

NEARLY DEBYE RELAXATION There are some dielectric solids that exhibit nearly Debye 

relaxation. One example is the La0.7Sr0.3MnO3 ceramic whose relaxation peak and Cole–Cole 

plots are similar to those shown in Figures 7.13b and 7.17,10 especially in the high-frequency 

range past the resonance peak. La0.7Sr0.3MnO3’s low frequency (εrdc) and high frequency (εr∞) 

dielectric constants are 3.6 and 2.58, respectively, where low and high refer, respectively, to 

frequencies far below and above the Debye relaxation peak, i.e., εrdc and εr∞. The Debye loss 

peak occurs at 6 kHz. Calculate ε′r and the dielectric loss factor tan δ at 29 kHz.

SOLUTION

The loss peak occurs when ωo = 1∕τ, so that τ = 1∕ωo = 1∕(2π6000) = 26.5 μs. We can 
now calculate the real and imaginary parts of εr at 29 kHz,

  ε′r = εr∞ +
εrdc − εr∞

1 + (ωτ)2
= 2.58 +

3.6 − 2.58

1 + [(2π) (29 × 103) (26.5 × 10−6) ]2
= 2.62

  ε″r =
(εrdc − εr∞) (ωτ)

1 + (ωτ)2
=

(3.6 − 2.58)[(2π) (29 × 103) (26.5 × 10−6) ]

1 + [(2π) (29 × 103) (26.5 × 10−6) ]2
= 0.202

and hence

 tan δ =
ε″r

ε′r
=

0.202

2.62
= 0.077

which is close to the experimental value of 0.084.

 This example was a special case of nearly Debye relaxation. Debye equations have been 

modified over the years to account for the broad relaxation peaks that have been observed, 

particularly in polymers, by writing the complex εr as

 εr = εr∞ +
εrdc − εr∞

[1 + (  jωτ)α]β
 [7.36]

 EXAMPLE 7.8
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where α and β are constants, typically less than unity (setting α = β = 1 generates the Debye 
equations). Such equations are useful in engineering for predicting εr at any frequency from 
a few known values at various frequencies, as highlighted in this simple nearly Debye exam-
ple. Further, if τ dependence on the temperature T is known (often τ is thermally activated), 
then we can predict εr at any ω and T.

7.5  GAUSS’S LAW AND BOUNDARY CONDITIONS

An important fundamental theorem in electrostatics is Gauss’s law, which relates the 
integration of the electric field over a surface to the total charge enclosed. It can be 
derived from Coulomb’s law, or the latter can be derived from Gauss’s law. Suppose 
En is the electric field normal to a small surface area dA on a closed surface, as 
shown in Figure 7.19; then summing En dA products over the whole surface gives 
total net charge Qtotal inside it,

 ∮
Surface

 En d A =
Qtotal

εo

 [7.37]

where the circle on the integral sign represents integrating over the whole surface 
(any shape) enclosing the charges constituting Qtotal as shown in Figure 7.19. The 
total charge Qtotal includes all charges, both free charges and bound polarization 
charges. Gauss’s law is one of the most useful laws for calculating electric fields in 
electrostatics, more so than the Coulomb law with which the reader is probably more 
familiar. The surface can be of any shape as long as it contains the charges. We 
generally choose convenient surfaces to simplify the integral in Equation 7.37, and 
these convenient surfaces are called Gauss surfaces. It should be noted from Figure 
7.19 that the field En is coming out from the surface.
 As an example, we can consider the field in the parallel plate capacitor in Figure 
7.20a with no dielectric medium. We draw a thin rectangular Gauss surface (a hypo-
thetical surface) just enclosing the positive electrode that contains the free charges +Qo 
on the plate. The field Eo is normal to the inner face (area A) of the Gauss surface. 
Further, we can assume that Eo is uniform across the plate surface, which means that 
the integral of En dA in Equation 7.37 over the surface is simply Eo A. There is no field 
on the other faces of this rectangular Gauss surface. Then from Equation 7.37,

 Eo A =
Qo

εo

Gauss’s law

Surface

Charges inside

the surface

dA

En

Figure 7.19 Gauss’s law.

The surface integral of the electric field normal to the surface is 

the total charge enclosed. The field is positive if it is coming out, 

negative if it is going into the surface.
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which gives

 Eo =
σo

εo

 [7.38]

where

 σo =
Qo

A

is the free surface charge density. This is the same as the field we calculated using 
Eo = V∕d and Qo = CV.
 An important application of Gauss’s law is determining what happens at boundar-
ies between dielectric materials. The simplest example is the insertion of a dielectric 
slab to only partially fill the distance between the plates, as shown in Figure 7.20b. 
The applied voltage remains the same, but the field is no longer uniform between the 
plates. There is an air–dielectric boundary. The field is different in the air and dielec-
tric regions. Suppose that the field is E1 in the air region and E2 in the dielectric 
region. Both these fields are normal to the boundary by the choice of the dielectric 
shape (faces parallel to the plates). As a result of polarization, bound surface charges 
+AσP and −AσP appear on the surfaces of the dielectric slab, as shown in Figure 7.20b, 
where σP = P, the polarization in the dielectric. We draw a very narrow rectangular 
Gauss surface that encompasses the air–dielectric interface and hence the surface 
polarization charges −AσP as shown in Figure 7.20c. The field coming in at the left 
face in air is E1 (taken as negative) and the field coming out at the right face in the 
dielectric is E2. The surface integral En dA and Gauss’s law become

 E2A − E1A =
−(AσP)

εo

d1 d2

Qo

Gauss surface
Area = A 

 ε
r
 = 1

(b) (c)(a) 

E1

E
o

E2

E1 E2

ε
r2

Figure 7.20 (a) The Gauss surface is a very thin rectangular surface just surrounding the positive electrode 

and enclosing the positive charges Qo. The field cuts only the face just inside the capacitor. (b) A solid dielectric 

occupies part of the distance between the plates. The vacuum (air)–dielectric boundary is parallel to the plates 

and normal to the fields E1 and E2. (c) A thin rectangular gauss surface at the boundary encloses the negative 

polarization charges.
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or

 E1 = E2 +
P

εo

 The polarization P and the field E2 in the dielectric are related by

 P = εoχe2E2

or

 P = εo(εr2 − 1)E2

where χe2 is the electrical susceptibility and εr2 is the relative permittivity of the 
inserted dielectric. Then, substituting for P, we can relate E1 and E2,

 E1 = E2 + (εr2 − 1)E2

or

 E1 = εr2E2

 The field in the air part is E1 and the relative permittivity is 1. The example in 
Figure 7.20b involved a boundary between air (vacuum) and a dielectric solid, and 
the boundary was parallel to the plates and hence normal to the fields E1 and E2. A 
more general expression can be shown to relate the normal components of the electric 
field, shown as En1 and En2 in Figure 7.21a, on either side of a boundary by

 εr1En1 = εr2En2 [7.39]

 There is a second boundary condition that relates the tangential components of 
the electric field, shown as Et1 and Et2 in Figure 7.21a, on either side of a boundary. 
These tangential fields must be equal.

 Et1 = Et2 [7.40]

 We can readily appreciate this boundary condition by examining the fields in a 
parallel plate capacitor, which has two dielectrics longitudinally filling the space 
between the plates but with a boundary parallel to the field, as shown in Figure 7.21b. 
The field in each, Et1 and Et2, is parallel to the boundary. The voltage across each 

General 

boundary 

condition

General 

boundary 

condition

Boundary

(a)

V

 d

(b)

V

Et1
Et1

Et2

En1

En2

Et2

ε
r2

ε
r1

Figure 7.21 (a) Boundary conditions between  

dielectrics. (b) The case for Et1 = Et2.
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longitudinal dielectric slab is the same, and since E = dV∕dx, the field in each is 
the same, Et1 = Et2 = V∕d.

 The above boundary conditions are widely used in explaining dielectric behavior 
when boundaries are involved. For example, consider a small disk-shaped cavity 
within a solid dielectric between two electrodes, as depicted in Figure 7.22. The disk-
shaped cavity has its face perpendicular to the electric field. Suppose that the dielec-
tric length d is 1 cm and the cavity size is on the scale of micrometers. The average 
field within the dielectric will still be close to V∕d because in integrating the field 
E(x) to find the voltage across the dielectric, the contribution from a tiny distance 
of a few microns will be negligible compared with contributions coming over the 
rest of the 1 cm. But the field within the cavity will not be the same as the average 
field E1 in the dielectric. If εr1 = 5 for the dielectric medium and the cavity has air, 
then at the cavity face we have

 εr2E2 = εr1E1

which gives

 E2 = 5(V

d)
Air insulation in a 100 μm (0.1 mm) thick cavity breaks down when E2 is typically 
100 kV cm−1. From E2 = 5(V∕d), a voltage of 20 kV will result in the breakdown 
of air in the cavity and hence a discharge current. This is called a partial discharge 
as only a partial breakdown of the insulation, that in the cavity, has occurred between 
the electrodes. Under an ac voltage, the discharge in the cavity can often be sustained 
by the capacitive current through the surrounding dielectric. Without this cavity, the 
dielectric would accept a greater voltage across it, which in this case is typically 
greater than 100 kV.

Small cavity has εr2 

V

d

E

E1 E2

εr2

εr1

εr1

Figure 7.22 Field in the cavity is higher 

than the field in the solid.

FIELD INSIDE A THIN DIELECTRIC WITHIN A SECOND DIELECTRIC When the dielectric 
fills the whole space between the plates of a capacitor, the net field within the dielectric is 
the same as before, E = V∕d. Explain what happens when a dielectric slab of thickness t ≪ d 
is inserted in the middle of the space between the plates, as shown in Figure 7.23. What is 
the field inside the dielectric?

 EXAMPLE 7.9
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SOLUTION

The problem is illustrated in Figure 7.23 and has symmetry in that the field in air on either 
side of the dielectric is the same and E1. The boundary conditions give

 εr1E1 = εr2E2

 Further, the integral of the field from one plate to the other must be V because dV∕dx = E. 
Examining Figure 7.23, we see that the integration is

 E1(d − t) + E2t = V

 We now have to eliminate E1 between the previous two equations and obtain E2, which 
can be done by algebraic manipulation,

 E2 =
εr1

εr2 −
t

d
 (εr2 − εr1)

(V

d) [7.41]

 If t ≪ d, then this approximates to

 E2 =
εr1

εr2(V

d)  and  E1 = (V

d)  (t ≪ d)  [7.42]

 Clearly E1 in the air space remains the same as the applied field V∕d. Since εr1 = 1 (air) 
and εr2 > 1, E2 in the thin dielectric slab is smaller than the applied field V∕d. On the other 
hand, if we have air space between two dielectric slabs, then the field in this air space will 
be greater than the field inside the two dielectric slabs. Indeed, if the applied voltage is 
sufficiently large, the field in the air gap can cause dielectric breakdown of this region.

d

t

V

E1 E1E2

ε
r1 ε

r1ε
r2

Figure 7.23 A thin slab of dielectric is placed in the middle of a parallel 

plate capacitor.

The field inside the thin slab is E2.

GAUSS’S LAW WITHIN A DIELECTRIC AND FREE CHARGES Gauss’s law in Equation 7.37 
contains the total charge Qtotal, enclosed within the surface. Generally, these enclosed charges 
are free charges Qfree, due to the free carriers on the electrode, and bound charges QP, due to 
polarization charges on the dielectric surface. Apply Gauss’s law using a Gaussian rectangu-
lar surface enclosing the left electrode and the dielectric surface in Figure 7.24. Show that 
the electric field E in the dielectric can be expressed in terms of free charges only, Qfree, through

 ∮
Surface

 En dA =
Qfree

εoεr

 [7.43]

where εr is the relative permittivity of the dielectric medium.

 EXAMPLE 7.10

Free charges 

and field in a 

dielectric
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SOLUTION

We apply Gauss’s law to a hypothetical rectangular surface enclosing the left electrode and 
the dielectric surface. The field E in the dielectric is normal and outwards at the Gauss surface 
in Figure 7.24. Thus En = E in the left-hand side of Equation 7.37.

 εo AE = Qtotal = Qfree − QP = Qfree − AP = Qfree − Aεo(εr − 1)E

where we have used P = εo(εr − 1)E. Rearranging,

 εoεr AE = Qfree

 Since AE is effectively the surface integral of En, the above corresponds to writing 
Gauss’s law in a dielectric in terms of free charges as

 ∮
Surface

 En dA =
Qfree

εoεr

 The above equation assumes that polarization P and E are linearly related,

 P = εo(εr − 1)E

We note that if we only use free charges in Gauss’s law, then we simply multiply εo by the 
dielectric constant of the medium. The above proof is by no means a rigorous derivation.

7.6   DIELECTRIC STRENGTH AND  

INSULATION BREAKDOWN

7.6.1 DIELECTRIC STRENGTH: DEFINITION

A defining property of a dielectric medium is not only its ability to increase capac-
itance but also, and equally important, its insulating behavior or low conductivity so 
that the charges are not simply conducted from one plate of the capacitor to the other 
through the dielectric. Dielectric materials are widely used as insulating media 
between conductors at different voltages to prevent the ionization of air and hence 
current flashovers between conductors. The voltage across a dielectric material and 
hence the field within it cannot, however, be increased without limit. Eventually a 

Gauss surface+Qfree
–QP

V

Dielectric

E

Figure 7.24 A convenient Gauss surface for calculating the 

field inside the dielectric is a very thin rectangular surface  

enclosing the surface of the dielectric.

The total charges enclosed are the free charges on the  

electrodes and the polarization charges on the surface of  

the dielectric.



 7 . 6  DIELECTRIC STRENGTH AND INSULATION BREAKDOWN 697

voltage is reached that causes a substantial current to flow between the electrodes, 
which appears as a short between the electrodes and leads to what is called dielec-

tric breakdown. In gaseous and many liquid dielectrics, the breakdown does not 
generally permanently damage the material. This means that if the voltage causing 
breakdown is removed, then the dielectric can again sustain voltages until the voltage 
is sufficiently high to cause breakdown again. In solid dielectrics the breakdown 
process invariably leads to the formation of a permanent conducting channel and 
hence to permanent damage. The dielectric strength Ebr is the maximum field that 
can be applied to an insulating medium without causing dielectric breakdown. 
Beyond Ebr, dielectric breakdown takes place. The dielectric strength of solids 
depends on a number of factors besides simply the molecular structure, such as the 
impurities in the material, microstructural defects (e.g., microvoids), sample geom-
etry, nature of the electrodes, temperature, and ambient conditions (e.g., humidity), 
as well as the duration and frequency of the applied field. Dielectric strength is 
different under dc and ac conditions. There are also aging effects that slowly degrade 
the properties of the insulator and reduce the dielectric strength. For engineers 
involved in insulation, the dielectric strength of solids is therefore one of the most 
difficult parameters to interpret and use. For example, the breakdown field also 
depends on the thickness of the insulation because thicker insulators have more 
volume and hence a greater probability of containing a microstructural defect (e.g., 
a microcavity) that can initiate a dielectric breakdown. Table 7.5 shows some typical 
dielectric strengths for various dielectrics used in electrical insulation. Unpressurized 
gases have lower breakdown strengths than liquids and solids.

7.6.2 DIELECTRIC BREAKDOWN AND PARTIAL DISCHARGES: GASES

Due to cosmic radiation, there are always a few free electrons in a gas. If the field 
is sufficiently large, then one of these electrons can be accelerated to sufficiently 
large kinetic energies to impact ionize a neutral gas molecule and produce an additional 

Table 7.5 Dielectric strength; typical values at room temperature and 1 atm

Dielectric Medium Dielectric Strength Comments

Atmosphere at 1 atm pressure 31.7 kV cm−1 at 60 Hz 1 cm gap. Breakdown by electron
   avalanche by impact ionization.
SF6 gas 79.3 kV cm−1 at 60 Hz Used in high-voltage circuit
   breakers to avoid discharges.
Polybutene >138 kV cm−1 at 60 Hz Liquid dielectric used as oil filler
   and HV pipe cables.
Transformer oil 128 kV cm−1 at 60 Hz
Amorphous silicon dioxide 10 MV cm−1 dc Very thin oxide films without
 (SiO2) in MOS technology   defects. Intrinsic breakdown limit.
Borosilicate glass 10 MV cm−1 duration of 10 μs Intrinsic breakdown.
 6 MV cm−1 duration of 30 s Thermal breakdown.
Polypropylene 295–314 kV cm−1 Likely to be thermal breakdown
   or electrical treeing.
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free electron and a positively charged gas ion. Both the first and liberated electrons 
are now available to accelerate in the field again and further impact ionize more 
neutral gas molecules, and so on. Thus, an avalanche of impact ionization processes 
creates many free electrons and positive gas ions in the gas, which give rise to a 
discharge current between the electrodes. The process is similar to avalanche break-
down in a reverse-biased pn junction. The breakdown in gases depends on the pres-
sure. The concentration of gas molecules is greater at higher pressures. This means 
that the mean separation between molecules, and, hence, the mean free path of a 
free electron, is shorter. Shorter mean free paths inhibit the free electrons from 
accelerating to reach impact ionization energies unless the field is increased. Thus, 
generally, Ebr increases with the gas pressure. The 60 Hz breakdown field for an air 
gap of 1 cm at room temperature and at atmospheric pressure is about 31.7 kV cm−1. 
On the other hand, the gas sulfurhexafluoride, SF6, has a dielectric strength of 
79.3 kV cm−1 and an even higher strength when pressurized. SF6 is therefore used 
instead of air in high-voltage circuit breakers.
 A partial discharge occurs when only a local region of the dielectric is exhib-
iting discharge, so the discharge does not directly connect the two electrodes. For 
example, for the cylindrical conductor carrying a high voltage above a grounded 
plate, as in Figure 7.25a, the electric field is greatest on the surface of the conduc-
tor facing the ground. This field initiates discharge locally in this region because the 
field is sufficiently high to give rise to an electron avalanche effect. Away from the 
conductor, however, the field is not sufficiently strong to continue the electron ava-
lanche discharge. This type of local discharge in high field regions is termed corona 

discharge. Voids and cracks occurring within solid dielectrics and discontinuities at 
the dielectric–electrode interface can also lead to partial discharges as the field in 
these voids is higher than the average field in the dielectric, and, further, the dielec-
tric strength in the gas (e.g., atmosphere) in the void is less than that of the con-
tinuous solid insulation. Figure 7.25b and c depict two examples of partial discharges 
occurring in voids, one inside the solid (perhaps an air or gas bubble introduced 
during the processing of the dielectric) and the other (perhaps in the form of a crack) 

High voltage conductor

Gas

Ground

Void in dielectric
Crack (or defect) at dielectric–
electrode interface

(a) (b) (c)

Figure 7.25 (a) The field is greatest on the surface of the cylindrical conductor facing the 

ground. If the voltage is sufficiently large, this field gives rise to a corona discharge. (b) The field 

in a void within a solid can easily cause partial discharge. (c) The field in the crack at the solid–

metal interface can also lead to a partial discharge.
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at the solid–electrode interface. In practice, a variety of factors can lead to micro-
voids and microcavities inside solids as well as at interfaces. Partial discharges in 
these voids physically and chemically erode the surrounding dielectric region and 
lead to an overall deterioration of the dielectric strength. If uncontrolled, they can 
eventually give rise to a major breakdown.

IMPACT IONIZATION IN GASSES AND BREAKDOWN Consider discharge in an argon gas. 
Suppose two electrodes are separated by a distance d = 1 mm and the Ar gas pressure P = 
1 atm, or 1.01 × 105 Pa. The breakdown voltage Vbr for Ar gas at this pressure and electrode 
spacing is about 2.4 kV.11 The field in the gas is very roughly Ebr = Vbr∕d ≈ 2.4 × 106 V m−1. 

Let ℓ be the mean free path of an electron parallel to the field from an ionizing collision with 

a gas atom A to the next ionizing collision, as shown in Figure 7.26a. The ionization energy 

EI of Ar is 15.75 eV. If the projectile electron gains sufficient energy, it can impact ionize A 

and release an electron from A, shown as 2 in Figure 7.26b, from the ground state E1 into 

vacuum (“vacuum” here means space between the gas atoms). The KE gained from the field, 

force × distance, or eEbrℓ must be at least EI, so that

 eEbrℓ = EI  or  ℓ = 6.5 × 10−6 m  or  6.5 μm

 The concentration of gas atoms ngas can be found from the ideal gas law PV = NkT, 

ngas = P∕kT = 2.5 × 1025 m−3. The average separation between the molecules is ngas
−1∕3 or 

3.4 nm, so that the projectile electron passes by many Ar atoms before an ionizing collision.
 If S is the cross-sectional area of the gas atom, then, using the same arguments we did 
in Chapter 2, there must at least be one gas atom in the volume ℓS or ℓSngas = 1 and ℓ = 
1∕Sngas. Not every collision would lead to ionization. An electron interacting with the periph-
ery of an atom may simply become deflected without causing any impact ionization. Some 
collisions may simply excite A to a higher energy rather than ionize it. In some cases, the 
projectile electron can even become attached to the gas atom if the atom is strongly electro-
negative. Thus, the actual cross sectional area Si involved in an impact ionization would be 
smaller than S, which means that

 ℓ =
1

Si ngas

=
kT

Si P
 [7.44]

We can write Si = πri
2 in which ri is an ionization radius so that

 6.5 × 10−6 m =
1

(πr 
2
i ) (2.5 × 1025 m−3)

or ri = 4.5 × 10−11 m = 45 pm

Typical periodic table websites and various chemistry books give the radius of an Ar atom 
around 70 pm so that ri is indeed less than the full radius, as expected. We neglected the 
dependence of Si on the electron energy.
 Both the primary (ionizing) and the secondary (ionized) electron can be accelerated by 
the field to cause further impact ionizations, which can lead to an avalanche of impact ionization 

 EXAMPLE 7.11

 11 This is easily found by using the Paschen curve for argon gas. See Question 7.23. The example here is a 
simple back-of-an-envelope type estimation of typical processes involved in electrical breakdown in a gas;  
there are many rigorous treatises in the literature. Further, the ionization cross-sectional area Si depends on  
the electron energy.

Mean free 

path
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processes in which a large number of electrons and gas ions are generated as shown in Fig-
ure 7.26c. The ionized atoms can impinge on the cathode and cause a secondary emission of 

electrons from this electrode as explained in Chapter 4 and shown in Figure 6.26c. These 
secondary electrons can now be accelerated by the field leading to further avalanche of impact 
ionization and so on. At sufficiently high fields, there can be a self-sustained breakdown, an 
arc, occurring between the electrodes, which constitutes a breakdown.
 It is clear that the breakdown voltage Vbr between two electrodes depends on the electrode 
separation d as well as the gas pressure P. It has been found that Vbr can be expressed as a 
function of pressure × electrode separation only, that is, Vbr = f (Pd), which is called Paschen’s 

law. Figure 7.26d shows a typical Vbr versus Pd behavior—a Paschen curve. At high pressures 
in region II, Vbr increases with P because ℓ becomes shorter and a higher voltage is needed 
to accelerate the electrons to the ionization threshold. At very low pressures in region I, the 
mean free path is already very long, the electron can certainly gain much energy from the 
field (much more than EI) but there are not many atoms to ionize. As the pressure increases, 
Vbr decreases because the electron can find more atoms to ionize.

7.6.3 DIELECTRIC BREAKDOWN: LIQUIDS

The processes that lead to the breakdown of insulation in liquids are not as clear as 
the electron avalanche effect in gases. In impure liquids with small conductive par-
ticles in suspension, it is believed that these impurities coalesce end to end to form 
a conducting bridge between the electrodes and thereby give rise to discharge. In 
some liquids, the discharge initiates as partial discharges in gas bubbles entrapped 
in the liquid. These partial discharges can locally raise the temperature and vaporize 
more of the liquid and hence increase the size of the bubble. The eventual discharge 
can be a series of partial discharges in entrapped gas bubbles. Moisture absorption 
and absorption of gases from the ambient generally deteriorate the dielectric strength. 
Oxidation of certain liquids, such as oils, with time produces more acidic and hence 
higher conductivity inclusions or regions that eventually give discharge. In some 
liquids, the discharge involves the emission of a large number of electrons from the 
electrode into the liquid due to field emission at high fields. This is a discharge 
process by electrode injection.

Vbr

II
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Vbr

d

Impact ionization

Energy

E1
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energy

Vacuum
level
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e− A+

ℓ
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Area = S 

Pd

Ionized
ion (A+)

I
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(a) (b) (c) (d)

Ebr

Figure 7.26 (a) Impact ionization, (b) ionization of a gas atom through electron impact, (c) electrical discharge in a gas 

and the role of avalanche multiplication of electrons, and (d) a typical Paschen curve.
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7.6.4 DIELECTRIC BREAKDOWN: SOLIDS

There are various major mechanisms that can lead to dielectric breakdown in solids. 
The most likely mechanism depends on the dielectric material’s condition and 
sometimes on extrinsic factors such as the ambient conditions, moisture absorption 
being a typical example.

Intrinsic Breakdown or Electronic Breakdown The most common type of 
electronic breakdown is an electron avalanche breakdown. A free electron in the 
conduction band (CB) of a dielectric in the presence of a large field can be accel-
erated to sufficiently large energies to collide with and ionize a host atom of the 
solid. The electron gains an energy eEbrℓ when it moves a distance ℓ under an 
applied field Ebr. If this energy is greater than the bandgap energy Eg, then the 
electron, as a result of a collision with the lattice vibrations, can excite an electron 
from the valence band to the conduction band, that is, “break” a bond. Both the 
primary and the released electron can further impact ionize other host atoms and 
thereby generate an electron avalanche effect that leads to a substantial current. The 
initial conduction electrons for the avalanche are either present in the CB or are 
injected from the metal into the CB as a result of field-assisted thermal emission 
from the Fermi energy in the metal to the CB in the dielectric. Taking typical val-
ues, Eg ≈ 5 eV and ℓ to be of the order of the mean free path for lattice scattering, 

say ∼50 nm, one finds Ebr ≈ 1 MV cm−1. Obviously, Ebr depends on the choice of ℓ, 

but its order of magnitude indicates voltages that are quite large. This type of 

breakdown represents an upper theoretical limit that is probably approached by only 

certain dielectrics—those that have practically no defects. Usually, microstructural 

defects lead to a lower dielectric strength than the limit indicated by intrinsic break-

down. Silicon dioxide (SiO2) films with practically no structural defects in present 

MOS (metal-oxide-semiconductor) capacitors (as in the gates of MOSFETs) probably 

exhibit an intrinsic breakdown.

 If dielectric breakdown does not occur by an electron avalanche effect (perhaps 

due to short mean free paths in the insulator), then another insulation breakdown 

mechanism is the enormous increase in the injection of electrons from the metal 

electrode into the insulator at very high fields as a result of field-assisted emission.12 

It has been proposed that insulation breakdown under short durations in some thin 

polymer films is due to this type of tunneling injection.

Thermal Breakdown Finite conductivity of the insulation means that there is 

Joule heat σE2 being released within the solid. Further, at high frequencies, the 

dielectric loss, V 2ω tan δ, becomes especially significant. For example, the work 

done by the external field in rotating the dipoles is transferred more frequently to 

random molecular collisions as heat as the frequency of the field increases. Both 

conduction and dielectric losses therefore generate heat within the dielectric. If this 

heat cannot be removed from the solid sufficiently quickly by thermal conduction 

 12 The emission of electrons by tunneling from an electrode in the presence of a large field was treated in 
Chapter 4 as Fowler–Nordheim field emission.
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(or by other means), then the temperature of the dielectric will increase. The increase 
in the temperature invariably increases the conductivity of an insulator. The increase 
in the conductivity then leads to more Joule heating and hence further rises in the 
temperature and so on. If the heat cannot be conducted away to limit the temperature, 
then the result is a thermal runaway condition in which the temperature and the 
current increase until a discharge occurs through various sections of the solid. As a 
consequence of sample inhomogeneities, frequently thermal runaway is severe in 
certain parts of the solid that become hot spots and suffer local melting and physical 
and chemical erosion. Hot spots are those local regions or inhomogeneities where σ 
or ε″r is larger or where the thermal conductivity is too poor to remove the heat 

generated. Local breakdown at various hot spots eventually leads to a conducting 

channel connecting the opposite electrodes and hence to a dielectric breakdown. 

Since it takes time to raise the temperature of the dielectric, due to the heat capacity, 

this breakdown process has a marked thermal lag. The time to achieve thermal 

breakdown depends on the heat generated, and hence on E2. Conversely, this means 

that the dielectric strength Ebr depends on the duration of application of the field. 

For example, at 70 °C, pyrex has an Ebr of typically 9 MV cm−1 if the applied field 

duration is kept short, not more than 1 ms or so. If the field is kept for 30 s, then 

the breakdown field is only 2.5 MV cm−1. Dielectric breakdown in various ceramics 

and glasses at high frequencies has been attributed directly to thermal breakdown. 

A characteristic feature of thermal breakdown is not only the thermal lag, the time 

dependence, but also the temperature dependence. Thermal breakdown is facilitated 

by increasing the temperature of the dielectric, which means that Ebr decreases with 

temperature.

Electromechanical Breakdown and Electrofracture A dielectric medium 

between oppositely charged electrodes experiences compressional forces because the 

opposite charges +Q and −Q on the plates attract each other, as depicted in Figure 7.27. 

As the voltage increases, so does the compressive load, and the dielectric becomes 

squeezed, or the thickness d gets smaller. At each stage, the increase in the compres-

sive load is normally balanced by the elastic deformation of the insulation to a new 

smaller thickness. However, if the elastic modulus is sufficiently small, then com-

pressive loads cannot be simply balanced by the elasticity of the solid, and there is 

a mechanical runaway for the following reasons. The decrease in d, due to the com-

pressive load, leads to a higher field (E = V∕d) and also to more charges on the 

+Q –Q

d

V

F F

Figure 7.27 A highly exaggerated schematic illustration of a soft  

dielectric medium experiencing strong compressive forces due to the 

applied voltage.
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electrodes (Q = CV, C = εoεr A∕d). This in turn leads to a greater compressive load, 
which further decreases d, and so on, until the shear stresses within the insulation 
cause the insulation to flow plastically (for example, by viscous deformation). Even-
tually, the insulation breaks down. In addition, the increase in E as d gets smaller 
results in more Joule (σE2) and dielectric-loss heating (ωE2 tan δ) in the dielectric, 
which increases the temperature and hence lowers the elastic modulus and viscosity, 
thereby further deteriorating the mechanical stability. It is also possible for the field 
during the mechanical deformation of the dielectric to reach the thermal breakdown 
field, in which case the dielectric failure is not truly a mechanical breakdown mech-
anism though initiated by mechanical deformations. Another possibility is the initia-
tion and growth of internal cracks (perhaps filamentary cracks) by internal stresses 
around inhomogeneous regions inside the dielectric. For example, an imperfection 
or a tiny cavity experiences shear stresses and also large local electric fields. Com-
bined effects of both large shear stresses and large electric fields eventually lead to 
crack propagation and mechanical and, hence, dielectric failure. This type of process 
is sometimes called electrofracture. It is generally believed that certain thermoplas-
tic polymers suffer from electromechanical dielectric breakdown, especially close to 
their softening temperatures. Polyethylene and polyisobutylene have been cited as 
examples.

Internal Discharges These are partial discharges that take place in microstruc-
tural voids, cracks, or pores within the dielectric where the gas atmosphere (usually 
air) has lower dielectric strength. A porous ceramic, for example, would experience 
partial discharges if the applied field is sufficiently large. The discharge current in 
a void, such as those in Figure 7.25b and c, can be easily sustained under ac condi-
tions, which accounts for the severity of this type of breakdown mechanism under 
ac conditions. Initially, the pore size (or the number of pores) may be small and the 
partial discharge insignificant, but with time the partial discharge erodes the internal 
surfaces of the void. Partial discharges can locally melt the insulator and can easily 
cause chemical transformations. Eventually, and usually, an electrical tree type of 
discharge develops from a partial discharge that has been eroding the dielectric, as 

Electrical breakdown by treeing (formation of discharge 
channels) in a low-density polyethylene insulation when a  
50 Hz, 20 kV (rms) voltage is applied for 200 minutes to an 
electrode embedded in the insulation.

 J. W. Billing and D. J. Groves, “Treeing in mechanically 
strained h.v.-cable polymers using conducting polymer 
electrodes” Proceedings of the Institution of Electrical 
Engineers, Volume 121, Issue 11, 1974, p. 1451. Reproduced 
by permission of the Institution of Engineering & Technology.
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depicted in Figure 7.28a for a high-voltage cable in which there is a tiny void at the 
interface between the dielectric and the inner conductor (generated perhaps by the 
differential thermal expansion of the electrode and polymeric insulation). The erosion 
of the dielectric by the partial discharge propagates like a branching tree. The “tree 
branches” are erosion channels—hollow filaments of various sizes—in which gas-
eous discharge takes place and forms a conducting channel during operation. Two 
sets of examples are shown in the photos on page 705 where one can identify so-
called branch trees and bush trees. Open tree-like partial discharge structures are 
often called branch trees. A bush tree develops when there is a compact and high 
concentration of partial discharge channels emerging from the breakdown point such 
that the region resembles the structure of a “bush.” Bush trees typically occur at 
higher breakdown fields than branch trees. Both grow with time and eventually cause 
a breakdown. (Examine the center and bottom photos on page 705.)
 In the case of a coaxial high-voltage cable in Figure 7.28a, the dielectric is usu-
ally a polymer, cross-linked polyethylene (XLPE) being one of the most popular. 
The electric field is maximum at the surface of the inner conductor, which is the 
reason for the initiation of most electrical trees near this surface. Electrical treeing 
is substantially controlled by having semiconductive polymer layers or sheaths sur-
rounding the inner conductor and the outer surface of the insulator, as shown in 
Figure 7.28b. For flexibility, the inner conductor is frequently multicored, or stranded, 
rather than solid. Due to the extrusion process used to draw the insulation, the semi-
conductive polymer sheaths are bonded to the insulation. There are therefore practi-
cally no microvoids at the interfaces between the insulator and the semiconducting 
sheath. Further, these semiconducting polymer sheaths are sufficiently conductive to 
become “part of the electrodes.” Both the conductor and the adjacent semiconductor 
are roughly at the same voltage, which means that there is no breakdown in the 
semiconductor–conductor interfaces. There is normally an outer jacket (e.g., PVC) 
to protect the cable.

Outer electrode

Dielectric insulator
(e.g., polyethylene)

Inner electrode
Tiny pore or crack
Electrical treeing

Semiconducting
polymer sheaths

Cable jacket

(a) (b)

Figure 7.28 (a) A schematic illustration of electrical treeing breakdown in a high-voltage coaxial 

cable that was initiated by a partial discharge in the void at the inner conductor–dielectric interface. 

(b) A schematic diagram of a typical high-voltage coaxial cable with semiconducting polymer layers 

around the inner conductor and around the outer surface of the dielectric.
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An HV capacitor bushing being subjected to mains frequency 
overvoltage. The photo is one of prolonged exposure, recording 
multiple surface flashovers.

 Image Courtesy of The University of Manchester. Photographer: 
Pete Carr.

Left: An electric tree spreading from a needle 
electrode to the counter electrode in cross-linked 
polyethylene (XLPE) insulation under an ac voltage of 
11 kV (rms) after 20 minutes of voltage application. 
These types of open tree-like structures are usually 
called branch trees. Notice that a tree brunch just 
reaches the counter electrode. Right: About 20 seconds 
later, a dielectric breakdown ensues with a large 
discharge current along a thick (about 0.1 mm thick) 
conducting channel (black).

 Courtesy of Xiangrong Chen, Xi’an Jiaotong 
University, China.

Left: An electric bush tree spreading from the needle to the counter electrode 
in cross-linked polyethylene (XLPE) insulation under an ac voltage of 15 kV 
(rms) after 1 minute of voltage application. Right: The bush tree after 13 minutes 
of voltage application, where it has grown and propagated further into the 
XLPE insulation.

 Courtesy of Xiangrong Chen, Xi’an Jiaotong University, China.
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Insulation Aging It is well recognized that during service, the properties of an 
insulating material become degraded and eventually dielectric breakdown occurs at 
a field below that predicted by experiments on fresh forms of the insulation. Aging 
is a term used to describe, in a general sense, the deterioration in the properties of 
the insulation. Aging therefore determines the useful life of the insulation. There are 
many factors that either directly or indirectly affect the properties and performance 
of an insulator in service. Even in the absence of an electric field, the insulation will 
experience physical and chemical aging whereby its physical and chemical properties 
change considerably. An insulation that is subjected to temperature and mechanical 
stress variations can develop structural defects, such as microcracks, which are quite 
damaging to the dielectric strength, as mentioned above. Irradiation by ionizing 
radiation such as X-rays, exposure to severe ambient conditions such as excessive 
humidity, ozone, and many other external conditions, through various chemical pro-
cesses, deteriorate the chemical structure and properties of an insulator. This is gen-
erally much more severe for polymers than ceramics, but it is not practical to use a 
solid ceramic insulation in a coaxial power cable. Oxidation of a polymeric insulation 
with time is another form of chemical aging and is well-known to degrade the insu-
lation performance. This is the reason for adding various antioxidants into semicrys-
talline polymers for use in insulation. The chemical aging processes are generally 
accelerated with temperature. In service, the insulation also experiences electrical 
aging as a result of the effects of the field on the properties of the insulation. For 
example, dc fields can disassociate and transport various ions in the structure and 
thereby slowly change the structure and properties of the insulation. Electrical trees 
develop as a result of electrical aging because, in service, the ac field gives rise to 
continual partial discharges in an internal or surface microcavity, which then erodes 

Water trees
bridging the

insulation

XLPE
insulation

Inner
conductor

Water
trees

Water trees

Typical water trees in aged 
medium voltage (12 kV) cables 
with cross-linked polyethylene 
(XLPE) insulation that have been 
experienced humid environments 
or subjected to moisture. Notice 
that water trees can grow from 
the inner sheath (left and right 
images) or from the outer sheath 
(center image), depending  
on the moisture. There is a 
semiconducting polymer sheath 
around the inner conductor.

 Courtesy of Stefan Eklund, 
Nexans Sweden AB.
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the region around it and slowly grows like a branching tree. In well-manufactured 
insulation systems, electrical treeing has been substantially reduced or eliminated 
from microvoids. A form of electrical aging that is currently of concern is water 

treeing, which eventually leads to electrical treeing. The definition of a water tree, 
as viewed under an optical microscope, is a diffused bushy (or broccoli) type growth 
that consists of millions of microscopic voids (per mm3) containing water or aqueous 
electrolyte. They invariably occur in moist environments and are relatively noncon-
ducting, which means that they do not themselves directly lead to a discharge. How-
ever, they can eventually lead to an electric tree type breakdown inasmuch as they 
effectively reduce the quality of the insulation. (See photos on page 706.)

External Discharges There are many examples where the surface of the insula-
tion becomes contaminated by ambient conditions such as excessive moisture, depo-
sition of pollutants, dirt, dust, and salt spraying. Eventually the contaminated surface 
develops sufficient conductance to allow discharge between the electrodes at a field 
below the normal breakdown strength of the insulator. This type of dielectric break-
down over the surface of the insulation is termed surface tracking.

 It is apparent that there are a number of dielectric breakdown mechanisms and 
the one that causes eventual breakdown depends not only on the properties and qual-
ity of the material but also on the operating conditions, environmental factors being 
no less important. Figure 7.29 provides an illustrative diagram showing the relation-
ship between the breakdown field and the time to breakdown. An insulation that can 
withstand large fields for a very short duration will break down at a lower field if 
the duration of the field increases. The breakdown mechanism is also likely to change 
from being intrinsic to being, perhaps, thermal. When insulation breakdown occurs 

1 MV cm–1

10

100

10
Intrinsic
electronic

1 kV cm–1

1 ns 1 μs 1 ms 1 s 1 hr1 min 1 day1 mo 1 yr 10 yrs

Time to breakdown

Electro-

mechanical

Water trees

Internal discharges

and electrical trees

Ebr

Thermal

Figure 7.29 Time to breakdown 

and the field at breakdown Ebr  

are interrelated and depend on 

the mechanism that causes the  

insulation breakdown.

External discharges have been  

excluded.

 SOURCE: Dissado, L.A., and Fothergill, 
J.C., Electrical Degradation and 
Breakdown in Polymers. United 
Kingdom: Peter Peregrinus Ltd./IEE, 
1992, p63. Copyright © 1992 by The 
Institution of Engineering and 
Technology. All rights reserved. Used 
with permission.



708 C H A P T E R  7  ∙ DIELECTRIC MATERIALS AND INSULATION

in times beyond a few days, it is generally attributed to the degradation of the insu-
lation, which eventually leads to a breakdown through, most probably, electrical 
treeing. It is also apparent that it is not possible to clearly identify a specific dielectric 
breakdown mechanism for a given material.

DIELECTRIC BREAKDOWN IN A COAXIAL CABLE Consider the coaxial cable in Figure 7.30 
with a and b defining the radii of the inner and outer conductors.

a. Using Gauss’s law, find the capacitance of the coaxial cable.
b. What is the electric field at r from the center of the cable (r > a)? Where is the field 

maximum?
c. Consider two candidate materials for the dielectric insulation: cross-linked polyethylene 

(XLPE) and silicone rubber. Suppose that the inner conductor diameter is 5 mm and the 
insulation thickness is also 5 mm. What is the voltage that will cause dielectric break-
down in each insulator?

d. What typical voltage will initiate a partial discharge in a small air pore (perhaps formed 
during mechanical and thermal stressing) at the inner conductor–insulator interface? 
Assume that the breakdown field for air at 1 atm and gap spacing around 0.1 mm is 
about 100 kV cm−1.

SOLUTION

Consider a cylindrical shell of thickness dr of the dielectric as shown in Figure 7.30. Suppose 
that the voltage across the shell thickness is dV. Then the field E at r is −dV∕dr (this is the 
definition of E). Suppose that Qfree is the free charge on the inner conductor. We take a Gauss 
surface that is a cylinder of radius r and concentric with the inner conductor as depicted in 
Figure 7.30. The surface area A of this cylinder is 2πrL where L is the length of the cable. 
The field at the surface, at distance r, is E, which is normal to A and coming out of A. Then 
from Equation 7.43

 E(2πrL) =
Qfree

εoεr

 [7.45]

Thus

 −
dV

dr
=

Qfree

εoεr2πrL

 EXAMPLE 7.12

a

b

r
dr

+Qfree

Dielectric
Gauss surface

E

Figure 7.30 A schematic diagram for the calculation of the 

capacitance of a coaxial cable and the field at point r from  

the axis.

Consider an infinitesimally thin cylindrical shell of radius r and 

thickness dr in the dielectric and concentrically around the  

inner conductor. This surface is chosen as the Gauss surface. 

The voltage across the dielectric thickness dr is dV. The field 

E = −dV∕dr.
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 This can be integrated from r = a, where the voltage is V, to b, where V = 0. Then

 V =
Qfree

εoεr2πL
 ln(b

a) [7.46]

 We can obtain the capacitance of the coaxial cable from Ccoax = Qfree∕V, which is

 Ccoax =
εoεr2πL

ln(b

a)
 [7.47]

 The capacitance per unit length can be calculated using a = 2.5 mm and

 b = a + Thickness = 7.5 mm

and the appropriate dielectric constants, εr = 2.3 for XLPE and 3.7 for silicone rubber. The 
values are around 100–200 pF per meter, as listed in the fourth column in Table 7.6.
 The electric field E follows directly when we substitute for Qfree from Equation 7.46 into 
Equation 7.45,

 E =
V

r ln(b

a)
 [7.48]

 Equation 7.48 is valid for r from a to b (there is no field within the conductors). The 
field is maximum where r = a,

 Emax =
V

a ln(b

a)
 [7.49]

 The breakdown voltage Vbr is reached when this maximum field Emax reaches the dielec-
tric strength or the breakdown field Ebr

 Vbr = Ebra ln(b

a) [7.50]

 The breakdown voltages calculated from Equation 7.50 are listed in the fifth column in 
Table 7.6. Although the values are high, it must be remembered that, due to a number of other 
factors such as insulation aging, one cannot expect the cable to withstand these voltages forever.
 If there is an air cavity or bubble at the inner conductor to dielectric surface, then the 
field in this gaseous space will be Eair ≈ εrEmax, where Emax is the field at r = a. Air breakdown 

occurs when

 Eair = Eair-br = 100 kV cm−1

Capacitance 

of a coaxial 

cable

Field in a 

coaxial cable

Maximum 

field in a 

coaxial cable

Breakdown 

voltage

Table 7.6 Dielectric insulation candidates for a coaxial cable

  Strength 

 εr (60 Hz) C (60 Hz) Breakdown Voltage for Partial 

Dielectric (60 Hz) (kV cm−1) (pF m−1) Voltage (kV) Discharge in a Microvoid (kV)

XLPE 2.3 217 116 59.6 11.9

Silicone rubber 3.7 158 187 43.4  7.4
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at 1 atm and 25 °C for a 0.1 mm gap. Then Emax ≈ Eair-br∕εr. The corresponding voltage from 
Equation 7.49 is

 Vair-br ≈
Eair-br

εr

a ln(b

a)
 The voltages for partial discharges for the two coaxial cables are shown in the sixth 

column of Table 7.6. It should be noted that these voltages will only give partial discharges 

contained within microvoids and will not normally lead to the immediate breakdown of the 

insulation. The partial discharges erode the cavities and also release vapor from the polymer 

that accumulates in the cavities. Thus, gaseous content and pressure in a cavity will change 

as the partial discharge continues. For example, the pressure buildup will increase the break-

down field and elevate the voltage for partial breakdown. Eventual degradation is likely to 

lead to electrical treeing.

 We should also note that the actual field in the air cavity depends on the shape of the 

cavity, and the above treatment is only valid for a thin disk-like cavity lying perpendicular to 

the field (see Section 7.9, Additional Topics).

7.7  CAPACITOR DIELECTRIC MATERIALS

7.7.1 TYPICAL CAPACITOR CONSTRUCTIONS

The selection criteria of dielectric materials for capacitors depend on the capacitance 

value, frequency of application, maximum tolerable loss, and maximum working 

voltage, with size and cost being additional external constraints. Requirements for 

high-voltage power capacitors are distinctly different than those used in small inte-

grated circuits. Large capacitance values are more easily obtained at low frequencies 

because low-frequency polarization mechanisms such as interfacial and dipolar 

polarization make a substantial contribution to the dielectric constant. At high fre-

quencies, it becomes more difficult to achieve large capacitances and at the same 

time maintain acceptable low dielectric loss, inasmuch as the dielectric loss per unit 

volume is εoε′rωE2 tan δ.

 The bar-chart diagrams in Figures 7.31 and 7.32 provide some typical examples 

of dielectrics for a range of capacitance values and for a range of usable frequencies. 

For example, electrolytic dielectrics characteristically provide capacitances between 

1 pF 1 nF 1 μF 103 μF 104 μF 

Capacitance

Paper and plastic film

Electrolytic Al, Ta

Solid electrolytic Al, Ta

Mica film

Single-layer ceramic

Multilayer ceramic

Figure 7.31 Examples of dielectrics 

that can be used for various capacitance 

values.
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one to thousands of microfarads, but their frequency response is typically limited to 
below 10 kHz. On the other hand, polymeric film capacitors typically have values 
less than 10 μF but a frequency response that is flat well into the gigahertz range.
 We can understand the principles utilized in capacitor design from the capaci-
tance of a parallel plate capacitor,

 C =
εoεr A

d
 [7.51]

where εr infers ε′r. Large capacitances can be achieved by using high εr dielectrics, 

thin dielectrics, and large areas. There are various commercial ceramics, usually a 

mixture of various oxides or ferroelectric ceramics, that have high dielectric con-

stants, ranging up to several thousands. These are typically called high-K (or high-κ), 

where K (or κ) stands for the relative permittivity. A ceramic dielectric with εr = 10, 

d of perhaps 10 μm, and an area of 1 cm2 has a capacitance of 885 pF. Figure 7.33a 

shows a typical single-layer ceramic capacitor. The thin ceramic disk or plate has 

suitable metal electrodes, and the whole structure has been encapsulated in an epoxy 

by dipping it in a thermosetting resin. The epoxy coating prevents moisture from 

degrading the dielectric properties of the ceramic (increasing ε″r and the loss, tan δ). 

One way to increase the capacitance is to connect N number of these in parallel, and 

1 Hz 1 kHz 1 MHz
Frequency

1 GHz

Ta electrolytic

Al electrolytic

Polymer film

Mica film

Low-loss ceramic and glass

High permittivity ceramic

Figure 7.32 Examples of dielectrics that can 

be used in various frequency ranges.

Metal electrode

Ceramic
Epoxy

Leads

(b)  Multilayer ceramic capacitor

(stacked ceramic layers)

Metal termination

(a)  Single-layer ceramic capacitor

(e.g., disk capacitors)

Figure 7.33 Single- and multilayer dielectric 

capacitors.
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this is done in a space-efficient way by using the multilayer ceramic structure shown 
in Figure 7.33b. In this case there are N electroded dielectric layers. Each ceramic 
has offset metal electrodes that align with the opposite sides of the plate and make 
contact with the metal terminations on these sides. The result is N number of paral-
lel plate capacitors. There is therefore an effective use of volume as the surface area 
of the component stays the same but the height increases to at least Nd. By using 
multilayer ceramic structures, capacitances up to a few hundred microfarads have 
been recently obtained.
 Many wide-frequency-range capacitors utilize polymeric thin films for two rea-
sons. Although εr is typically 2–3 (less than those for many ceramics), it is constant 
over a wide frequency range. The dielectric loss εoεrωE2 tan δ becomes significant 
at high frequencies and polymers have low tan δ values. Low εr values mean that 
one has to find a space-efficient way of constructing polymer film capacitors. One 
method is shown in Figure 7.34a and b for constructing a metallized film polymer 
capacitor. Two polymeric tapes have metallized electrodes (typically vacuum depos-
ited Al) on one surface, leaving a margin on one side. These metal film electrodes 
have been offset in opposite directions so that they line up with the opposite sides 
of the tapes. The two tapes together are rolled up (like a Swiss-roll cake) and the 
opposite sides are electroded using suitable conducting glues or other means. The 
concept is therefore similar to the multilayer ceramic capacitor except that the layers 
are rolled up to form a circular cross section. It is also possible to cut and stack the 
layers as in the multilayer ceramic construction.
 Electrolytic capacitors provide large values of capacitance while maintaining a 
tolerable size. There are various types of electrolytic capacitors. In aluminum elec-
trolytic capacitors, the metal electrodes are two Al foils, typically 50–100 μm thick, 
that are separated by a porous paper medium soaked with a liquid electrolyte. The 
two foils together are wound into a cylindrical form and held within a cylindrical 
case, as shown in Figure 7.35a. Contrary to intuition, the paper-soaked electrolyte is 
not the dielectric. The dielectric medium is the thin alumina Al2O3 layer grown on 
the roughened surface of one of the foils, as shown in Figure 7.35b. This foil is then 
called the anode (+ terminal). Both Al foils are etched to obtain rough surfaces, 
which increases the surface area compared with smooth surfaces. The capacitor is 

Al metallization
Polymer film

(a) (b)

Figure 7.34 Two polymer tapes in (a), each with a metallized film electrode on the surface 

(offset from each other), can be rolled together (like a Swiss roll) to obtain a polymer film 

capacitor as in (b).

As the two separate metal films are lined at opposite edges, electroding is done over the 

whole side surface.
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called electrolytic because the Al2O3 layer is grown electrolytically on one of the 
foils and is typically 0.1 μm in thickness. This small thickness and the large surface 
area are responsible for the large capacitance. The electrolyte is conducting and 
serves to heal local minor breakdowns in the Al2O3 by an electrolytic reaction, pro-
vided that the anode has been positively biased. The capacitive behavior is due to 
the Al/(Al2O3)/electrolyte structure. Furthermore, Al/Al2O3 contact is like a metal to 
p-type semiconductor contact and has rectifying properties. It must be reverse-biased 
to prevent charge injection into the Al2O3 and hence conduction through the capac-
itor. Thus the Al must be connected to the positive terminal, which makes it the 
anode. When the electrolytic Al capacitor in Figure 7.35b is oppositely biased, it 
becomes conducting.
 Electrolytic capacitors using liquid electrolytes tend to dry up over a long period, 
which is a disadvantage. Solid electrolyte tantalum capacitors overcome the drying-
up problem by using a solid electrolyte. The structure of a typical solid Ta capacitor 
is shown in Figure 7.36a and b. The anode (+ electrode) is a porous (sintered) Ta 
pellet that has the surface anodized to obtain a thin surface layer of tantalum pent-
oxide, Ta2O5, which is the dielectric medium (with ε′r = 28). The Ta pellet with 

(a)

Al foils

Al case

Al

Al2O3

Al

Anode Cathode

(b)

Electrolyte

Figure 7.35 Aluminum  

electrolytic capacitor.

Epoxy
Silver paint

Leads

Ta

Ta
Ta2O5

MnO2

Graphite

Silver paste

(a) (b)

Figure 7.36 Solid electrolyte 

tantalum capacitor. (a) A cross 

section without fine detail.  

(b) An enlarged section 

through the Ta capacitor.
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Ta2O5 is then coated with a thick solid electrolyte, in this case MnO2. Subsequently, 
graphite and silver paste layers are applied. Leads are then attached and the whole 
construction is molded into a resin chip. Solid tantalum capacitors are widely used 
in numerous electronics applications due to their small size, temperature and time 
stability, and high reliability.
 Supercapacitors or ultracapacitors are capacitors with large capacitance values 
that can be as high as 100 F or more; but with low breakdown voltages, typically a 
few volts. They store much more energy than conventional electrolytic capacitors per 
unit volume and essentially function almost like a rechargeable battery for storing 
and providing energy for various electrical applications. Their principle depends on 
two factors: increasing the area A and decreasing the thickness d in the capacitance 
equation C = εrεoA∕d to reach higher capacitance values. In one type of superca-
pacitor technology, called the electrical double-layer capacitance (EDLC), the elec-
trodes are powdered carbon (or a similar porous conducting medium), which are 
separated by an ion-permeable separator soaked in an electrolyte in which there are 
mobile positive and negative ions. The electrolyte could be an aqueous solution with 

H+ and SO4
− ions, for example. Under an applied voltage, each electrode becomes 

polarized as in Figure 7.37, somewhat similar to the interfacial polarization at the 
negative electrode in Figure 7.11b, giving rise to a capacitance at each electrode; 
shown as C1 and C1 in Figure 7.37. There is no actual transfer of charge at the 
interface but only a separation between charges; that is polarization. One can appre-
ciate that a small separation d between negative and positive charges at the carbon–
electrolyte interface can be very small, and less than a nanometer in practice. The 
powdered carbon increases the effective surface area A. Thus, the capacitance at each 
electrode becomes very large. These capacitances at the electrodes are in series, 
connected by the ions in the electrolyte forming a bridge. While supercapacitors 
serve as convenient rechargeable energy sources, their capacitive performance in 
terms of frequency response and internal resistance is very limited.

Electrolyte

Polarized
electrode

Polarized
electrodePowdered

electrode

Ion-permeable
separator

C1 C2

Relectrolyte
Ions

Electrical double
layer

I

Figure 7.37 A simplified structure of an electrical double-layer supercapacitor. The capacitor is  

being charged from a battery. Equivalent circuit with C1 and C2 representing the capacitances at the 

electrodes due to polarization at the electrode–electrolyte interface.
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7.7.2 DIELECTRICS: COMPARISON

The capacitance per unit volume Cvol, which characterizes the volume efficiency 
of a dielectric, can be obtained by dividing C by Ad,

 Cvol =
εoεr

d2  [7.52]

 It is clear that large capacitances require high dielectric constants and thin dielec-
trics. We should note that d appears as d2, so the importance of d cannot be under-
stated. Although mica has a higher εr than polymer films, the latter can be made 
quite thin, a few microns, which leads to a greater capacitance per unit volume. The 
reason that electrolytic aluminum capacitors can achieve large capacitance per unit 
volume is that d can be made very thin over a large surface area by using the liquid 
electrolyte to heal minor local dielectric breakdowns. Table 7.7 shows a selection of 
dielectric materials for capacitor applications and compares the “volume efficiency” 
Cvol based on a typical minimum thickness that a convenient process can handle. It 
is apparent that, compared with polymeric films, ceramics have substantial volume 
efficiency as a result of large dielectric constants (high-K ceramics) in some cases 
and as a consequence of a thin dielectric thickness in other cases (Al2O3). A proper 
account of volume efficiency must also include the volume associated with the anode 

Capacitance 

per unit 

volume

Table 7.7 Comparison of dielectrics for capacitor applications

 Capacitor Name

     Tantalum, 

    Aluminum, Electrolytic, 

 Polypropylene Polyester Mica Electrolytic Solid High-K Ceramic

Dielectric Polymer film Polymer film Mica Anodized Anodized X7R
     Al2O3 film  Ta2O5 film  BaTiO3 base
ε′r 2.2–2.3 3.2–3.3 6.9 8.5 27 2000

tan δ 4 × 10−4 4 × 10−3 2 × 10−4 0.05–0.1 0.01 0.01
Ebr (V μm−1) dc 100–350 100–300 50–300 400–1000 300–600 10
d (typical minimum) (μm) 3–4 1 2–3 0.1 0.1 10
Cvol (μF cm−3) 2 30 15 7500* 24,000* 180
Rp = 1∕Gp(kΩ) 400 40 800 1.5–3 16 16 
 for C = 1 μF,  
 f = 1 kHz
Evol (mJ cm−3)† 10 15 8 1000 1200 100
Polarization Electronic Electronic and Ionic Ionic Ionic Large ionic 
   dipolar     displacement

 * Proper volumetric calculations must also consider the volumes of electrodes and the electrolyte necessary for these dielectrics to 
work; hence the number would have to be decreased.

 † Evol depends very sensitively on Ebr and the choice of η; hence it can vary substantially.

 NOTES: Values are typical. Assume η = 3. The table is for comparison purposes only. Breakdown fields are typical dc values and can 
vary substantially, by at least an order of magnitude; Ebr depends on the thickness, material quality, and the duration of the applied 
voltage. Polyester is PET, or polyethylene terephthalate. Mica is potassium aluminosilicate, a muscovite crystal. X7R is the name of a 
particular BaTiO3-based ceramic solid solution.
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and cathode electrodes and the electrolyte. For example, these additional volumes 
will substantially reduce Cvol listed for Al2O3 and for Ta2O5 in Table 7.7; Cvol for 
these two will still be greater than the other dielectrics.
 Another engineering consideration in selecting a dielectric is the working volt-
age. Although d can be decreased to obtain large capacitances per unit volume, this 
also decreases the working voltage. The maximum voltage that can be applied to a 
capacitor depends on the breakdown field of the dielectric medium Ebr, which itself 
is a highly variable quantity. A safe working voltage must be some safety factor η 
less than the breakdown voltage Ebrd. Thus, if Vm is the maximum safe working 
voltage, then the maximum energy that can be stored per unit volume is given by

 Evol =
1
2

 CV 
2
m ×

1
Ad

=
εoε′r

2η2
 E 

2
br [7.53]

 It is clear that both ε′r and Ebr of the dielectric are significant in determining the 

energy storage ability of the capacitor. Moreover, at the maximum working voltage, 

the rate of dielectric loss per unit volume in the capacitor becomes

 Wvol =
E 

2
br

η2
 ωεoε′r tan δ [7.54]

 Those materials that have relatively higher tan δ exhibit greater dielectric losses. 

Although dielectric losses may be small at low frequencies, at high frequencies they 

become quite significant. Table 7.7 compares the energy storage efficiency Evol and 

tan δ for various dielectrics. It seems that ceramics have a better energy storage 

efficiency than polymers. High-K ceramics tend to have large tan δ values and suf-

fer from greater dielectric loss. Polypropylene has particularly low tan δ as the polar-

ization mechanism is due to electronic polarization and the dielectric loss is among 

the least. Indeed, polypropylene capacitors have found applications in high-quality 

audio electronics. Polystyrene has similar characteristics to polypropylene but the 

latter is more widely used. Equations 7.53 and 7.54 should be used with care, because 

the breakdown field Ebr can depend on the thickness d, among many other factors, 

including the quality of the dielectric material. For example, for polypropylene insu-

lation, Ebr is typically quoted as roughly 50 kV mm−1 (500 kV cm−1), whereas for 
thin films (e.g., 25 μm), over short durations, Ebr can be as high as 200 kV mm−1. 
Further, in some cases, Ebr is more suitably defined in terms of the maximum allow-
able leakage current, that is, a field at which the dielectric is sufficiently conducting.
 The temperature stability of a capacitor is determined by the temperature depen-
dences of ε′r and tan δ, which are controlled by the dominant polarization mechanism. 

For example, polar polymers have permanent dipole groups attached to the polymer 

chains as in polyethyleneterephthalate (PET). In the absence of an applied field, these 

dipoles are randomly oriented and also restricted in their rotations by neighboring 

chains, as depicted in Figure 7.38a. In the presence of an applied dc field, as in 

Figure 7.38b, some very limited rotation enables partial dipolar (orientational) polar-

ization to take place. Typically, at room temperature, dipolar contribution to εr under 

ac conditions, however, is small because restricted and hindered rotation prevents 

the dipoles to closely follow the ac field. Close to the softening temperature of the 

Maximum 

energy per 

unit volume

Dielectric 

loss per unit 

volume
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polymer, the molecular motions become easier and, further, there is more volume 
between chains for the dipoles to rotate. The dipolar side groups and polarized chains 
become capable of responding to the field. They can align with the field and also 
follow the field variations, as shown in Figure 7.38c. Dipolar contribution to εr is 
substantial even at high frequencies. Both ε′r and tan δ therefore increase with tem-

perature. Thus, polar polymers exhibit temperature dependent εr and tan δ, which 

reflect in the properties of the capacitor.

 On the other hand, in nonpolar polymers such as polypropylene, the polarization 

is due to electronic polarization and εr and tan δ remain relatively constant. Thus 

polypropylene capacitors are more stable compared with PET (polyester) capacitors. 

The change in the capacitance with temperature is measured by the temperature 

coefficient of capacitance (TCC), which is defined as the fractional (or percentage) 

change in the capacitance per unit temperature change. The temperature controls not 

only εr but also the linear expansion of the dielectric, which changes the dimensions 

A and d. For example, polystyrene, polycarbonate, and mica capacitors are particu-

larly stable with small TCC values. Plastic capacitors are typically limited to opera-

tions well below their melting temperatures, which is one of their main drawbacks. 

The specified operating temperature, for example, from −55 °C to 125 °C, for many 
of the ceramic capacitors is often a limitation of the epoxy coating of the capacitor 
rather than the actual limitation of the ceramic material. In many capacitors, the 
working voltage has to be derated for operation at high temperatures and high fre-
quencies because Ebr decreases with ambient temperature and the frequency of the 
applied field. For example, a 1000 V dc polypropylene capacitor will have a sub-
stantially lower ac working voltage, e.g., 100 V at 10 kHz.

Polymer chainDipolar side group

Polymer dielectric

(a) (b) (c)

Figure 7.38 (a) A polymer dielectric that has dipolar side groups attached to the polymer chains. 

With no applied field, the dipoles are randomly oriented. (b) In the presence of an applied field, 

some very limited rotation enables dipolar polarization to take place. (c) Near the softening  

temperature of the polymer, the molecular motions are rapid and there is also sufficient volume 

between chains for the dipoles to align with the field. The dipolar contribution to εr is substantial, 

even at high frequencies.
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DIELECTRIC LOSS AND EQUIVALENT CIRCUIT OF A POLYESTER CAPACITOR AT 1 kHz Fig-
ure 7.39 shows the temperature dependence of ε′r and tan δ for a polyester film. Calculate the 

equivalent circuit at 30 °C at 1 kHz for a 560 pF PET capacitor that uses a 0.5 μm thick 

polyester film. What happens to these values at 100 °C?

SOLUTION

From Figure 7.39 at 30 °C, ε′r = 2.60 and tan δ ≈ 0.002. The capacitance C at 30 °C is 

given as 560 pF. The equivalent parallel conductance GP, representing the dielectric loss, is 

given by

 GP =
ωAεoε′r tan δ

d
= ωC tan δ

Substituting

 ω = 2πf = 2000π

and tan δ = 0.002, we get

 GP = (2000π) (560 × 10−12) (0.002) = 7.04 × 10−9 1
Ω

This is equivalent to a resistance of 142 MΩ. The equivalent circuit is an ideal (lossless) 
capacitor of 560 pF in parallel with a 142 MΩ resistance (this resistance value decreases with 
the frequency).
 At 100 °C, ε′r = 2.68 and tan δ ≈ 0.01, so the new capacitance is

 C100 °C = C25 °C 

εr(100 °C)

εr(30 °C)
= (560 pF)  

2.68

2.60
= 577 pF

 The equivalent parallel conductance at 100 °C is

 GP = (2000π) (577 × 10−12) (0.01) = 3.63 × 10−8
 

1
Ω

 This is equivalent to a resistance of 27.5 MΩ. The equivalent circuit is an ideal (lossless) 
capacitor of 577 pF in parallel with a 27.5 MΩ resistance.

 EXAMPLE 7.13

PET at f = 1 kHz
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Figure 7.39 Real part of the dielectric 

constant ε′r and loss tangent, tan δ, at 

1 kHz versus temperature for PET.

 Data obtained by Kasap and Maeda 
(1995) using a dielectric analyzer (DEA).
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7.8   PIEZOELECTRICITY, FERROELECTRICITY,  

AND PYROELECTRICITY

7.8.1 PIEZOELECTRICITY

Certain crystals, for example, quartz (crystalline SiO2) and BaTiO3, become polar-
ized when they are mechanically stressed. Charges appear on the surfaces of the 
crystal, as depicted in Figure 7.40a and b. Appearance of surface charges leads to 
a voltage difference between the two surfaces of the crystal. The same crystals 
also exhibit mechanical strain or distortion when they experience an electric field, 
as shown in Figure 7.40c and d. The direction of mechanical deformation (e.g., 
extension or compression) depends on the direction of the applied field, or the 
polarity of the applied voltage. The two effects are complementary and define 
piezoelectricity.13

 Only certain crystals can exhibit piezoelectricity because the phenomenon 
requires a special crystal structure—that which has no center of symmetry. Consider 
a NaCl-type cubic unit cell in Figure 7.41a. We can describe the whole crystal 
behavior by examining the properties of the unit cell. This unit cell has a center of 

symmetry at O because if we draw a vector from O to any charge and then draw 
the reverse vector, we will find the same type of charge. Indeed, any point on any 
charge is a center of symmetry. Many similar cubic crystals (not all) possess a cen-
ter of symmetry. When unstressed, the center of mass of the negative charges at the 
corners of the unit cell coincides with the positive charge at the center, as shown in 
Figure 7.41a. There is therefore no net polarization in the unit cell and P = 0. Under 
stress, the unit cell becomes strained, as shown in Figure 7.41b, but the center of 
mass of the negative charges still coincides with the positive charge and the net 
polarization is still zero. Thus, the strained crystal still has P = 0. This result is 
generally true for all crystals that have a center of symmetry. The centers of mass 
of negative and positive charges in the unit cell remain coincident when the crystal 
is strained.

 13 Piezoelectricity was discovered in France by the Curie brothers, Jacques and Pierre Curie; and reported in 
1880 in Bulletin de la Societe de Minerologique de France.

P = 0

Force

P V

(b)(a)

V V

(c) (d)

Figure 7.40 The piezoelectric effect. (a) A piezoelectric crystal with no applied stress or field. (b) The crystal is 

strained by an applied force that induces polarization in the crystal and generates surface charges. (c) An applied 

field causes the crystal to become strained. In this case the field compresses the crystal. (d) The strain changes 

direction with the applied field and now the crystal is extended.
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 Piezoelectric crystals have no center of symmetry. For example, the hexagonal 
unit cell shown in Figure 7.42a exhibits no center of symmetry. If we draw a vector 
from point O to any charge and then reverse the vector, we will find an opposite 
charge. The unit cell is said to be noncentrosymmetric. When unstressed, as shown 
in Figure 7.42a, the center of mass of the negative charges coincides with the center 
of mass of the positive charges, both at O. However, when the unit cell is stressed, 
as shown in Figure 7.42b, the positive charge at A and the negative charge at B both 
become displaced inwards to A′ and B′, respectively. The two centers of mass there-

fore become shifted and there is now a net polarization P. Thus, an applied stress 

produces a net polarization P in the unit cell, and in this case P appears to be in the 

same direction as the applied stress, along y.

 The direction of the induced polarization depends on the direction of the applied 

stress. When the same unit cell in Figure 7.42a is stressed along x, as illustrated in 

Figure 7.42c, there is no induced dipole moment along this direction because there 

is no net displacement of the centers of mass in the x direction. However, the stress 

causes the atoms A and B to be displaced outwards to A″ and B″, respectively, and 

P = 0O P = 0

Force

(a) (b)

Figure 7.41 A NaCl-type cubic unit cell has a center 

of symmetry. (a) In the absence of an applied force, 

the centers of mass for positive and negative ions 

coincide. (b) This situation does not change when 

the crystal is strained by an applied force.

PO
P

y

x

A

B

A'

A''

B'

B''

(a) (b) (c)

P = 0

P = 0

Figure 7.42 A hexagonal unit cell has no center of symmetry. (a) In the absence of an applied force, the cen-

ters of mass for positive and negative ions coincide. (b) Under an applied force in the y direction, the centers of 

mass for positive and negative ions are shifted, which results in a net dipole moment, P, along y. (c) When the 

force is along a different direction, along x, there may not be a resulting net dipole moment in that direction 

though there may be a net P along a different direction (y).
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this results in the shift of the centers of mass away from each other along y. In this 
case, an applied stress along x results in an induced polarization along y. Generally, 
an applied stress in one direction can give rise to induced polarization in other crys-
tal directions. Suppose that Tj is the applied mechanical stress along some j direction 
and Pi is the induced polarization along some i direction; then the two are linearly 
related by

 Pi = dijTj [7.55]

where dij are called the piezoelectric coefficients. Reversing the stress reverses the 
polarization. Although we did not specifically consider shear stresses in Figure 7.42, 
they, as well as tensile stresses, can also induce a net polarization, which means 
that T in Equation 7.55 can also represent shear stresses. The converse piezoelectric 
effect is that between an induced strain Sj along j and an applied electric field Ei 
along i,

 Sj = dijEi [7.56]

The coefficients dij in Equations 7.55 and 7.56 are the same.14

 As apparent from the foregoing discussions and Figure 7.40, piezoelectric crys-
tals are essentially electromechanical transducers because they convert an electrical 
signal, an electric field, to a mechanical signal, strain, and vice versa. They are used 
in many engineering applications that involve electromechanical conversions, as in 
ultrasonic transducers, microphones, accelerometers, and so forth. Piezoelectric 
transducers are widely used to generate ultrasonic waves in solids and also to detect 
such mechanical waves, as illustrated in Figure 7.43. The transducer is simply a 
piezoelectric crystal, for example, quartz, that is appropriately cut and electroded to 
generate the desired types of mechanical vibrations (e.g., longitudinal or transverse 
vibrations). The transducer on the left is attached to the surface A of the solid under 

Piezoelectric 

effect

Converse 

piezoelectric 

effect

 14 The equivalence of the coefficients in Equations 7.55 and 7.56 can be shown by using thermodynamics and is 
not considered in this textbook. For rigorous piezoelectric definitions see IEEE Standard 176-1987 (IEEE Trans. 
on Ultrasonics, Ferroelectrics and Frequency Control, September 1996).

Oscillator

Elastic waves
in the solid

Oscilloscope

A B

Mechanical
vibrations

Piezoelectric
transducer

Figure 7.43 Piezoelectric transducers are widely 

used to generate ultrasonic waves in solids and 

also to detect such mechanical waves.

The transducer on the left is excited from an ac 

source and vibrates mechanically. These vibrations 

are coupled to the solid and generate elastic 

waves. When the waves reach the other end, they 

mechanically vibrate the transducer on the right, 

which converts the vibrations to an electrical signal.
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examination, as shown in Figure 7.43. It is excited from an ac source, which means 
that it mechanically vibrates. These vibrations are coupled to the solid by a proper 
coupling medium (typically grease) and generate mechanical waves or elastic waves 
that propagate away from A. They are called ultrasonic waves as their frequencies 
are typically above the audible range. When the waves reach the other end, B, they 
mechanically vibrate the transducer attached to B, which converts the vibrations to 
an electrical signal that can readily be displayed on an oscilloscope. In this trivial 
example, one can easily measure the time it takes for elastic waves to travel in the 
solid from A to B and hence determine the ultrasonic velocity of the waves since 
the distance AB is known. From the ultrasonic velocity one can determine the elas-
tic constants (Young’s modulus) of the solid. Furthermore, if there are internal 
imperfections such as cracks in the solid, then they reflect or scatter the ultrasonic 
waves. These reflections can lead to echoes that can be detected by suitably located 
transducers. Such ultrasonic testing methods are widely used for nondestructive 
evaluations of solids in mechanical engineering.
 It is clear that an important engineering factor in the use of piezoelectric trans-
ducers is the electromechanical coupling between electrical and mechanical energies. 
The electromechanical coupling factor k is defined in terms of k2 by

 k2 =
Electrical energy converted to mechanical energy

Input of electrical energy
 [7.57a]

or equivalently by

 k2 =
Mechanical energy converted to electrical energy

Input of mechanical energy
 [7.57b]

 Table 7.8 summarizes some typical piezoelectric materials with some applications. 
The so-called PZT ceramics are widely used in many piezoelectric applications. PZT 
stands for lead zirconate titanate and the ceramic is a solid solution of lead zir-
conate, PbZrO3, and lead titanate, PbTiO3, so its composition is PbTi1−xZrxO3 where 

Electro-

mechanical 

coupling 

factor

Electro-

mechanical 

coupling 

factor

Table 7.8 Piezoelectric materials and some typical values for d and k

Crystal d (m V−1) k Comment

Quartz (crystal SiO2) 2.3 × 10−12 0.1 Crystal oscillators, ultrasonic  
    transducers, delay lines, filters
Rochelle salt (NaKC4H4O6 · 4H2O) 350 × 10−12 0.78
Barium titanate (BaTiO3) 190 × 10−12 0.49 Accelerometers
PZT, lead zirconate titanate 480 × 10−12 0.72 Wide range of applications 
 (PbTi1−x ZrxO3)     including earphones, microphones, 

spark generators (gas lighters, car 
ignition), displacement transducers, 
accelerometers

Polyvinylidene fluoride (PVDF) 18 × 10−12 —  Must be poled; heated, put in an 
  electric field and then cooled. 

Large area and inexpensive
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x is determined by the extent of the solid solution but typically is around 0.5. PZT 
piezoelectric components are manufactured by sintering, which is a characteristic 
ceramic manufacturing process in which PZT powders are placed in a mold and 
subjected to a pressure at high temperatures. During sintering the ceramic powders 
are fused through interdiffusion. The final properties depend not only on the com-
position of the solid solution but also on the manufacturing process, which controls 
the average grain size or polycrystallinity. Electrodes are deposited onto the final 
ceramic component, which is then poled by the application of a temporary electric 
field to induce it to become piezoelectric. Poling refers to the application of a tem-
porary electric field, generally at an elevated temperature, to align the polarizations 
of various grains and thereby develop piezoelectric behavior.

PIEZOELECTRIC SPARK GENERATOR The piezoelectric spark generator, as used in various 
applications such as lighters and car ignitions, operates by stressing a piezoelectric crystal to 
generate a high voltage which is discharged through a spark gap in air as schematically shown in 
Figure 7.44a. Consider a piezoelectric sample in the form of a cylinder as in Figure 7.44a. Suppose 
that the piezoelectric coefficient d = 250 × 10−12 m V−1 and εr = 1000. The piezoelectric cylin-
der has a length of 10 mm and a diameter of 3 mm. The spark gap is in air and has a breakdown 
voltage of about 3.5 kV. What is the force required to spark the gap? Is this a realistic force?

SOLUTION

We need to express the induced voltage in terms of the applied force. If the applied stress is T, 
then the induced polarization P is

 P = dT = d 
F

A

 Induced polarization P leads to induced surface polarization charges given by Q = AP. 
If C is the capacitance, then the induced voltage is

 V =
Q

C
=

AP

(εoεr A

L )
=

LP

εoεr

=
L(d 

F

A)
εoεr

=
dLF

εoεr A

 EXAMPLE 7.14

F

F

(b)

A

F

F

L V

(a)

Piezoelectric

Piezoelectric

Piezoelectric

Figure 7.44 The piezoelectric spark 

 generator.
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Therefore, the required force is

 F =
εoεr AV

dL
=

(8.85 × 10−12 × 1000)π(1.5 × 10−3)2(3500)

(250 × 10−12) (10 × 10−3)
= 87.6 N

 This force can be applied by squeezing by hand an appropriate lever arrangement; it 
is the weight of 9 kg. The force must be applied quickly because the piezoelectric charge 
generated will leak away (or become neutralized) if the charge is generated too slowly; 
many spark igniters use mechanical impact. The energy in the spark depends on the amount 
of charge generated. This can increase by using two piezoelectric crystals back to back as 
in Figure 7.44b, which is a more practical arrangement for a spark generator. The induced 
voltage per unit force V∕F is proportional to d∕(εoεr) which is called the piezoelectric 

voltage coefficient. In general, if an applied stress T = F∕A induces a field E = V∕L in a 
piezoelectric crystal, then the effect is related to the cause by the piezoelectric voltage 
coefficient g,

 E = gT [7.58]

It is left as an exercise to show that g = d∕(εoεr).

7.8.2 PIEZOELECTRICITY: QUARTZ OSCILLATORS AND FILTERS

One of the most important applications of the piezoelectric quartz crystal in elec-
tronics is in the frequency control of oscillators and filters. Consider a suitably cut 
thin plate of a quartz crystal that has thin gold electrodes on the opposite faces. 
Suppose that we set up mechanical vibrations in the crystal by connecting the elec-
trodes to an ac source, as in Figure 7.45a. It is possible to set up a mechanical 
resonance, or mechanical standing waves, in the crystal if the wavelength λ of the 
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ℓ
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Figure 7.45 When a suitably cut quartz crystal with electrodes is excited by an ac voltage as in (a), it behaves 

as if it has the equivalent circuit in (b). (c) and (d) The magnitude of the impedance Z and reactance (both 

between A and B) versus frequency,  neglecting losses.
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waves and the length ℓ along which the waves are traveling satisfy the condition 
for standing waves:

 n(1
2

λ) = ℓ [7.59]

where n is an integer.
 The frequency of these mechanical vibrations fs is given by fs = v∕λ, where v 
is the velocity of the waves in the medium and λ is the wavelength. These mechan-
ical vibrations in quartz experience very small losses and therefore have a high-
quality factor Q, which means that resonance can only be set up if the frequency of 
the excitation, the electrical frequency, is close to fs. Because of the coupling of 
energy between the electrical excitation and mechanical vibrations through the piezo-
electric effect, mechanical vibrations appear like a series LCR circuit to the ac source, 
as shown in Figure 7.45b. This LCR series circuit has an impedance that is minimum 
at the mechanical resonant frequency fs, given by

 fs =
1

2π√LC
 [7.60]

 In this series LCR circuit, L represents the mass of the transducer, C the stiffness, 
and R the losses or mechanical damping. Since the quartz crystal has electrodes at 
opposite faces, there is, in addition, the parallel plate capacitance Co between the elec-
trodes. Thus, the whole equivalent circuit is Co in parallel with LCR, as in Figure 7.45b. 
As far as L is concerned, Co and C are in series. There is a second higher resonant 
frequency fa, called the antiresonant frequency, that is due to L resonating with C 
and Co in series,

 fa =
1

2π√LC′
 [7.61]

where

 
1

C′
=

1

Co

+
1

C

Mechanical 

standing 

waves

Mechanical 

resonant 

frequency

Antiresonant 

frequency

Various piezoelectric transducers used in 
ultrasonic testing. The transducers use PZT 
as the piezoelectric material and operate 
over the frequency range 660 kHz (largest) 
to 7 MHz (smallest).

 Courtesy of Precision Accoustics.
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 The impedance between the terminals of the quartz crystal has the frequency 
dependence shown in Figure 7.45c. The two frequencies fs and fa are called the series 
and parallel resonant frequencies, respectively. It is apparent that around fa, the crys-
tal behaves like a filter with a high Q value. If we were to examine the reactance of 
the crystal, whether it is behaving capacitively or inductively, we would find the 
behavior in Figure 7.45d, where positive reactance refers to an inductive and negative 
reactance to a capacitive behavior. Between fs and fa the crystal behaves inductively, 
and capacitively outside this range. Indeed, between fs and fa the response of the 
transducer is controlled by the mass of the crystal. This property has been utilized 
by electrical engineers in designing quartz oscillators.
 In quartz oscillators, the crystal is invariably used in one of two modes. First, 
it can be used at fs where it behaves as a resistance of R without any reactance. The 
circuit is designed so that oscillations can take place only when the crystal in the 
circuit exhibits no reactance or phase change—in other words, at fs. Outside this 
frequency, the crystal introduces reactance or phase changes that do not lead to 
sustained oscillations. In a different mode of operation, the oscillator circuit is 
designed to make use of the inductance of the crystal just above fs. Oscillations are 
maintained close to fs because even very large changes in the inductance result in 
small changes in the frequency between fs and fa.

THE QUARTZ CRYSTAL AND ITS EQUIVALENT CIRCUIT From the following equivalent 
definition of the coupling coefficient,

 k2 =
Mechanical energy stored

Total energy stored

show that

 k2 = 1 −
f 2

s

f 2
a

 Given that typically for an X-cut quartz crystal, k = 0.1, what is fa for fs = 1 MHz? What 
is your conclusion?

SOLUTION

C represents the mechanical mass where the mechanical energy is stored, whereas Co is where 
the electrical energy is stored. If V is the applied voltage, then

 k2 =
Mechanical energy stored

Total energy stored
=

1
2  
CV2

1
2  
CV2 + 1

2  
CoV

2 =
C

C + Co

= 1 −
f 2
s

f 2
a

 Rearranging this equation, we find

 fa =
fs

√1 − k2
=

1 MHz
√1 − (0.1)2

= 1.005 MHz

 Thus, fa − fs is only 5 kHz. The two frequencies fs and fa in Figure 7.45d are very close. 
An oscillator designed to oscillate at fs, that is, at 1 MHz, therefore, cannot drift far (for 
example, a few kHz) because that would change the reactance enormously, which would upset 
the oscillation conditions.

 EXAMPLE 7.15
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7.8.3 FERROELECTRIC AND PYROELECTRIC CRYSTALS

Certain crystals are permanently polarized even in the absence of an applied field. 
The crystal already possesses a finite polarization vector due to the separation of 
positive and negative charges in the crystal. These crystals are called ferroelectric.15 

QUARTZ CRYSTAL AND ITS INDUCTANCE A typical 1 MHz quartz crystal has the follow-
ing properties:

 fs = 1 MHz  fa = 1.0025 MHz  Co = 5 pF  R = 20 Ω

 What are C and L in the equivalent circuit of the crystal? What is the quality factor Q 
of the crystal, given that

 Q =
1

2π fs RC

SOLUTION

The expression for fs is

 fs =
1

2π√LC

 From the expression for fa, we have

 fa =
1

2π√LC′
=

1

2π√L 

CCo

C + Co

 Dividing fa by fs eliminates L, and we get

 
fa

fs

= √ C + Co

Co

so that C is

 C = Co[( fa

fs
)

2

− 1] = (5 pF)(1.00252 − 1) = 0.025 pF

 Thus

 L =
1

C(2π fs)
2 =

1
(0.025 × 10−12) (2π106)2 = 1.01 H

 This is a substantial inductance, and the enormous increase in the inductive reactance 
above fs is intuitively apparent. The quality factor

 Q =
1

2π fsRC
= 3.18 × 105

is very large.

 EXAMPLE 7.16

 15 In analogy with the ferromagnetic crystals that already possess magnetization.
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Barium titanate (BaTiO3) is probably the best cited example. Above approximately 
130 °C, the crystal structure of BaTiO3 has a cubic unit cell, as shown in Figure 7.46a. 
The centers of mass of the negative charges (O2−) and the positive charges, Ba2+ and 
Ti4+, coincide at the Ti4+ ion, as shown in Figure 7.46b. There is therefore no net 
polarization and P = 0. Above 130 °C, therefore, the barium titanate crystal exhib-
its no permanent polarization and is not ferroelectric. However, below 130 °C, the 
structure of barium titanate is tetragonal, as shown in Figure 7.46c, in which the 
Ti4+ atom is not located at the center of mass of the negative charges. The crystal 
is therefore polarized by the separation of the centers of mass of the negative and 
positive charges. The crystal possesses a finite polarization vector P and is ferro-
electric. The critical temperature above which ferroelectric property is lost, in this 
case 130 °C, is called the Curie temperature (TC). Below the Curie temperature, 
the whole crystal becomes spontaneously polarized. The onset of spontaneous polar-
ization is accompanied by the distortion of the crystal structure, as shown by the 
change from Figure 7.46b to 7.46c. The spontaneous displacement of the Ti4+ ion 
below the Curie temperature elongates the cubic structure, which becomes tetragonal. 
It is important to emphasize that we have only described an observation and not the 
reasons for the spontaneous polarization of the whole crystal. The development of 
the permanent dipole moment below the Curie temperature involves long-range inter-
actions between the ions outside the simple unit cell pictured in Figure 7.46c. The 
energy of the crystal is lower when the Ti4+ ion in each unit cell is slightly displaced 
along the c direction, as in Figure 7.46c, which generates a dipole moment in each 
unit cell. The interaction energy of these dipoles when all are aligned in the same 
direction lowers the energy of the whole crystal. It should be mentioned that the 
distortion of the crystal that takes place when spontaneous polarization occurs just 
below TC is very small relative to the dimensions of the unit cell. For BaTiO3, for 
example, c∕a is 1.01 and the displacement of the Ti4+ ion from the center is only 
0.012 nm, compared with a = 0.4 nm.
 An important and technologically useful characteristic of a ferroelectric crystal 
is its ability to be poled. Above 130 °C there is no permanent polarization in the 
crystal. If we apply a temporary field E and let the crystal cool to below 130 °C, 
we can induce the spontaneous polarization P to develop along the field direction. 

c

aa

(a) BaTiO3 cubic crystal structure

above 130 °C

(b) BaTiO3 cubic structure

above 130 °C

(c) BaTiO3 tetragonal structure

 below 130 °C

Ba2+

O2–

Ti4+

Figure 7.46 BaTiO3 has different crystal structures above and below 130 °C that lead to different dielectric properties. 
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In other words, we would define the c axis by imposing a temporary external field. 
This process is called poling. The c axis is the polar axis along which P develops. It 
is also called the ferroelectric axis. Since below the Curie temperature the ferroelec-
tric crystal already has a permanent polarization, it is not possible to use the expression

 P = εo(εr − 1)E

to define a relative permittivity. Suppose that we use a ferroelectric crystal as a dielec-
tric medium between two parallel plates. Since any change ΔP normal to the plates 
changes the stored charge, what is of significance to the observer is the change in the 
polarization. We can appreciate this by noting that C = Q∕V is not a good definition 
of capacitance if there are already charges on the plates, even in the absence of voltage.16 
We then prefer a definition of C based on ΔQ∕ΔV where ΔQ is the change in stored 
charge due to a change ΔV in the voltage. Similarly, we define the relative permittivity 
εr in this case in terms of the change ΔP in P induced by ΔE in the field E,

 ΔP = εo(εr − 1)ΔE

 An applied field along the a axis can displace the Ti4+ ion more easily than that 
along the c axis, and experiments show that εr ≈ 4100 along a is much greater than 

εr ≈ 160 along c. Because of their large dielectric constants, ferroelectric ceramics 

are used as high-K dielectrics in capacitors.

 All ferroelectric crystals are also piezoelectric, but the reverse is not true: not 

all piezoelectric crystals are ferroelectric. When a stress along y is applied to the 

BaTiO3 crystal in Figure 7.47a, the crystal is stretched along y, as a result of which 

the Ti4+ atom becomes displaced, as shown in Figure 7.47b. There is, however, no 

shift in the center of mass of the negative charges, which means that there is a change 

ΔP in the polarization vector along y. Thus, the applied stress induces a change in 

the polarization, which is a piezoelectric effect. If the stress is along x, as illustrated 

 16 A finite Q on the plates of a capacitor when V = 0 implies an infinite capacitance, C = ∞. However, C = dQ∕dV 
definition avoids this infinity.

y

x ΔP

ΔP

(a) BaTiO3 tetragonal

structure below 130 °C

(b) BaTiO3 crystal under stress

along y

(c) BaTiO3 crystal under stress along x

Figure 7.47 Piezoelectric properties of BaTiO3 below its Curie temperature.
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in Figure 7.47c, then the change in the polarization is along y. In both cases, ΔP is 
proportional to the stress, which is a characteristic of the piezoelectric effect.
 The barium titanate crystal in Figure 7.46 is also said to be pyroelectric 
because when the temperature increases, the crystal expands and the relative dis-
tances of ions change. The Ti4+ ion becomes shifted, which results in a change in 
the polarization. Thus, a temperature change δT induces a change δP in the polariza-
tion of the crystal. This is called pyroelectricity, which is illustrated in Figure 7.48. 
The magnitude of this effect is quantized by the pyroelectric coefficient p, which 
is defined by

 p =
dP

dT
 [7.62]

 A few typical pyroelectric crystals and their pyroelectric coefficients are listed 
in Table 7.9. Very small temperature changes, even in thousandths of degrees, in 
the material can develop voltages that can be readily measured. For example, for a 
PZT-type pyroelectric ceramic in Table 7.9, taking δT = 10−3 K and p ≈ 380 × 10−6, 

we find δP = 3.8 × 10−7 C m−2. From

 δP = εo(εr − 1) δE

with εr = 290, we find

 δE = 148 V m−1

If the distance between the faces of the ceramic where the charges are developed is 

0.1 mm, then

 δV = 0.0148 V  or  15 mV

Pyroelectric 

coefficient

Heat

δV

Temperature change = δT

δP

Figure 7.48 The heat absorbed by the crystal increases 

the temperature by δT, which induces a change δP in the 

polarization.

This is the pyroelectric effect. The change δP gives rise 

to a change δV in the voltage that can be measured.

Table 7.9 Some pyroelectric (and also ferroelectric) crystals and typical properties

   Pyroelectric Curie 

   Coefficient Temperature 

Material ε′r tan δ (×10−6 C m−2 K−1) (°C)

BaTiO3 4100 ⊥ polar  7 × 10−3 20 130 

  axis; 160 // polar axis

LiTaO3 47 5 × 10−3 230 610

PZT modified for 290 2.7 × 10−3 380 230 

 pyroelectric

PVDF, polymer 12 0.01 27 80
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which can be readily measured. Pyroelectric crystals are widely used as infrared 
detectors. Any infrared radiation that can raise the temperature of the crystal even 
by a thousandth of a degree can be detected. For example, many intruder alarms use 
pyroelectric detectors because as the human or animal intruder passes by the view 
of detector, the infrared radiation from the warm body raises the temperature of the 
pyroelectric detector, which generates a voltage that actuates an alarm.
 Figure 7.49 shows a simplified schematic circuit for a pyroelectric radiation 
detector. The detecting element, labeled A, is actually a thin crystal or ceramic (or 
even a polymer) of a pyroelectric material that has electrodes on opposite faces. 
Pyroelectric materials are also piezoelectric and therefore also sensitive to stresses. 
Thus, pressure fluctuations, for example, vibrations from the detector mount or sound 
waves, interfere with the response of the detector to radiation alone. These can be 
compensated for by having a second dummy detector B that has a reflecting coating 
and is subjected to the same vibrations (air and mount), as depicted in Figure 7.49. 
Thus, there are two elements in the detector, one with an absorbing surface, detect-
ing element A, and the other with a reflecting surface, compensating element B. 
Stress fluctuations give rise to the same piezoelectric voltage in both, which then 
cancel each other between a and b at the input of the amplifier. When radiation is 
incident, then only the detecting element absorbs the radiation, becomes warmer, and 
hence generates a pyroelectric voltage. This voltage appears directly across a and b. 
As the incident radiation warms the detecting element and increases its temperature, 
the pyroelectric voltage increases with time. Eventually the temperature reaches a 
steady-state value determined by heat losses from the element. We therefore expect 
the pyroelectric voltage to reach a constant value as well. However, the problem is 
that a constant pyroelectric voltage cannot be sustained because the surface charges 
slowly become neutralized or leak. The constant radiation is therefore normally 

Chopped radiation

a

b

L

A

B

t

t

Response to chopped radiation

t

Intensity

Reflecting
surface

Absorbing
surface of area A High input resistance

amplifier

Response to constant radiation
v(t)

Figure 7.49 The pyroelectric detector.

Radiation is absorbed in the detecting element, A, which generates a pyroelectric voltage that is measured 

by the amplifier. The second element, B, has a reflecting electrode and does not absorb the radiation. It 

is a dummy element that compensates for the piezoelectric effects. Piezoelectric effects generate equal 

voltages in both A and B, which cancel each other across a and b, the input of the amplifier.
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chopped to subject the detector to periodic bursts of radiation, as shown in Figure 7.49. 
The pyroelectric voltage is then a changing function of time, which is readily mea-
sured and related to the power in the incident radiation.
 Many pyroelectric applications refer to a pyroelectric current that is generated 
by the temperature rise. There is another way to look at the pyroelectric phenomenon 
instead of considering the induced pyroelectric voltage that is created across the 
crystal (Figure 7.48). The induced polarization δP in a small time interval δt, due 
to the change δT in the temperature, generates an induced polarization charge density 
δP on the crystal’s surfaces. This charge density δP flows in a time interval δt, and 
hence generates an induced polarization current density Jp to flow, i.e.,

 Jp =
dP

dt
= p 

dT

dt
 [7.63]

Jp in Equation 7.63 is called the pyroelectric current density and depends on the 
rate of change of the temperature dT∕dt brought about by the absorption of radiation.
 Most pyroelectric detectors are characterized by their current responsivity ℛI 
defined as the pyroelectric current generated per unit input radiation power,

 ℛI =
Pyroelectric current generated

Input radiation power
=

Jp

I
 [7.64]

where I is the radiation intensity (W m−2); ℛI is quoted in A W−1. If the pyroelectric 
current generated by the crystal flows into the self-capacitance of the crystal itself 
(no external resistors or capacitors connected, and the voltmeter is an ideal meter), 
it charges the self-capacitance to generate the observed voltage δV in Figure 7.48. 
The pyroelectric voltage responsivity ℛV is defined similarly to Equation 7.64 but 
considers the voltage that is developed upon receiving the input radiation:

 ℛV =
Pyroelectric output voltage generated

Input radiation power
 [7.65]

 The output voltage that is generated depends not only on the pyroelectric crys-
tal’s dielectric properties, but also on the input impedance of the amplifier, and can 
be quite complicated. A typical commercial LiTaO3 pyroelectric detector has a cur-
rent responsivity of 0.1–1 μA∕W.

Pyroelectric 

current 

density

Pyroelectric 

current 

responsivity

Pyroelectric 

voltage 

responsivity

A PYROELECTRIC RADIATION DETECTOR Consider the radiation detector in Figure 7.49 
but with a single element A. Suppose that the radiation is chopped so that the radiation 
is passed to the detector for a time Δt seconds every τ seconds, where Δt ≪ τ. If Δt is 
sufficiently small, then the temperature rise ΔT is small and hence the heat losses are 
negligible during Δt. Using the heat capacity to find the temperature change during Δt, 
relate the magnitude of the voltage ΔV to the incident radiation intensity I. What is your 
conclusion?
 Consider a PZT-type pyroelectric material with a density of about 7 g cm−3 and a specific 
heat capacity of about 380 J K−1 kg−1. If Δt = 0.2 s and the minimum voltage that can be 
detected above the background noise is 1 mV, what is the minimum radiation intensity that 
can be measured?

 EXAMPLE 7.17
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SOLUTION

Suppose that the radiation of intensity I is received during a time interval Δt and delivers an 
amount of energy ΔH to the pyroelectric detector. This energy ΔH, in the absence of any 
heat losses, increases the temperature by ΔT. If c is the specific heat capacity (heat capacity 
per unit mass) and ρ is the density,

 ΔH = (ALρ)c ΔT

where A is the surface area and L the thickness of the detector. The change in the polariza-
tion ΔP is

 ΔP = p ΔT =
p ΔH

ALρc

 The change in the surface charge ΔQ is

 ΔQ = A ΔP =
p ΔH

Lρc

 This change in the surface charge gives a voltage change ΔV across the electrodes of the 
detector. If C = εoεr A∕L is the capacitance of the pyroelectric crystal,

 ΔV =
ΔQ

C
=

p ΔH

Lρc
×

L

εoεr A
=

p ΔH

Aρcεoεr

 The absorbed energy (heat) ΔH during Δt depends on the intensity of incident radiation. 
Incident intensity I is the energy arriving per unit area per unit time. In time Δt, I delivers 
an energy ΔH = IA Δt. Substituting for ΔH in the expression for ΔV, we find

 ΔV =
pI Δt

ρcεrεo

= ( p

ρcεrεo
)I Δt  [7.66]

 The parameters in the parentheses are material properties and reflect the “goodness” of the 
pyroelectric material for the application. We should emphasize that in deriving Equation 7.66 
we did not consider any heat losses that will prevent the rise of the temperature indefinitely. If 
Δt is short, then the temperature change will be small and heat losses negligible.
 For a PZT-type pyroelectric, we can take p = 380 × 10−6 C m−2 K−1, εr = 290, c = 380 
J K−1 kg−1, and ρ = 7 × 103 kg m−3, and then from Equation 7.66 with ΔV = 0.001 V and 
Δt = 0.2 s, we have

  I = ( p

ρcεoεr
)

−1ΔV

Δt
= ( 380 × 10−6

(7000)(380)(290)(8.85 × 10−12))
−10.001

0.2

  = 0.090 W m−2 or 9 μW cm−2

We have assumed that all the incident radiation I is absorbed by the pyroelectric crystal. In 
practice, only a fraction η (called the emissivity of the surface), that is, ηI, will be absorbed 
instead of I. We also assumed that the output voltage ΔV is developed totally across the 
pyroelectric element capacitance; that is, the amplifier’s input impedance (parallel combina-
tion of its input capacitance and resistance) is negligible (i.e., infinite) compared with that of 
the pyroelectric crystal. As stated, we also neglected all heat losses from the pyroelectric 
crystal so that the absorbed radiation simply increases the crystal’s temperature. These sim-
plifying assumptions lead to the maximum signal ΔV that can be generated from a given 
input radiation signal I as stated in Equation 7.66. It is left as an exercise to show that Equa-
tion 7.66 can also be easily derived by starting from Equation 7.63 for the pyroelectric current 
density Jp, and have Jp charge up the capacitance C = εoεrA∕L of the crystal.

Pyroelectric 

detector 

output voltage
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ADDITIONAL TOPICS

7.9   ELECTRIC DISPLACEMENT  

AND DEPOLARIZATION FIELD

Electric Displacement (D) and Free Charges Consider a parallel plate capac-
itor with free space between the plates, as shown in Figure 7.50a, which has been 
charged to a voltage Vo by connecting it to a battery of voltage Vo. The battery has 
been suddenly removed, which has left the free positive and negative charges Qfree 
on the plates. These charges are free in the sense that they can be conducted away. 
An ideal electrometer (with no leakage current) measures the total charge on the 
positive plate (or voltage of the positive plate with respect to the negative plate). 
The voltage across the plates is Vo and the capacitance is Co. The field in the free 
space between the plates is

 Eo =
Qfree

εo A
=

Vo

d
 [7.67]

where d is the separation of the plates.
 When we insert a dielectric to fit between the plates, the field polarizes the 
dielectric and polarization charges −QP and +QP appear on the left and right surfaces 
of the dielectric, as shown in Figure 7.50b. As there is no battery to supply more 
free charges, the net charge on the left plate (positive plate) becomes Qfree − QP. 
Similarly the net negative charge on the right plate becomes −Qfree + QP. The field 
inside the dielectric is no longer Eo but less because induced polarization charges 
have the opposite polarity to the original free charges and the net charge on each 
plate has been reduced. The new field can be found by applying Gauss’s law. Con-
sider a Gauss surface just enclosing the left plate and the surface region of the 
dielectric with its negative polarization charges, as shown in Figure 7.51. Then 
Gauss’s law gives

 ∮
Surface

εoE dA = Qtotal = Qfree − QP [7.68]

where A is the plate area (same as dielectric surface area) and we take the field E 
to be normal to the surface area dA, as indicated in Figure 7.51. If the polarization 

Electric field 

without 

dielectric

Gauss’s  

law with 

dielectric

C

Electrometer

V
Dielectric

(a) (b)

E

+Qfree –Qfree

Eo

Vo

Electrometer

Vacuum

Co

+Qfree
–QP +QP –Qfree

Figure 7.50 (a) Parallel plate capacitor with 

free space between plates that has been 

charged to a voltage Vo. There is no battery 

to maintain the voltage constant across the 

capacitor. The electrometer measures the 

voltage difference across the plates and, in 

principle, does not affect the measurement. 

(b) After the insertion of the dielectric, the 

voltage difference is V, less than Vo, and the 

field in the dielectric is E less than Eo.
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charge is dQP over a small surface area dA of the dielectric, then the polarization 
charge density σP at this point is defined as

 σP =
dQP

dA

 For uniform polarization, the charge distribution is QP∕A, as we have used pre-
viously. Since σP = P, where P is the polarization vector, we can write

 P =
dQP

dA

and therefore express QP as

 QP = ∮
Surface

P dA [7.69]

 We can now substitute for QP in Equation 7.68 and take this term to the left-hand 
side to add the two surface integrals. The right-hand side is left with only Qfree. Thus,

 ∮
Surface

(εoE + P) dA = Qfree [7.70]

 What is important here is that the surface integration of the quantity εoE + P is 
always equal to the total free charges on the surface. Whatever the dielectric mate-
rial, this integral is always Qfree. It becomes convenient to define εoE + P as a usable 
quantity, called the electric displacement and denoted as D, that is,

 D = εoE + P [7.71]

 Then, Gauss’s law in terms of free charges alone in Equation 7.70 becomes

 ∮
Surface

D dA = Qfree [7.72]

 In Equation 7.72 we take D to be normal to the surface area dA as in the case 
of E in Gauss’s law. Equation 7.72 provides a convenient way to calculate the electric 
displacement D, from which one should be able to determine the field. We should 
note that, in general, E is a vector and so is P, so the definition in Equation 7.71 is 
strictly in terms of vectors. Inasmuch as the electric displacement depends only on 

Definition  

of electric 

displacement

Gauss’s law 

for free 

charges

E

Dielectric

dA

Gauss surface–QP+Qfree

Figure 7.51 A Gauss surface just around the left plate and within the 

dielectric, encompassing both +Qfree and −QP.
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free charges, as a vector it starts at negative free charges and finishes on positive 
free charges.
 Equation 7.72 for D defines it in terms of E and P, but we can express D in 
terms of the field E in the dielectric alone. The polarization P and E are related by 
the definition of the relative permittivity εr,

 P = εo(εr − 1)E

 Substituting for P in Equation 7.71 and rearranging, we find that D is simply 
given by

 D = εoεrE [7.73]

 We should note that this simple equation applies in an isotropic medium where 
the field along one direction, for example, x, does not generate polarization along a 
different direction, for example, y. In those cases, Equation 7.73 takes a tensor form 
whose mathematics is beyond the scope of this book.
 We can now apply Equation 7.72 for a Gauss surface surrounding the left plate,

 D =
Qfree

A
= εoEo [7.74]

where we used Equation 7.67 to replace Qfree. Thus D does not change when we 
insert the dielectric because the same free charges are still on the plates (they cannot 
be conducted away anywhere). The new field E between the plates after the insertion 
of the dielectric is

 E =
1

εoεr

 D =
1
εr

 Eo [7.75]

 The original field is reduced by the polarization of the dielectric. We should 
recall that the field does not change in the case where the parallel plate capacitor is 
connected to a battery that keeps the voltage constant across the plates and supplies 
additional free charges (ΔQfree) to make up for the induced opposite-polarity polar-
ization charges.
 Gauss’s law in Equation 7.72 in terms of D and the enclosed free charges Qfree 
can also be written in terms of the field E, but including the relative permittivity, 
because D and E are related by Equation 7.73. Using Equation 7.73, Equation 7.72 
becomes

 ∮
Surface

 εoεrE dA = Qfree

 For an isotropic medium where εr is the same everywhere,

 ∮
Surface

 E dA =
Qfree

εoεr

 [7.76]

 As before, E in the surface integral is taken as normal to dA everywhere. Equa-
tion 7.76 is a convenient way of evaluating the field from the free charges alone, 
given the dielectric constant of the medium.
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The Depolarizing Field We can view the field E as arising from two electric 
fields: that due to the free charges Eo and that due to the polarization charges, 
denoted as Edep. These two fields are indicated in Figure 7.52. Eo is called the applied 

field as it is due to the free charges that have been put on the plates. It starts and 
ends at free charges on the plates. The field due to polarization charges starts and 
ends at these bound charges and is in the opposite direction to the Eo. Although Eo 
polarizes the molecules of the medium, Edep, being in the opposite direction, tries to 
depolarize the medium. It is called the depolarizing field (and hence the subscript). 
Thus the field inside the medium is

 E = Eo − Edep [7.77]

 The depolarizing field depends on the amount of polarization since it is deter-
mined by +QP and −QP. For the dielectric plate in Figure 7.52, we know the field 
E is Eo∕εr, so we can eliminate Eo in Equation 7.77 and relate Edep directly to E,

 Edep = E(εr − 1)

 However, the polarization P is related to the field E by

 P = εo(εr − 1)E

which means that the depolarization field is

 Edep =
1
εo

 P [7.78]

 As we expected, the depolarizing field is proportional to the polarization P. We 
should emphasize that Edep is in the opposite direction to E and P and Equation 7.78 
is for magnitudes only. If we write it as a vector equation, then we must introduce 
a negative sign to give Edep a direction opposite to that of P. Moreover, the rela-
tionship in Equation 7.78 is special to the dielectric plate geometry in Figure 7.52. 
In general, the depolarizing field is still proportional to the polarization, as in Equa-
tion 7.78, but it is given by

 Edep =
Ndep

εo

 P [7.79]

where Ndep is a numerical factor called the depolarization factor. It takes into 
account the shape of the dielectric and the variation in the polarization within the 

Depolarizing 

field in a 

dielectric 
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Depolarizing 

field in a 

dielectric

E
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–Qfree

+QP–QP+Qfree

Figure 7.52 The field inside the dielectric can be considered 

to be the sum of the field due to the free charges (Qfree) and  

a field due to the polarization of the dielectric, called the  

depolarization field.
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medium. For a dielectric plate placed perpendicularly to an external field, Ndep = 1, 
as we found in Equation 7.78. For the spherical dielectric medium as in Figure 7.53a, 
Ndep = 1

3. For a long thin dielectric rod placed with its axis along the applied field, 
as in Figure 7.53b, Ndep ≈ 0 and becomes exactly zero as the diameter shrinks to 

zero. Ndep is always between 0 and 1. If we know Ndep, we can determine the field 

inside the dielectric, for example, in a small spherical cavity within an insulation given 

the external field.

7.10  LOCAL FIELD AND THE LORENTZ EQUATION

When a dielectric medium is placed in an electric field, it becomes polarized and 

there is a macroscopic, or an average, field E in the medium. The actual field at an 

atom, called the local field Eloc, however, is not the same as the average field as 

illustrated in Figure 7.7.

 Consider a dielectric plate polarized by placing it between the plates of a capac-

itor as shown in Figure 7.54a. The macroscopic field E in the dielectric is given by 

the applied field Eo due to the free charges Qfree on the plates, and the depolarization 

field due to P, or polarization charges on the dielectric plate surfaces A. Since we 

P
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have a plate dielectric, the depolarization field is P∕εo, so

 E = Eo − Edep = Eo −
1
εo

 P

 Consider the field at some atomic site, point O, but with the atom itself removed. 
We evaluate the field at O coming from all the charges except the atom at O itself 
since we are looking at the field experienced by this atom (the atom cannot become 
polarized by its own field). We then cut a (hypothetical) spherical cavity S centered 
at O and consider the atomic polarizations individually within the spherical cavity. 
In other words, the effects of the dipoles in the cavity are treated separately from 
the remaining dielectric medium which is now left with a spherical cavity. This 
remaining dielectric is considered as a continuous medium but with a spherical cav-
ity. Its dielectric property is represented by its polarization vector P. Because of the 
cavity, we must now put polarization charges on the inner surface S of this cavity 
as illustrated in Figure 7.54b. This may seem surprising, but we should remember 
that we are treating the effects of the atomic dipoles within the cavity individually 
and separately by cutting out a spherical cavity from the medium and thereby intro-
ducing a surface S.
 The field at O comes from four sources:

 1. Free charges Qfree on the electrodes, represented by Eo.
 2. Polarization charges on the plate surfaces A, represented by Edep.
 3. Polarization charges on the inner surface of the spherical cavity S, represented 

by ES.
 4. Individual dipoles within the cavity, represented by Edipoles.

Thus,
 Eloc = Eo + Edep + ES + Edipoles

Since the first two terms make up the macroscopic field, we can write this as

 Eloc = E + ES + Edipoles

 The field from the individual dipoles surrounding O depends on the positions 
of these atomic dipoles which depend on the crystal structure. For cubic crystals, 
amorphous solids (e.g., glasses), or liquids, effects of these dipoles around O cancel 
each other and Edipoles = 0. Thus,

 Eloc = E + ES [7.80]

 We are then left with evaluating the field due to polarization charges on the 
inner surface S of the cavity. This field comes from polarization charges on the 
surface S. Consider a thin spherical shell on surface S as shown in Figure 7.55 which 
makes an angle θ with O. The radius of this shell is a sin θ, whereas its width (or 
thickness) is a dθ. The surface area dS is then (2πa sin θ)(a dθ). The polarization 
charge dQP on this spherical shell surface is Pn dS where Pn is the polarization vector 
normal to the surface dS. Thus,

 dQP = Pn dS = (P cos θ)(2πa sin θ)(a dθ)

Local field in 

a crystal

Local field in 

a cubic crystal 

or a non-

crystalline 

material
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 We are interested the field at O from dQP that is resolved along the x-direction, 
that is along P, so17

 dES =
dQP

4πεoa
2 cos θ =

(P cos θ) (2πa sin θ) (a dθ)
4πεoa

2  cos θ

 To find the total field coming from the whole surface S we have to integrate 
dES from θ = 0 to θ = π,

 ES = ∫
π

0

 
(P cos θ) (sin θ)

2εo

 cos θ dθ

which integrates to

 ES =
1

3εo

 P [7.81]

 The local field by Equation 7.80 is

 Eloc = E +
1

3εo

 P [7.82]

 Equation 7.82 is the Lorentz relation for the local field in terms of the polar-
ization P of the medium and is valid for cubic crystals and noncrystalline materials, 
such as glasses. It does not apply to dipolar dielectrics in which the local field can 
be quite complicated.

7.11  DIPOLAR POLARIZATION

Consider a gaseous medium with molecules that have permanent dipole moments as 
in Figure 7.10b. Each permanent dipole moment is po. In the presence of an electric 
field the dipoles try to align perfectly with the field, but random thermal collisions, 

 17 The derivation is somewhat oversimplified. Remember that the charge dQP on the shell dS would need to be 
found by integrating tiny elements of charge on the this shell. Each of these tiny elements contributes to the field 
and each generates a tiny field at an angle cos θ. Integrating all these over dS gives the result dQP∕(4πεoa2) cos θ.

PO
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Figure 7.55 Calculation of the field  

due to polarization charges on the inner 
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i.e., thermal agitation, act against this perfect alignment as in Figure 7.10b. A mol-
ecule that manages to rotate and align with the field finds itself later colliding with 
another molecule and losing its alignment. We are interested in the mean dipole 
moment in the presence of an applied field taking into account the thermal energies 
of the molecules and their random collisions. We will assume that the probability 
that a molecule has an energy E is given by the Boltzmann factor, exp(−E∕kT ).
 Consider an arbitrary dipolar molecule in an electric field as in Figure 7.56 with 
its dipole moment po at an angle θ with the field E. The torque experienced by the 
dipole is given by τ = (F sin θ)a or Epo sin θ where po = aQ. The potential energy 
E at an angle θ is given by integrating τdθ,

 E = ∫
θ

0

 poE sin θ dθ = −poE cos θ + poE

 Inasmuch as the PE depends on the orientation θ, there is a certain probability 
of finding a dipole oriented at this angle as determined by the Boltzmann distribu-
tion. The fraction f of molecules oriented at θ is proportional to exp(−E∕kT ),

 f ∝ exp(poE cos θ

kT ) [7.83]

 The initial orientation of the dipole should be considered in three dimensions 

and not as in the two-dimensional illustration in Figure 7.56. In three dimensions 

we use solid angles, and the fraction f then represents the fraction of molecules 

pointing in a direction defined by a small solid angle dΩ as shown in Figure 7.57. 

The whole sphere around the dipole corresponds to a solid angle of 4π. Furthermore, 

we need to find the average dipole moment along E as this will be the induced net 

dipole moment by the field. The dipole moment along E is po cos θ. Then from the 

definition of the average

 pav =
∫ 4π

0
 (po cos θ)  f dΩ

∫ 4π

0
 f dΩ

 [7.84]

where f is the Boltzmann factor given in Equation 7.83 and depends on E and θ. 

The final result of the above integration is a special function called the Langevin 
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Figure 7.56 In the presence of an applied 

field a dipole tries to rotate to align with 

the field against thermal agitation.

O
E

Sphere

dΩ
θ
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function which is denoted as L(x) where x is the argument of the function (not the 
x coordinate). The integration of Equation 7.84 then gives

 pav = poL(x)  and  x =
E

kT
 [7.85]

 The behavior of the Langevin function is shown in Figure 7.58. At the highest 
fields L(x) tends toward saturation at unity. Then, pav = po, which corresponds to 
nearly all the dipoles aligning with the field, so increasing the field cannot increase 
pav anymore. In the low field region, pav increases linearly with the field. In practice, 
the applied fields are such that all dipolar polarizations fall into this linear behavior 
region where the Langevin function L(x) ≈ 1

3  
x. Then Equation 7.85 becomes

 pav =
1

3
 
p2

oE

kT
 [7.86]

 The dipolar or orientational polarizability is then simply

 αd =
1

3
 
p2

o

kT
 [7.87]

7.12   IONIC POLARIZATION AND  

DIELECTRIC RESONANCE

In ionic polarization, as shown in Figure 7.9, the applied field displaces the positive 

and negative ions in opposite directions, which results in a net dipole moment per 

ion, called the induced dipole moment pi per ion. We can calculate the ionic polariz-

ability αi and the ionic contribution to the relative permittivity as a function of 

frequency by applying an ac field of the form E = Eo exp( jωt).

 Consider two oppositely charged neighboring ions, e.g., Na+ and Cl−, which 

experience forces QE in opposite directions where Q is the magnitude of the ionic 

charge of each ion as shown in Figure 7.59. The bond between the ions becomes 
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stretched, and the two ions become displaced from the equilibrium separation ro to 
a new separation ro + x as depicted in Figure 7.59. The force F = QE of the applied 
field is the polarizing force, which causes the relative displacement. We take F to 
be along the x direction. The applied force is resisted by a restoring force Fr that 
is due to the stretching of the bond (Hooke’s law) and is proportional to the amount 
of bond stretching, i.e., Fr = −βx where β is the spring constant associated with 
the ionic bond (easily calculated from the potential energy curve of the bond), and 
the negative sign ensures that Fr is directed in the opposite direction to the applied 
force. Thus, the net force acting on the ions is QE − βx. As the ions are oscillated 
by the applied force, they couple some of the energy in the applied field to lattice 
vibrations and this energy is then lost as heat (lattice vibrations) in the crystal. As 
in classical mechanics, this type of energy loss through a coupling mechanism can 
be represented as a frictional force (force associated with losses) Floss that acts 
against the effect of the applied force. This frictional force is proportional to the 
velocity of the ions or dx∕dt, so it is written as Floss = −γ(dx∕dt) where γ is a pro-
portionality constant that depends on the exact mechanism for the energy loss from 
the field, and the negative sign ensures that it is opposing the applied field. The total 
(net) force on the ions is

 Ftotal = F + Fr + Floss = QE − βx − γ 

dx

dt

 Normally we would examine the equations of motion (Newton’s second law) 
under forced oscillation for each ion separately, and then we would use the results 
to find the overall extension x. An equivalent procedure (as well known in mechan-
ics) is to keep one ion stationary and allow the other one to oscillate with a reduced 
mass Mr, which is Mr = (M+M−)∕(M+ + M−) where M+ and M− are the masses of 
Na+ and Cl− ions, respectively. For example, we can simply examine the oscillations 
of the Na+ -ion within the reference frame of the Cl− -ion (kept “stationary”) and 
attach a reduced mass Mr to Na+ as depicted in Figure 7.59. Then Newton’s second 

M– M+

 

Na+Cl–

 

x

Equilibrium

ro

Ftotal Ftotal

ro + x
pi(t)

E(t) = Eo exp( jωt)

pi(t)

ro
Mr

Ftotal

ro + x

Figure 7.59 Consider a pair of oppositely charged ions. In the presence of an applied field E along x, the  

Na+ and Cl− ions are displaced from each other by a distance x. The net average (or induced) dipole moment 

is pi.

Total force
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law gives

 Mr 

d 
2x

dt2 = QE − βx − γ 

dx

dt
 [7.88]

 It is convenient to put Mr and β together into a new constant ωI which represents 
the resonant or natural angular frequency of the ionic bond, or the natural oscil-
lations when the applied force is removed. Defining ωI = (β∕Mr)

1∕2 and γI as γ per 
unit reduced mass, i.e., γI = γ∕Mr, we have

 
d 

2x

dt2 + γI 

dx

dt
+ ω2

I x =
Q

Mr

 Eo exp(  jωt)  [7.89]

 Equation 7.89 is a second-order differential equation for the induced displace-
ment x of a pair of neighboring ions about the equilibrium separation as a result of 
an applied force QE. It is called the forced oscillator equation and is well known in 
mechanics. (The same equation would describe the damped motion of a ball attached 
to a spring in a viscous medium and oscillated by an applied force.) The solution to 
Equation 7.89 will give the displacement x = xo exp( jωt), which will have the same 
time dependence as E but phase shifted; that is, xo will be a complex number. The 
relative displacement of the ions from the equilibrium gives rise to a net or induced 

polarization pi = Qx. Thus Equation 7.89 can be multiplied by Q to represent the 
forced oscillations of the induced dipole. Equation 7.89 is also called the Lorentz 

dipole oscillator model.

 The induced dipole pi will also be phase shifted with respect to the applied force 
QE. When we divide pi by the applied field E, we get the ionic polarizability αi, 
given by

 αi =
pi

E
=

Qx

E
=

Q2

Mr(ω2
I − ω2 + jγI ω)

 [7.90]

 It can be seen that the polarizability is also a complex number as we expect; 
there is a phase shift between E and induced pi. It therefore has real α′i and imag-

inary α″i  parts and can be written as αi = α′i − jα″i . We note that, by convention, 

the imaginary part is written with a minus sign to keep α″i  as a positive quantity. 

Further, when ω = 0, under dc conditions, the ionic polarizability αi(0) from Equa-

tion 7.90 is

 αi(0) =
Q2

Mr ω2
I

 [7.91]

 The dc polarizability is a real quantity as there can be no phase shift under dc 

conditions. We can then write the ionic polarizability in Equation 7.90 in terms of 

the normalized frequency (ω∕ωI) as

 αi(ω) =
αi(0)

[1 − ( ω

ωI
)

2

+ j( γI

ωI
)( ω

ωI
)]

 [7.92]
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 The dependences of the real and imaginary parts of αi on the frequency of the 
field are shown in Figure 7.60 in terms of the normalized frequency (ω∕ωI) for one 
particular value of the loss factor, γI = 0.1ωI. Note that α″i  peaks at a frequency very 

close to the ionic bond resonant frequency ωI (it is exactly ωI when γI = 0). The 

sharpness and magnitude of the α″i  peak depends on the loss factor γI. The peak is 

sharper and higher for smaller γI. Notice that α′i is nearly constant at frequencies 

lower than ωI. Indeed, in a dc field, α′i = αi(0). But, through ωI, α′i shows a rapid 

change from positive to negative values and then it tends toward zero for frequencies 

greater than ωI.

 Zero or negative α′i should not be disconcerting since the actual magnitude of 

the polarizability is ∣αi∣ = (α′i
2 + α″i

2)1∕2, which is always positive through ωI and 

maximum at ωI. The phase of αi however changes through ωI. The phase of αi, and 

hence the phase of the polarization with respect to the field, are zero at low frequen-

cies (ω ≪ ωI). As the frequency increases, the polarization lags behind the field and 

the phase of αi becomes more negative. At ω = ωI, the polarization lags behind the 

field by 90°. However, the rate of change of polarization is in phase with the field 

oscillations, which leads to a maximum energy transfer. At high frequencies, well 

above ωI, the ions cannot respond to the rapidly changing field and the coupling 

between the field and the ions is negligible. The peak in the α″i  versus ω behavior 

around ω = ωI is what is called the dielectric resonance peak, and in this particu-

lar case it is called the ionic polarization relaxation peak and is due to the strong 

coupling of the applied field with the natural vibrations of the ionic bond at ω = ωI.

 The resulting relative permittivity εr can be found from the Clausius–Mossotti 

equation. But we also have to consider the electronic polarizability αe of the 

two types of ions since this type of polarization operates up to optical frequencies 

(ω ≫ ωI), which means that

 
εr(ω) − 1
εr(ω) + 2

=
Ni

3εo

 [αi + αe+ + αe− ]  [7.93]
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where Ni is the concentrations of negative and positive ion pairs (assuming an equal 
number of positive and negative ions), and αe+ and αe− are the electronic polariz-
abilities of the negative and positive ion species, respectively. Inasmuch as αi is a 
complex quantity, so is the relative permittivity εr(ω). We can express Equation 7.93 
differently by noting that at very high frequencies, ω ≫ ωI, αi = 0, and the relative 
permittivity is then denoted as εrop. Equation 7.93 then becomes

 
εr(ω) − 1
εr(ω) + 2

−
εrop − 1

εrop + 2
=

Niαi

3εo

=
NiQ

2

3εoMr(ω2
I − ω2 + jγI ω)

 [7.94]

 This is called the dielectric dispersion relation between the relative permittiv-
ity, due to ionic polarization, and the frequency of the electric field. Figure 7.16b 
shows the behavior of εr(ω) with frequency for KCl where ε″r peaks at ω = ωI = 

2π(4.5 × 1012) rad s−1 and ε′r exhibits sharp changes around this frequency. It is clear 

that as ω gets close to ωI, there are rapid changes in εr(ω). The resonant frequency 

(ωI) for ionic polarization relaxation is typically in the infrared frequency range, and 

the “applied” field in the crystal is then due to a propagating electromagnetic (EM) 

wave rather than an ac applied field between two external electrodes placed on the 

crystal.18

 It should be mentioned that electronic polarization can also be described by the 

Lorentz oscillator model, and can also be represented by Equation 7.92 if we appro-

priately replace αi by αe and interpret ωI and γI as the resonant frequency and loss 

factor involved in electronic polarization.

Dispersion 

relation  

for ionic 

polarization

 18 More rigorous theories of ionic polarization would consider the interactions of a propagating electromagnetic 
wave with various phonon modes within the crystal, which is beyond the scope of this book.

IONIC POLARIZATION RESONANCE IN KCl Consider a KCl crystal which has the FCC 

crystal structure and the following properties. The optical dielectric constant is 2.19, the dc 

dielectric constant is 4.84, and the lattice parameter a is 0.629 nm. Calculate the dc ionic 

polarizability αi(0). Estimate the ionic resonance absorption frequency and compare the value 

with the experimentally observed resonance at 4.5 × 1012 Hz in Figure 7.16b. The atomic 

masses of K and Cl are 39.09 and 35.45 g mol−1, respectively.

SOLUTION

At optical frequencies the dielectric constant εrop is determined by electronic polarization. At 
low frequencies and under dc conditions, the dielectric constant εrdc is determined by both 
electronic and ionic polarization. If Ni is the concentration of negative and positive ion pairs, 
then Equation 7.94 becomes

 
εrdc − 1
εrdc + 2

=
εrop − 1

εrop + 2
+

1
3εo

 Niαi(0)

 There are four negative and positive ion pairs per unit cell, and the cell dimension is a. 
The concentration of negative and positive ion pairs Ni is

 Ni =
4
a3 =

4
(0.629 × 10−9 m)3 = 1.61 × 1028 m−3

 EXAMPLE 7.18
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 Substituting εrdc = 4.84 and εrop = 2.19 and Ni in Equation 7.94

 αi(0) =
3εo

Ni
[εrdc − 1

εrdc + 2
−

εrop − 1

εrop + 2] =
3(8.85 × 10−12)

1.61 × 1028 [4.84 − 1
4.84 + 2

−
2.19 − 1
2.19 + 2]

we find

 αi(0) = 4.58 × 10−40 F m2

 The relationship between αi(0) and the resonance absorption frequency involves the 
reduced mass Mr of the K+−Cl− ion pair,

  Mr =
M+M−

M+ + M−
=

(39.09)(35.45)(10−3)

(39.09 + 35.45)(6.022 × 1023)
= 3.09 × 10−26 kg

 At ω = 0, the polarizability is given by Equation 7.91, so the resonance absorption 
frequency ωI is

 ωI = [ Q2

Mrαi(0) ]
1∕2

= [ (1.6 × 10−19)2

(3.09 × 10−26) (4.58 × 10−40) ]
1∕2

= 4.26 × 1013 rad s−1

or fI =
ωI

2π
= 6.8 × 1012 Hz

 This is about a factor of 1.5 greater than the observed resonance absorption frequency 
of 4.5 × 1012 Hz. Typically one accounts for the difference by noting that the actual ionic 
charges may not be exactly +e on K+ and −e on Cl−, but Q is effectively 0.76e. Taking 
Q = 0.76e makes fI = 5.15 × 1012 Hz, only 14 percent greater than the observed value. 
A closer agreement can be obtained by refining the simple theory and considering how many 
effective dipoles there are in the unit cell along the direction of the applied field.

7.13   DIELECTRIC MIXTURES AND  

HETEROGENEOUS MEDIA

Many dielectrics are composite materials; that is, they are mixtures of two or more 
different types of dielectric materials with different relative permittivities and loss 
factors. The simplest example is a porous dielectric which has small air pores ran-
domly dispersed within the bulk of the material as shown in Figure 7.61a (analo-
gous to a random raisin pudding). Another example would be a dielectric material 
composed of two distinctly different phases that are randomly mixed, as shown in 
Figure 7.61b, somewhat like a Swiss cheese that has air bubbles. We often need to 
find the overall or the effective dielectric constant εreff of the mixture, which is 
not a trivial problem.19 This overall εreff can then be used to treat the mixture as if 
it were one dielectric substance with this particular dielectric constant; for example, 

 19 The theories that try to represent a heterogeneous medium in terms of effective quantities are called 
effective medium theories (or approximations). The theory of finding an effective dielectric constant of a mixture 
has intrigued many famous scientists in the past. Over the years, many quite complicated mixture rules have 
been developed, and there is no shortage of formulas in this field. Many engineers however still tend to use 
simple empirical rules to model a composite dielectric. The primary reason is that many theoretical mixture rules 
depend on the exact knowledge of the geometrical shapes, sizes, and distributions of the mixed phases.
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the capacitance can be calculated from C = εoεreffA∕d by simply using εreff. It should 
be emphasized that if mixing occurs at the atomic level so that the material is 
essentially a solid solution, then, in principle, the Clausius–Mossotti equation can 
be used in which we simply add the polarizabilities of each species of atoms or 
ions weighted by their concentration. (We did this for CsCl in Example 7.4.) The 
present problem examines heterogeneous materials, and hence excludes such solid 
solutions.
 The theoretical treatment of mixtures can be quite complicated since one has to 
consider not only individual dielectric properties but also the geometrical shapes, 
sizes, and distributions of the two (or more) phases present in the composite mate-
rial. In many cases, empirical rules that have been shown to work have been used 
to predict εreff. Consider a heterogeneous dielectric that has two mixed phases I and 
II with dielectric constants εr1 and εr2, and volume fractions v1 and v2, respectively, 
(v1 + v2 = 1) as in Figure 7.61b. One simple and useful mixture rule is

 εn
reff = v1ε

n
r1 + v2ε

n
r2 [7.95]

where n is an index (a constant), usually determined empirically, that depends on 
the type of mixture. If we have a stack of plates of I and II in alternating (or in 
random) sequence between the two electrodes as in Figure 7.61c, this would be like 
many series-connected dielectrics and n would be −1. If the phases are in parallel 
as plates of I and II stacked on top of each other, as shown in Figure 7.61d, then n 
is 1. As n approaches 0, Equation 7.95 can be shown to be equivalent to a logarithmic 

mixture rule:

 ln εreff = v1 ln εr1 + v2 ln εr2 [7.96]

which is known as the Lichtenecker formula (1926). Although its scientific basis 
is not strong, it has shown remarkable applicability to various heterogeneous media; 
perhaps due to the fact that it is a kind of compromise between the two extreme 
limits of series and parallel mixtures.

Generalized 

mixture rule

Lichtenecker 

formula

Dispersed
dielectric
spheres

III

(a) (b) (c) (d)

ε
r1 ε

r1ε
r2 ε

r1 ε
r2ε

r1 ε
r2ε

r2

Figure 7.61 Heterogeneous dielectric media examples. (a) Dispersed dielectric 

spheres in a dielectric matrix. (b) A heterogeneous medium with two distinct 

phases I and II. (c) Series mixture rule. (d) Parallel mixture rule.
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 There is one particular mixture rule for dispersed dielectric spheres (with εr1), 
such as air pores, in a continuous dielectric matrix (with εr2), that works quite 
well for volume fractions up to about 20 percent, called the Maxwell–Garnett 

formula

 
εreff − εr2

εreff + 2εr2
= v1

εr1 − εr2

εr1 + 2εr2
 [7.97]

 The Maxwell–Garnett equation can predict the effective dielectric constant of 
many different types of dielectrics that have dispersed pores. There are other mixture 
rules,20 but the above are some of the common types. In addition, we need to con-
sider the shape of the dispersed particle; remember that the depolarization field 
depends on the shape of the dielectric. For example, Equation 7.97 can be modified 
further to include a shape factor as well.

Maxwell–

Garnett 

formula

 20 Another popular mixture rule is the Bruggeman rule, given by Equation 7.102 in Question 7.35.

LOW-κ POROUS DIELECTRICS FOR MICROELECTRONICS It was mentioned in Chapter 2 
that today’s high transistor density ICs have multilayers of metal interconnect lines that are 
separated by an interlayer dielectric (ILD). The speed of the chip (as limited by the RC time 
constant) depends on the overall interconnect capacitance, which depends on the relative 
permittivity εrILD of the ILD. The traditional ILD material has been SiO2 with εr = 3.9. There 
is much research interest in finding suitable low-κ materials for such ILD applications, espe-
cially in ultralarge-scale integration (ULSI). Estimate the required porosity in SiO2 if its 
effective relative permittivity is to be 2.5? What would be the porosity needed if we start 
with a dielectric that has εr = 3.0?

SOLUTION

The Maxwell–Garnett equation is particularly useful for such porous media calculations. Sub-
stituting εr2 = 3.9, εr1 = 1 (air pores), and setting εreff = 2.5 in Equation 7.97 we have

 
2.5 − 3.9

2.5 + 2(3.9)
= v1

1 − 3.9
1 + 2(3.9)

and solving gives

 v1 = 0.412,  or  41% porosity

Such porosity is achievable but it may have side effects such as poorer mechanical properties 
and lower breakdown voltage. (We should take the calculated porosity as an estimate since 
the volume fraction is higher than typical limits for Equation 7.97.) Note that the Lichtenecker 
formula gives 32.6 percent porosity. As apparent from this example, there is a distinct 
advantage in starting with a dielectric that has a low initial εr, and then using porosity to 
lower εr further. For example, if we start with εr2 = 3.0, and repeat the calculation above 
for εreff = 2.5, then we would find v1 = 0.21 or 21 percent porosity. Many polymeric mate-
rials have εr values around 2.5 and have been candidate materials for low-κ ILD applications 
in microelectronics. (The above ideas are explored further in Questions 7.35 and 7.36.)

 EXAMPLE 7.19
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DEFINING TERMS

molecules. It should not be confused with conduction 
loss σE 2 or V 2∕R.

Dielectric strength is the maximum field (Ebr) that 
can be sustained in a dielectric beyond which dielectric 
breakdown ensues; that is, there is a large conduction 
current through the dielectric shorting the plates.

Dipolar (orientational) polarization arises when 
randomly oriented polar molecules in a dielectric are 
rotated and aligned by the application of a field so as to 
give rise to a net average dipole moment per molecule. 
In the absence of the field, the dipoles (polar mole-
cules) are randomly oriented and there is no average 
dipole moment per molecule. In the presence of the 
field, the dipoles are rotated, some partially and some 
fully, to align with the field and hence give rise to a net 
dipole moment per molecule.

Dipolar relaxation equation describes the time re-
sponse of the induced dipole moment per molecule in 
a dipolar material in the presence of a time-dependent 
applied field. The response of the dipoles depends on 
their relaxation time, which is the mean time required 
to dissipate the stored electrostatic energy in the dipole 
alignment to heat through lattice vibrations or molecu-
lar collisions.

Dipole relaxation (dielectric resonance) occurs 
when the frequency of the applied ac field is such that 
there is maximum energy transfer from the ac voltage 
source to heat in the dielectric through the alternating 
polarization and depolarization of the molecules by the 
ac field. The stored electrostatic energy is dissipated 
through molecular collisions and lattice vibrations (in 
solids). The peak occurs when the angular frequency of 
the ac field is the reciprocal of the relaxation time.

Electric dipole moment exists when a positive 
charge +Q is separated from a negative charge −Q. 
Even though the net charge is zero, there is nonethe-
less an electric dipole moment p given by p = Qx 

where x is the distance vector from −Q to +Q. Just as 
two charges exert a Coulombic force on each other, 
two dipoles also exert a force on each other that depends 
on the magnitudes of the dipoles, their separation, and 
orientation.

Boundary conditions relate the normal and tangen-
tial components of the electric field next to the bound-
ary. The tangential component must be continuous 
through the boundary. Suppose that En1 is the normal 
component of the field in medium 1 at the boundary 
and εr1 is the relative permittivity in medium 1. Using 
a similar notation for medium 2, then the boundary 
condition is εr1En1 = εr2En2.

Clausius–Mossotti equation relates the dielectric 
constant (εr), a macroscopic property, to the polariz-
ability (α), a microscopic property.

Complex relative permittivity (ε′r − jε″r ) has a real 

part (ε′r) that determines the charge storage ability and 

an imaginary part (ε″r ) that determines the energy 

losses in the material as a result of the polarization 

mechanism. The real part determines the capacitance 

through C = εoε′r A∕d and the imaginary part deter-
mines the electric power dissipation per unit volume as 
heat by E 2ωεoε″r .

Corona discharge is a local discharge in a gaseous 

atmosphere where the field is sufficiently high to 

cause dielectric breakdown, for example, by avalanche 

ionization.

Curie temperature TC is the temperature above 

which ferroelectricity disappears, that is, the spontane-

ous polarization of the crystal is lost.

Debye equations attempt to describe the frequency 

response of the complex relative permittivity ε′r − jε″r 

of a dipolar medium through the use of a single relax-

ation time τ to describe the sluggishness of the dipoles 

driven by the external ac field.

Dielectric is a material in which energy can be stored 

by the polarization of the molecules. It is a material 

that increases the capacitance or charge storage ability 

of a capacitor. Ideally, it is a nonconductor of electrical 

charge so that an applied field does not cause a flow of 

charge but instead relative displacement of opposite 

charges and hence polarization of the medium.

Dielectric loss is the electrical energy lost as heat in 

the polarization process in the presence of an applied 

ac field. The energy is absorbed from the ac voltage 

and converted to heat during the polarization of the 
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induced polarization is along the direction of the field. 
If the molecule is already polar, then induced polariza-
tion is the additional polarization that arises due to the 
applied field alone and it is directed along the field.

Insulation aging is a term used to describe the physi-
cal and chemical deterioration in the properties of the 
insulation so that its dielectric breakdown characteris-
tics worsen with time. Aging therefore determines the 
useful life of the insulation.

Interfacial polarization occurs whenever there is an 
accumulation of charge at an interface between two 
materials or between two regions within a material. 
Grain boundaries and electrodes are regions where 
charges generally accumulate and give rise to this type 
of polarization.

Internal discharges are partial discharges that take 
place in microstructural voids, cracks, or pores within 
the dielectric where the gas atmosphere (usually air) 
has lower dielectric strength. A porous ceramic, for 
example, would experience partial discharges if the 
field is sufficiently large. Initially, the pore size (or 
the number of pores) may be small and the partial 
discharge insignificant, but with time the partial  
discharge erodes the internal surfaces of the void. 
Eventually (and usually) an electrical tree type of 
discharge develops from a partial discharge that has 
been eroding the dielectric. The erosion of the dielec-
tric by the partial discharge propagates like a branch-
ing tree. The “tree branches” are erosion channels, 
filaments of various sizes, in which gaseous discharge 
takes place and forms a conducting channel during 
operation.

Intrinsic breakdown or electronic breakdown com-
monly involves the avalanche multiplication of elec-
trons (and holes in solids) by impact ionization in the 
presence of high electric fields. The large number of 
free carriers generated by the avalanche of impact ion-
izations leads to a runaway current between the elec-
trodes and hence to insulation breakdown.

Ionic polarization is the relative displacement of op-
positely charged ions in an ionic crystal that results in 
the polarization of the whole material. Typically, ionic 
polarization is important in ionic crystals below the 
infrared wavelengths.

Electric susceptibility (χe) is a material quantity that 
measures the extent of polarization in the material 
per unit field. It relates the amount of polarization 
P at a point in the dielectric to the field E at that point 
via P  = χeεoE. If εr is the relative permittivity, then 

χe = εr − 1. Vacuum has no electric susceptibility.

Electromechanical breakdown and electrofracture  
are breakdown processes that directly or indirectly in-
volve electric field–induced mechanical weakening, 
for example, crack propagation, or mechanical defor-
mation that eventually lead to dielectric breakdown.

Electronic bond polarization is the displacement of 
valence electrons in the bonds in covalent solids (e.g., 
Ge, Si). It is a collective displacement of the electrons 
in the bonds with respect to the positive nuclei.

Electronic polarization is the displacement of the 
electron cloud of an atom with respect to the positive 
nucleus. Its contribution to the relative permittivity of 
a solid is usually small.

External discharges are discharges or shorting cur-
rents over the surface of the insulator when the conduc-
tance of the surface increases as a result of surface 
contamination, for example, excessive moisture, depo-
sition of pollutants, dirt, dust, and salt spraying. Even-
tually the contaminated surface develops sufficient 
conductance to allow discharge between the electrodes 
at a field below the normal breakdown strength of the 
insulator. Dielectric breakdown over the surface of an 
insulation is termed surface tracking.

Ferroelectricity is the occurrence of spontaneous po-
larization in certain crystals such as barium titanate 
(BaTiO3). Ferroelectric crystals have a permanent po-
larization P as a result of spontaneous polarization. 
The direction of P can be defined by the application of 
an external field.

Gauss’s law is a fundamental law of physics that re-
lates the surface integral of the electric field over a 
closed (hypothetical) surface to the sum of all the 
charges enclosed within the surface. If En is the field 
normal to a small surface area dA and Qtotal is the en-
closed total charge, then over the whole closed surface 

εo ∮ En dA = Qtotal.

Induced polarization is the polarization of a mole-
cule as a result of its placement in an electric field. The 
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at an elevated temperature, to align the polarizations 
of various grains and thereby develop piezoelectric 
behavior.

Pyroelectric material is a polar dielectric (such as 
barium titanate) in which a temperature change ΔT in-
duces a proportional change ΔP in the polarization, 
that is, ΔP = p ΔT, where p is the pyroelectric coeffi-
cient of the crystal.

PZT is a general acronym for the lead zirconate tita-
nate (PbZrO3-PbTiO3 or PbTi0.48Zr0.52O3) family of 
crystals.

Q-factor or quality factor for an impedance is the 
ratio of its reactance to its resistance. The Q-factor of 
a capacitor is Xc∕Rp where Xc = 1∕ωC and Rp is the 
equivalent parallel resistance that represents the di-
electric and conduction losses. The Q-factor of a 
resonant circuit measures the circuit’s peak response 
at the resonant frequency and also its bandwidth. 
The greater the Q, the higher the peak response and 
the narrower the bandwidth. For a series RLC reso-
nant circuit,

Q =
ωoL

R
=

1
ωoCR

where ωo is the resonant angular frequency, ωo = 
1∕√LC. The width of the resonant response curve be-
tween half-power points is Δω = ωo∕Q.

Relative permittivity (εr) or dielectric constant of a 
dielectric is the fractional increase in the stored charge 
per unit voltage on the capacitor plates due to the pres-
ence of the dielectric between the plates (the whole 
space between the plates is assumed to be filled). Al-
ternatively, we can define it as the fractional increase 
in the capacitance of a capacitor when the insulation 
between the plates is changed from a vacuum to a dielec-
tric material, keeping the geometry the same.

Relaxation time (τ) is a characteristic time that deter-
mines the sluggishness of the dipole response to an ap-
plied field. It is the mean time for the dipole to lose its 
alignment with the field due to its random interactions 
with the other molecules through molecular collisions, 
lattice vibrations, and so forth.

Surface tracking is an external dielectric breakdown 
that occurs over the surface of the insulation.

Local field (Eloc) is the true field experienced by a 
molecule in a dielectric that arises from the free charges 
on the plates and all the induced dipoles surrounding 
the molecule. The true field at a molecule is not simply 
the applied field (V∕d) because of the field of the 
neighboring induced dipoles.

Loss tangent or tan δ is the ratio of the dielectric con-
stant’s imaginary part to the real part, ε″r ∕ε′r. The angle 

δ is the phase angle between the capacitive current and 

the total current. If there is no dielectric loss, then the 

two currents are the same and δ = 0.

Partial discharge occurs when only a local region of 

the dielectric is exhibiting discharge, so the discharge 

does not directly connect the two electrodes.

Paschen’s law states that the breakdown voltage Vbr in 

a gaseous discharge is a function of the product of gas 

pressure and electrode separation (Pd) only.

Piezoelectric material has a noncentrosymmetric 

crystal structure that leads to the generation of a polar-

ization vector P, or charges on the crystal surfaces, upon 

the application of a mechanical stress. When strained, 

a piezoelectric crystal develops an internal field and 

therefore exhibits a voltage difference between two of 

its faces.

PLZT, lead lanthanum zirconate titanate, is a PZT-

type material with lanthanum occupying the Pb site.

Polarizability (α) is the ability of an atom or mole-

cule to become polarized in the presence of an electric 

field. It is induced polarization in the molecule per unit 

field along the field direction.

Polarization is the separation of positive and negative 

charges in a system so that there is a net electric dipole 

moment per unit volume.

Polarization vector (P) measures the extent of polar-

ization in a unit volume of dielectric matter. It is the 

vector sum of dielectric dipoles per unit volume. If p is 

the average dipole moment per molecule and n is the 

number of molecules per unit volume, then P = np. In 

a polarized dielectric matter (e.g., in an electric field), 

the bound surface charge density σp due to polarization 

is equal to the normal component of P at that point, 

σp = Pnormal.

Poling is the application of a temporary electric field 

to a piezoelectric (or ferroelectric) material, generally 
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QUESTIONS AND PROBLEMS

7.1 Atomic polarizability and atomic radius Table 7.10 provides the radius and the polarizability of 
atoms in Period 2 from Li (Z = 2) to Ne (Z = 10) and also for the inert gas atoms from He to Xe.
a. Plot αe versus r3

o and find the slope.
b. Plot αe versus ro on a log–log plot and find n in αe ∝ r n

o.

c. Plot αe and fo = ωo∕2π versus Z on a log–log plot and find n in αe ∝ Z n.

d. What are your conclusions for the above?

dielectric loss. The increases in ε″r  and σ lead to more 

heat generation and a further rise in the temperature, 

so thermal runaway ensues, followed by either a large 

shorting current or local thermal decomposition of 

the insulation accompanied by a partial discharge in 

this region.

Transducer is a device that converts electrical energy 

into another form of usable energy or vice versa. For 

example, piezoelectric transducers convert electrical 

energy to mechanical energy and vice versa.

Temperature coefficient of capacitance (TCC) is the 

fractional change in the capacitance per unit tempera-

ture change.

Thermal breakdown is a breakdown process that 

involves thermal runaway, which leads to a runaway 

current or discharge between the electrodes. If the 

heat generated by dielectric loss, due to ε″r , or Joule 

heating, due to finite σ, cannot be removed suffi-

ciently rapidly, then the temperature of the dielec-

tric  rises, which increases the conductivity and the 

Table 7.10 Atomic radii and polarizability in Period 2 and for inert gases

Period II Li Be B C N O F Ne

ro (pm) 167 112 87 67 56 48 42 38

αe (×10−40 F m2) 27.1 6.23 3.37 1.86 1.22 0.892 0.621 0.434

Inert gases He Ne Ar Kr Xe Rn

ro (pm) 31 38 71 88 108 134

αe (×10−40 F m2) 0.23 0.434 1.82 2.78 4.45 5.90

 NOTE: Data for αe from Ed. Haynes W.M., CRC Handbook of Chemistry and Physics, 95th Edition, 2014-2015, 
Boca Raton, FL: CRC Press. Rn is radioactive.

7.2 SI, cgs, Debye, and atomic units in electrostatics

a. The definitions of polarizability within the SI and cgs (cm-gram-second) unit systems are

 p = αSIE  and  p = 4πεoαcgsE

 The cgs units are widely used for polarizability. Convert a polarizability of 1 F m2 to cgs units. 

The polarizability αSI of an Ar atom is 1.82 × 10−40 F m2. What is αcgs for Ar in cm3 and Å3?

b. Atomic polarizability αvol is a dimensionless quantity in the cgs system obtained by dividing 

αcgs by an atomic volume, taken to be a3
o where ao is the Bohr radius in cm. What is αvol atomic 

units for Ar?

c. The electric dipole unit in SI is simply C m (p = Qa). The atomic dipole moment is defined 

as patomic = eao = 8.478 × 10−30 C m, where ao is the Bohr radius. One Debye (D) is a dipole unit 

within the cgs system and corresponds to 3.3356 × 10−30 C m. Put differently, amounts of charge 



754 C H A P T E R  7  ∙ DIELECTRIC MATERIALS AND INSULATION

±3.3356 × 10−20 C (approximately ±0.21e) separated by 1 Å. Consider a molecule in a CsF 
vapor. Cs+ and F− in the CsF molecule are separated by a bond length a that is 0.255 nm. 
Assume that Cs+ and F− are fully ionized in forming the molecule. What is the permanent 
dipole moment po in Debye units? If the experimental value is 7.88 D, what is actual charge 
on Cs+ and F−?

7.3 Relative permittivity and polarizability

a. Show that the local field is given by

 Eloc = E(εr + 2
3 )

b. Amorphous selenium (a-Se) is a high-resistivity semiconductor that has a density of approxi-
mately 4.3 g cm−3 and an atomic number and mass of 34 and 78.96, respectively. Its relative 
permittivity at 1 kHz has been measured to be 6.7. Calculate the relative magnitude of the local 
field in a-Se. Calculate the polarizability per Se atom in the structure. What type of polarization 
is this? How will εr depend on the frequency?

c. Calculate the electronic polarizability of an isolated Se atom, which has an atomic radius ro = 

0.12 nm, and compare your result with that for an atom in a-Se. Why is there a difference? (See 
Example 7.1.)

7.4 Dielectric properties of diamond Consider the diamond crystal, which has a density of 3.52 g cm−3, 
a lattice parameter of 0.35670 nm and a low-frequency dielectric constant of 5.7. Calculate the 
electronic polarizability per atom and also calculate the relative magnitude of the local field (see 
Question 7.3). The polarizability of an isolated C atom is 1.86 × 10−40 F m2. Why is there a 
 difference?

7.5 Electronic polarization and SF6 Because of its high dielectric strength, SF6 (sulfur hexafluo-
ride) gas is widely used as an insulator and a dielectric in HV applications such as HV transform-
ers, switches, circuit breakers, transmission lines, and even HV capacitors. The SF6 gas at 1 atm 
and at room temperature has a dielectric constant of 1.0015. The number of SF6 molecules per 
unit volume N can be found by the gas law, P = (N∕NA)RT. Calculate the electronic polarizability 

αe of the SF6 molecule. (Note: The SF6 molecule has no net dipole. Assume that the overall 
polarizability of SF6 is due to electronic polarization.)

7.6 Electronic polarization in liquid xenon Liquid xenon has been used in radiation detectors. The 
density of the liquid is 3.0 g cm−3. What is the relative permittivity of liquid xenon given its electronic 
polarizability in Table 7.10? (The experimental εr is 1.96.)

7.7 Relative permittivity, bond strength, bandgap, and refractive index Diamond, silicon, and ger-
manium are covalent solids with the same crystal structure. Their relative permittivities are shown in 
Table 7.11.
a. Explain why εr increases from diamond to germanium.
b. Calculate the polarizability per atom in each crystal and then plot polarizability against the 

elastic modulus Y (Young’s modulus). Should there be a correlation?

Table 7.11 Properties of diamond, Si, and Ge

   Density  Y Eg 

 εr Mat (g cm−3) αe (GPa) (eV) n

Diamond  5.7 12 3.52  827  5.5 2.42
Si 11.9 28.09 2.33  190 1.12 3.45
Ge 16 72.61 5.32   75.8 0.67 4.09

Local field
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c. Plot the polarizability from part (b) against the bandgap energy Eg. Is there a relationship?
d. Show that the refractive index n is √εr . When does this relationship hold and when does 

it  fail?
e. Would your conclusions apply to ionic crystals such as NaCl?

7.8 Dipolar liquids Given the static dielectric constant of water as 80, its optical-frequency dielectric 
constant (due to electronic polarization) as 4, and its density as 1 g cm−3, calculate the permanent 
dipole moment po per water molecule assuming that it is the orientational and electronic polariza-
tion of individual molecules that gives rise to the dielectric constant. Use both the simple relation-
ship in Equation 7.14 where the local field is the same as the macroscopic field and also the 
Clausius– Mossotti equation and compare your results with the permanent dipole moment of the 
water molecule which is 6.2 × 10−30 C m. What is your conclusion? What is εr calculated from 
the Clausius– Mossotti equation taking the true po (6.2 × 10−30 C m) of a water molecule? (Note: 
Static dielectric constant is due to both orientational and electronic polarization. The Clausius–
Mossotti equation does not apply to dipolar materials because the local field is not described by 
the Lorentz field.)

7.9 Dielectric constant of water vapor or steam The isolated water molecule has a permanent dipole 

po of 6.2 × 10−30 C m. The electronic polarizability αe of the water molecule under dc conditions is 
about 4 × 10−40 C m. What is the dielectric constant of steam at a pressure of 10 atm (10 × 105 Pa) 
and at a temperature of 400 °C? [Note: The number of water molecules per unit volume N can be 
found from the simple gas law, P = (N∕NA)RT. The Clausius–Mossotti equation does not apply to 
orientational polarization. Since N is small, use Equation 7.14.]

7.10 Dipole moment in a nonuniform electric field Figure 7.62 shows an electric dipole moment p in 
a nonuniform electric field. Suppose the gradient of the field is dE∕dx at the dipole p, and the dipole 
is oriented to be along the direction of increasing E as in Figure 7.62. Show that the net force acting 
on this dipole is given by

 F = p 

dE

dx

 Which direction is the force? What happens to this net force when the dipole moment is facing the 
direction of decreasing field? Given that a dipole normally also experiences a torque as described in 
Section 7.3.2, explain qualitatively what happens to a randomly placed dipole in a nonuniform  electric 

F
p

E Figure 7.62 Left: A dipole moment in a  

nonuniform field experiences a net force F 

that depends on the dipole moment p and the 

field gradient dE∕dx. Right: When a charged 

comb (by combing hair) is brought close to a 

water jet, the field from the comb polarizes 

the liquid by orientational polarization. The  

induced polarization vector P and hence the 

liquid is attracted to the comb where the field 

is higher.

 Photo by S. Kasap.

Net force on a 

dipole
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field. Explain the experimental observation of bending a flow of water by a nonuniform field from 
a charged comb as shown in the photograph in Figure 7.62? (Remember that a dielectric medium 
placed in a field develops polarization P directed along the field.)

7.11 Ionic and electronic polarization Consider a CsBr crystal that has the CsCl unit cell crystal struc-
ture (one Cs+−Br− pair per unit cell) with a lattice parameter (a) of 0.430 nm. The electronic polar-
izability of Cs+ and Br− ions are 2.7 × 10−40 F m2 and 5.3 × 10−40 F m2, respectively, and the mean 
ionic polarizability per ion pair is 5.8 × 10−40 F m2. What is the low-frequency dielectric constant 
and that at optical frequencies?

7.12 Ionic polarizability in KCl KCl has the same crystal structure as NaCl. KCl’s lattice parameter is 
0.629 nm. The electronic polarizability of K+ is 0.92 × 10−40 F m2 and that of Cl− is 4.0 × 10−40 F m2. 
The dielectric constant at 1 MHz is given as 4.80. Find the mean ionic polarizability per ion pair αi 
and the dielectric constant εrop at optical frequencies.

7.13 Debye relaxation We will test the Debye equations for approximately calculating the real and 

imaginary parts of the dielectric constant of water just above the freezing point at 0.2 °C. Assume 

the following values in the Debye equations for water: εrdc = 87.46 (dc), εr∞ = 4.87 (at f = 300 GHz 
well beyond the relaxation peak), and τ = 1∕ωo = (2π9.18 GHz)−1 = 0.017 ns. Calculate the real and 
imaginary, ε′r and ε″r, parts of εr for water at frequencies in Table 7.12, and plot both the experimen-

tal values and your calculations on a linear–log plot (frequency on the log axis). What is your conclu-

sion? (Note: It is possible to obtain a better agreement by using two relaxation times or using more 

sophisticated models.)

*7.14 Debye and non-Debye relaxation and Cole–Cole plots Consider the Debye equation

 εr = εr∞ +
εrdc − εr∞

1 + jωτ

 and also the generalized dielectric relaxation equation, which “stretches” (broadens) the Debye 
function,

 εr = εr∞ +
εrdc − εr∞

[1 + (  jωτ)α]β

  Take τ = 1, εrdc = 5, εr∞ = 2, and α = 0.8, and β = 1. Plot the real and imaginary parts of εr 

versus frequency (on a log scale) for both functions above from ω = 0, 0.1∕τ, 1∕3τ, 1∕τ, 3∕τ, and 

10τ. For the same ω values, plot ε″r versus ε′r (Cole–Cole plot) for both functions using a graph in 

which the x and y axes have the same divisions. What is your conclusion?

7.15 Equivalent circuit of a polyester capacitor Consider a 1 nF polyester capacitor that has a polymer 

(PET) film thickness of 1 μm. Calculate the equivalent circuit of this capacitor at 50 °C and at 120 °C 
for operation at 1 kHz. (See Figure 7.39.) What is your conclusion?

Table 7.12 Dielectric properties of water at 0.2 °C

 f (GHz)

 0.3 0.5 1 1.5 3 5 9.18 10 20 40 70 100 300

ε′r 87.46 87.25 86.61 85.34 76.20 68.19 46.13 42.35 19.69 10.16 7.20 6.14 4.87

ε″r 2.60 4.50 8.85 13.18 24.28 34.53 40.55 40.24 30.23 17.68 11.15 8.31 3.68

 SOURCE: Data extracted from Buchner, R., et al., Chemical Physics Letters, 306, 57, 1999.

Debye 

relaxation

Generalized 

dielectric 

relaxation
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7.16 Student microwaves mashed potatoes A microwave oven uses electromagnetic waves at 2.45 GHz 
to heat food by dielectric loss, that is, making use of ε″r of the food material, which normally has 

substantial water content. A student microwaves 60 cm3 of mashed potatoes for 40 seconds, then takes 

them out and measures their temperature to be about 71 °C. The room temperature is 23 °C. The spe-

cific heat capacity (cs) and density of mashed potatoes are approximately 3.8 J g−1 K−1 and 1.0 g cm−3. 

At 2.45 GHz, mashed potatoes have ε″r ≈ 15. Assume that heat generated in mashed potatoes by the 

absorption of microwaves increases the temperature, and ignore any heat conducted away. Calculate 

the rms electric field Erms generated by the microwaves in the mash potatoes. (Note: You can use Erms 

instead of E in Equation 7.32.)

7.17 Dielectric loss per unit capacitance Consider the three dielectric materials listed in Table 7.13 

with the real and imaginary dielectric constants ε′r and ε″r. At a given voltage, which dielectric will 

have the lowest power dissipation per unit capacitance at 1 kHz and at an operating temperature of 

50 °C? Is this also true at 120 °C?

Table 7.13 Dielectric properties of three insulators at 1 kHz

 T = 50 °C T = 120 °C

Material ε′r ε″r ε′r ε″r

Polycarbonate 2.47 0.003 2.535 0.003

PET 2.58 0.003 2.75 0.027

PEEK 2.24 0.003 2.25 0.003

 SOURCE: Data taken using a DEA by Kasap and Nomura (1995).

A

B B

A

B

A

Rp

Rs

Cs
≈ Cp

Figure 7.63 An equivalent parallel Rp and 

Cp circuit is equivalent to a series Rs and Cs 

circuit. The elements Rp and Cp in the paral-

lel circuit are related to the elements Rs and 

Cs in the series circuit.

7.18 Parallel and series equivalent circuits Figure 7.63 shows simplified parallel and series equivalent 

circuits for a capacitor. The elements Rp and Cp in the parallel circuit and the elements Rs and Cs in 

the series circuit are related. We can write down the impedance ZAB between the terminals A and B 

for both the circuits, and then equate ZAB(parallel) = ZAB(series). Show that

 Rs =
Rp

1 + (ωRpCp)2
  and  Cs = Cp[1 +

1

(ωRpCp)2]
 and similarly by considering the admittance (1/impedance),

 Rp = Rs[1 +
1

(ωRsCs)
2]  and  Cp =

Cs

1 + (ωRsCs)
2

 A 10 nF capacitor operating at 1 MHz has a parallel equivalent resistance of 100 kΩ. What are Cs 

and Rs?

Equivalent 

series resistance 

and capacitance

Equivalent 

series resistance 

and capacitance
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7.19 Tantalum capacitors Electrolytic capacitors tend to be modeled by a series Rs + jωCs equivalent 
circuit. A nominal 22 μF Ta capacitor (22 μF at low frequencies) has the following properties at 10 kHz: 
ε′r ≈ 20 (at this frequency), tan δ ≈ 0.05, dielectric thickness d = 0.16 μm, effective area A = 150 cm2. 

Calculate Cp, Rp, Cs, and Rs. Use the equations in Question 7.18 for Cs and Rs.

7.20 Tantalum versus niobium oxide capacitors Niobium oxide (Nb2O5) is a competing dielectric to 

Ta2O5 (the dielectric in the tantalum capacitor). The dielectric constants are 41 for Nb2O5 and 27 for 

Ta2O5. For operation at the same voltage, the Ta2O5 thickness is 0.17 μm, and that of Nb2O5 is 

0.25 μm. Explain why the niobium oxide capacitor is superior (or inferior) to the Ta capacitor. (Use 

a quantitative argument, such as the capacitance per unit volume.) What other factors would you 

consider if you were choosing between the two?

*7.21 TCC of a polyester capacitor Consider the parallel plate capacitor equation

 C =
εoεrxy

z

 where εr is the relative permittivity (or ε′r), x and y are the side lengths of the dielectric so that xy is 

the area A, and z is the thickness of the dielectric. The quantities εr, x, y, and z change with tem-

perature. By differentiating this equation with respect to temperature, show that the temperature 

coefficient of capacitance (TCC) is

 TCC =
1

C
 
dC

dT
=

1

εr

 
dεr

dT
+ λ

 where λ is the linear expansion coefficient defined by

 λ =
1

L
 
dL

dT

 where L stands for any length of the material (x, y, or z). Assume that the dielectric is isotropic and 

λ is the same in all directions. Using ε′r versus T behavior in Figure 7.64 and taking λ = 50 × 10−6 K−1 
as a typical value for polymers, predict the TCC at room temperature and at 10 kHz.

2.56

2.57

2.58

2.59

2.60

20 30 40 50 60 70 80 90

εr'

Temperature (°C)

PET, f = 10 kHz

Figure 7.64 Temperature 

dependence of ε′r at 10 kHz.

 Data taken by Kasap and 
Maeda (1995).

7.22 Breakdown voltage of SF6 and N2 gaseous insulation Experiments have been carried on break-

down between two spherical electrodes (5 cm in diameter) separated by 1 mm in two gases as insu-

lation: N2 and SF6. Table 7.14 summarizes the measurements of Vbr at different pressures P. Plot Vbr 

versus Pd on a log–log plot and find x in Vbr ∝ (Pd)x.

7.23 Dielectric breakdown of gases and Paschen curves Dielectric breakdown in gases typically 

involves the avalanche ionization of the gas molecules by energetic electrons accelerated by the applied 

field. The mean free path between collisions must be sufficiently long to allow the electrons to gain 

sufficient energy from the field to impact ionize the gas molecules. The breakdown voltage Vbr 

between two electrodes depends on the distance d between the electrodes as well as the gas pressure 

Temperature 

coefficient of 

capacitance
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P, as shown in Figure 7.65. Vbr versus Pd plots are called Paschen curves. We consider gaseous 
insulation, air and SF6, in an HV switch.
a. What is the breakdown voltage between two electrodes of a switch separated by a 5 mm gap at 

0.1 atm when the gaseous insulation is air and when it is SF6?
b. What are the breakdown voltages in the two cases when the pressure is 10 times greater? What 

is your conclusion?
c. At what pressure is the breakdown voltage a minimum?
d. What air gap spacing d at 1 atm gives the minimum breakdown voltage?
e. What would be the reasons for preferring gaseous insulation over liquid or solid insulation?

*7.24 Capacitor design Consider a nonpolarized 100 nF capacitor design at 60 Hz operation. Note that 
there are three candidate dielectrics, as listed in Table 7.15.
a. Calculate the volume of the 100 nF capacitor for each dielectric, given that they are to be used 

under low voltages and each dielectric has its minimum fabrication thickness. Which one has 
the smallest volume?

b. How is the volume affected if the capacitor is to be used at a 500 V application and the maximum 
field in the dielectric must be a factor of 2 less than the dielectric strength? Which one has the 
smallest volume?

c. At a 500 V application, what is the power dissipated in each capacitor at 60 Hz operation? Which 
one has the lowest dissipation?

Table 7.14 Breakdown voltage between electrodes separated by 1 mm in N2 and SF6

N2

P (MPa) 0.74 1.48 2.14 2.83 3.48 4.31
Vbr (kV) 21.2 41.0 57.9 73.0 87.8 105.8

SF6

P (MPa) 0.76 1.47 2.17 2.77 3.41 4.49
Vbr (kV) 55.2 110.0 156.2 191.9 225.2 273.9

 Data extracted from Koch, D., SF6 properties, and use in MV and HV switchgear, Cahier technique no. 
188, Schneider Electric, 2003.
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*7.25 Dielectric breakdown in a coaxial cable Consider a coaxial underwater high-voltage cable as 
in Figure 7.66a. The current flowing through the inner conductor generates heat, which has to 
flow through the dielectric insulation to the outer conductor where it will be carried away by 
conduction and convection. We will assume that steady state has been reached and the inner conduc-
tor is carrying a dc current I. Heat generated per unit second Q′ = dQ∕dt by Joule heating of the 
inner conductor is

 Q′ = RI2 =
ρLI2

πa2
 [7.98]

 where ρ is the resistivity, a the radius of the conductor, and L the cable length.

  This heat flows radially out from the inner conductor through the dielectric insulator to the outer 

conductor, then to the ambient. This heat flow is by thermal conduction through the dielectric. The 

rate of heat flow Q′ depends on the temperature difference Ti − To between the inner and outer 
conductors; on the sample geometry (a, b, and L); and on the thermal conductivity κ of the dielectric. 
From elementary thermal conduction theory, this is given by

 Q′ = (Ti − To)  

2πκL

ln(b

a)
 [7.99]

 The inner core temperature Ti rises until, in the steady state, the rate of Joule heat generation by the 
electric current in Equation 7.98 is just removed by the rate of thermal conduction through the dielec-
tric insulation, given by Equation 7.99.
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Figure 7.66 (a) The Joule heat generated in the core conductor flows outward  

radially through the dielectric material. (b) Typical temperature dependence of the 

dielectric strength of a polyethylene-based polymeric insulation.

Table 7.15 Comparison of dielectric properties at 60 Hz (typical values)

 Polymer Film Ceramic High-K Ceramic 

 PET TiO2 (BaTiO3 based)

Name Polyester Polycrystalline X7R 
   titania
ε′r 3.2 90 1800

tan δ 5 × 10−3 4 × 10−4 5 × 10−2

Ebr(kV cm−1) 150 50 100
Typical minimum thickness 1–2 μm 10 μm 10 μm

Rate of heat 

generation

Rate of heat 

conduction
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a. Show that the inner conductor temperature is

 Ti = To +
ρI2

2π2a2κ
 ln(b

a) [7.100]

b. The breakdown occurs at the maximum field point, which is at r = a, just outside the inner 
conductor and is given by (see Example 7.12).

 Emax =
V

a ln(b

a)
 [7.101]

   The dielectric breakdown occurs when Emax reaches the dielectric strength Ebr. However the 
dielectric strength Ebr for many polymeric insulation materials depends on the temperature, and 
generally it decreases with temperature, as shown for a typical example in Figure 7.66b. If the 
load current I increases, then more heat Q′ is generated per second and this leads to a higher 

inner core temperature Ti by virtue of Equation 7.100. The increase in Ti with I eventually low-

ers Ebr so much that it becomes equal to Emax and the insulation breaks down (thermal break-

down). Suppose that a certain coaxial cable has an aluminum inner conductor of diameter 10 mm 

and resistivity 27 nΩ m. The insulation is 3 mm thick and is a polyethylene-based polymer whose 

long-term dc dielectric strength is shown in Figure 7.66b. Suppose that the cable is carrying a 

voltage of 40 kV and the outer shield temperature is the ambient temperature, 25 °C. Given that 

the thermal conductivity of the polymer is about 0.3 W K−1 m−1, at what dc current will the 
cable fail?

c. Rederive Ti in Equation 7.100 by considering that ρ depends on the temperature as ρ = ρo[1 + 
αo(T − To)] (Chapter 2). Recalculate the maximum current in b given that αo = 3.9 × 10−3 °C−1 
at 25 °C.

7.26 Piezoelectricity Consider a quartz crystal and a PZT ceramic filter both designed for operation at 
fs = 1 MHz. What is the bandwidth of each? Given Young’s modulus (Y ), density (ρ) for each, and 
that the filter is a disk with electrodes and is oscillating radially, what is the diameter of the disk for 
each material? For quartz, Y = 80 GPa and ρ = 2.65 g cm−3. For PZT, Y = 70 GPa and ρ = 7.7 g m−3. 
Assume that the velocity of mechanical oscillations in the crystal is v = √Y/ρ and the wavelength 
λ = v∕fs. Consider only the fundamental mode (n = 1).

7.27 Piezoelectric voltage coefficient The application of a stress T to a piezoelectric crystal leads to a 
polarization P and hence to an electric field E in the crystal such that

 E = gT

 where g is the piezoelectric voltage coefficient. If εoεr is the permittivity of the crystal, show that

 g =
d

εoεr

 A BaTiO3 sample, along a certain direction (called 3), has d = 190 pC N−1, and its εr ≈ 1900 along 

this direction. What do you expect for its g coefficient for this direction and how does this compare 

with the measured value of approximately 0.013 m2 C−1?

7.28 Piezoelectricity and the piezoelectric bender

a. Consider using a piezoelectric material in an application as a mechanical positioner where the dis-

placements are expected to be small (as in a scanning tunneling microscope). For the piezoelectric 

plate shown in Figure 7.67a, we will take L = 20 mm, W = 10 mm, and D (thickness) = 0.25 mm. 

Under an applied voltage of V, the plate changes length, width, and thickness according 

to  the piezoelectric coefficients dij, relating the applied field along i to the resulting strain 

along j.
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temperature

Maximum field 

in a coaxial 

cable

Piezoelectric 

voltage 

coefficient
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   Suppose we define direction 3 along the thickness D and direction 1 along the length L, 
as shown in Figure 7.67a. Show that the changes in the thickness and length are

  δD = d33 V

  δL = ( L

D)d31 V

  Given d33 ≈ 500 × 10−12 m V−1 and d31 ≈ −250 × 10−12 m V−1, calculate the changes in the 

length and thickness for an applied voltage of 100 V. What is your conclusion?

b. Consider two oppositely poled and joined ceramic plates, A and B, forming a bimorph, as shown 

in Figure 7.67b. This piezoelectric bimorph is mounted as a cantilever; one end is fixed and the 

other end is free to move. Oppositely poled means that the electric field elongates A and contracts 

B, and the two relative motions bend the plate. The displacement h of the tip of the cantilever is 

given by

 h =
3

2
 d31( L

D)
2

 V

   What is the deflection of the cantilever for an applied voltage of 100 V? What is your 

 conclusion?

7.29 Piezoelectricity The wavelength λ of mechanical oscillations in a piezoelectric slab satisfies

 n(1
2

 λ) = L

 where n is an integer, L is the length of the slab along which mechanical oscillations are set up, and the 
wavelength λ is determined by the frequency f and velocity v of the waves. The ultrasonic wave velocity 
v depends on Young’s modulus Y as

 v = (Y

ρ)
1∕2

 where ρ is the density. For quartz, Y = 80 GPa and ρ = 2.65 g cm−3. Considering the fundamental 
mode (n = 1), what are practical dimensions for crystal oscillators operating at 1 kHz and 1 MHz?

7.30 Pyroelectric detectors Consider two different radiation detectors using PZT and PVDF as pyro-
electric materials whose properties are summarized in Table 7.16. The receiving area is 4 mm2. The 
thicknesses of the PZT ceramic and the PVDF polymer film are 0.1 mm and 0.005 mm, respectively. 
In both cases the incident radiation is chopped periodically to allow the radiation to pass for a dura-
tion of 0.05 s.
a. Calculate the magnitude of the output voltage for each detector if both receive a radiation of 

intensity 10 μW cm−2. What is the corresponding current in the circuit? In practice, what would 
limit the magnitude of the output voltage?

b. What is the minimum detectable radiation intensity if the minimum detectable signal voltage is 
10 nV?

V

L

D

W

δD

2
2

3

1

V

0

hA
B

(a) (b)

Piezoelectric

δL

Figure 7.67 (a) A mechanical 

 positioner using a piezoelectric 

plate under an applied voltage of V. 

(b) A cantilever-type piezoelectric 

bender. An applied voltage bends 

the cantilever.

Piezoelectric 

effects
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7.31 LiTaO3 pyroelectric detector LiTaO3 (lithium tantalate) detectors are available commercially. 
LiTaO3 has the following properties: pyroelectric coefficient p ≈ 200 × 10−6 C m−2 K−1, density 

ρ  =  7.5 g cm−3, specific heat capacity cs = 0.43 J K−1 g−1. A particular detector has a cylindrical 

crystal with a diameter of 10 mm and thickness of 0.2 mm. Suppose we chop the input radiation and 

allow the radiation to fall on the detector for short periods of time. Each input radiation pulse has a 

duration of Δt = 10 ms. (The time between the radiation pulses is long, so consider only the response 

of the detector to a single pulse of radiation.) Suppose that all the incident radiation is absorbed. If 

the input radiation has an intensity of 10 μW cm−2, calculate the pyroelectric current, and the maxi-

mum possible output voltage that can be generated assuming that the input impedance of the ampli-

fier is sufficiently large to be negligible. What is the current responsivity of this detector? What are 

the major assumptions in your calculation of the voltage signal?

*7.32 Pyroelectric detectors Consider a typical pyroelectric radiation detector circuit as shown in Figure 7.68. 

The FET circuit acts as a voltage follower (source follower). The resistance R1 represents the 

input resistance of the FET in parallel with a bias resistance that is usually inserted between the 

gate and source. C1 is the overall input capacitance of the FET including any stray capacitance 

but excluding the capacitance of the pyroelectric detector. Suppose that the incident radiation 

intensity is constant and equal to I. Emissivity η of a surface characterizes what fraction of the 

incident radiation that is absorbed? ηI is the energy absorbed per unit area per unit time. Some of 

the absorbed energy will increase the temperature of the detector and some of it will be lost to 

surroundings by thermal conduction and convection. Let the detector receiving area be A, thick-

ness be L, density be ρ, and specific heat capacity (heat capacity per unit mass) be c. The heat 

losses will be proportional to the temperature difference between the detector temperature T and 

the ambient temperature To, as well as the surface area A (much greater than L). Energy balance 

requires that

 Rate of increase in the internal energy (heat content) of the detector

 = Rate of energy absorption − Rate of heat losses

 that is,

 (ALρ)c  

dT

dt
= AηI − K A(T − To)

 where K is a constant of proportionality that represents the heat losses and hence depends on the 

thermal conductivity κ. If the heat loss involves pure thermal conduction from the detector surface to 

the detector base (detector mount), then K = κ∕L. In practice, this is generally not the case and K = κ∕L 
is an oversimplification.
a. Show that the temperature of the detector rises exponentially as

 T = To +
ηI

K [1 − exp(−
t

τth)]

Table 7.16 Properties of PZT and PVDF

  Pyroelectric 

  Coefficient Density Heat Capacity 

 ε′r (×10−6 C m−2 K−1) (g cm−3)  (J K−1 g−1)

PZT 290 380 7.7 0.3
PVDF  12  27  1.76 1.3

Detector 

temperature
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 where τth is a thermal time constant defined by τth = Lρc∕K. Further show that for very small 
K, this equation simplifies to

 T = To +
ηI

Lρc
  t

b. Show that temperature change dT in time dt leads to a pyroelectric current ip given by

 ip = Ap 

dT

dt
=

ApηI

Lρc
  exp(−

t

τth)
  where p is the pyroelectric coefficient. What is the initial current?

c. The voltage across the FET and hence the output voltage v(t) is given by

 v(t) = Vo[exp(−
t

τth) − exp(−
t

τel)]
 where Vo is a constant and τel is the electrical time constant given by R1Ct, where Ct, total 

capacitance, is (C1 + Cdet), where Cdet is the capacitance of the detector. Consider a particular 
PZT pyroelectric detector with an area of 1 mm2 and a thickness of 0.05 mm. Suppose that this 
PZT has εr = 250, ρ = 7.7 g cm−3, c = 0.3 J K−1 g−1, and κ = 1.5 W K−1 m−1. The detector is 
connected to an FET circuit that has R1 = 10 MΩ and C1 = 3 pF. Taking the thermal conduction 

loss constant K as κ∕L, and η = 1, calculate τth and τel. Sketch schematically the output voltage. 
What is your conclusion?

7.33 Spark generator design Design a PLZT piezoelectric spark generator using two back-to-back PLZT 
crystals that provide a 60 μJ spark in an air gap of 0.5 mm from a force of 50 N. At 1 atm in an air 
gap of 0.5 mm, the breakdown voltage is about 3000 V. The design will need to specify the dimen-
sions of the crystal and the dielectric constant. Assume that the piezoelectric voltage coefficient is 
0.023 V m N−1.

7.34 Ionic polarization resonance in CsCl Consider a CsCl crystal which has the following properties. 
The optical dielectric constant is 2.62, the dc dielectric constant is 7.20, and the lattice parameter a 
is 0.412 nm. There is only one ion pair (Cs+–Cl−) in the cubic-type unit cell. Calculate (estimate) 
the  ionic resonance absorption frequency and compare the value with the experimentally observed 
resonance at 3.1 × 1012 Hz. What effective value of Q would bring the calculated value to within 
10 percent of the experimental value?

7.35 Bruggeman mixture rule The Bruggeman mixture rule gives the overall effective relative permit-
tivity εreff of a dielectric with dispersed spherical particles (εr1) in a host medium (εr2) as

 v1 

εr1 − εreff

εr1 + 2εreff
+ (1 − v1)  

εr2 − εreff

εr2 + 2εreff
= 0 [7.102]

 where v1 is the volume fraction of spherical particles (1) dispersed in medium (2) as in Figure 7.61a. 
Suppose that the continuous phase has εr2 = 3.9 (SiO2). Using Bruggeman, Maxwell–Garnett 
and Lichtenecker formulas, estimate the porosity that would result in εreff = 3.1 (20 percent lower 
than εr2).

L

Radiation
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surface, A
v(t)

Rs

C1R1

Cdet
Figure 7.68 A pyroelectric detector with an FET 

voltage follower circuit.
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7.36 Low-κ porous dielectrics for microelectronics Interconnect technologies need lower εr interlayer 
dielectrics (ILDs) to minimize the interconnect capacitances. These materials are called low-κ dielec-

trics. Consider fluorinated silicon dioxide, also known as fluorosilicate glass (FSG), which has an εr 

of 3.2. Using Equations 7.96, 7.97, 7.102, calculate the expected effective dielectric constant if the 
ILD is 30 percent porous? What should be the starting εr2 if we need an effective εreff less than 2 
and the porosity cannot exceed 30 percent?

Supercapacitors from 22 mF to 350 F.

 Photo by S. Kasap.

Piezoelectric bending sensor.

 Courtesy of Piezo Systems Inc, USA.

Quartz crystal oscillators.

 © Edward C Mills LRPS.

Pyroelectric detectors (Model QS-THZ), which can 
be used to detect radiation over the wavelength 
range 0.1–1000 μm.

 Courtesy of Gentec Electro Optics, Inc.
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Neodymium magnets are used in high quality earphones.
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Rare-earth magnet based DC motor.
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Neodymium magnet based speakers.
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C H A P T E R

8

Magnetic Properties  
and Superconductivity

Many electrical engineering devices such as inductors, transformers, rotating 
machines, and ferrite antennas are based on utilizing the magnetic properties of 
materials. There are many instances where permanent magnets are also used either 
on their own or as part of a device such as a rotating machine or a loud speaker. 
The majority of engineering devices make use of the ferromagnetic and ferrimag-
netic properties, which are therefore treated in much more detail than other magnetic 
properties such as diamagnetism and paramagnetism. Although superconductivity 
involves the vanishing of the resistivity of a conductor at low temperatures and is 
normally explained within quantum mechanics, we treat the subject in this chapter 
because all superconductors are perfect diamagnets and, further, they have present 
or potential uses that involve magnetic fields. The advent of high-Tc superconductiv-
ity, discovered in 1986 by George Bednorz and Alex Müller at IBM Research 
Laboratories in Zürich, is undoubtedly one of the most significant discoveries over 
the last 50. High-Tc superconductors are already finding applications in such devices 
as superconducting solenoids, sensitive magnetometers, and high-Q microwave fil-
ters, power cables and superconducting current limiters and so on. Giant magneto-
resistance (GMR) is probably one of the most exciting discoveries in the field of 
sprintronics, that is, spin transport electronics. GMR is a phenomenon that depends 
on the spin of the electron as it passes from one thin ferromagnetic layer to an 
adjacent antiferromagnetic layer. Its best known application is in the read heads of 
magnetic hard drives.
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8.1  MAGNETIZATION OF MATTER

8.1.1 MAGNETIC DIPOLE MOMENT

Magnetic properties of materials involve concepts based on the magnetic dipole 
moment. Consider a current loop, as shown in Figure 8.1, where the circulating cur-
rent is I. This may, for example, be a coil carrying a current. For simplicity we will 
assume that the current loop lies within a single plane. The area enclosed by the 
current is A. Suppose that un is a unit vector coming out from the area A. The direc-
tion of un is such that looking along it, the current circulates clockwise. Then the 
magnetic dipole moment, or simply the magnetic moment μm, is defined by1

 μm = IAun [8.1]

 When a magnetic moment is placed in a magnetic field, it experiences a torque 
that tries to rotate the magnetic moment to align its axis with the magnetic field, as 
depicted in Figure 8.2. Moreover, since a magnetic moment is a current loop, it gives 
rise to a magnetic field B around it, as shown in Figure 8.3, which is similar to the 
magnetic field around a bar magnet. We can find the field B from the current I and 

Definition of 

magnetic 

moment

BrO P

NSμm

μm

Figure 8.3 A magnetic dipole moment creates a magnetic field just like a bar magnet.

The field B depends on μm.

A

I

un

μm

Figure 8.1 Definition 

of a magnetic dipole 

moment.

A

I

B

B

μmτ

τ

Figure 8.2 A magnetic dipole 

moment in an external field 

 experiences a torque.

 1 The symbol μ for the magnetic dipole moment should not be confused with the permeability. Absolute and 
relative permeabilities will be denoted by μo and μr.
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its geometry, which are treated in various physics textbooks. For example, the field 
B at a point P at a distance r along the axis of the coil from the center, as shown 
in Figure 8.3, is directly proportional to the magnitude of the magnetic moment but 
inversely proportional to r3, that is, B ∝ μm∕r3.

8.1.2 ATOMIC MAGNETIC MOMENTS

An orbiting electron in an atom behaves much like a current loop and has a magnetic 
dipole moment associated with it, called the orbital magnetic moment (μorb), as 
illustrated in Figure 8.4. If ω is the angular frequency of the electron, then the 
current I due to the orbiting electron is

 I = Charge flowing per unit time = −
e

Period
= −

eω

2π

 If r is the radius of the orbit, then the magnetic dipole moment is

 μorb = I(πr2) = −
eωr2

2

 But the velocity v of the electron is ωr and its orbital angular momentum is

 L = (mev)r = meωr2

 Using this in μorb, we get

 μorb = −
e

2me

 L [8.2]

 We see that the magnetic moment is proportional to the orbital angular momen-
tum through a factor that has the charge to mass ratio of the electron. The numerical 
factor, in this case e∕2me, relating the angular momentum to the magnetic moment, 
is called the gyromagnetic ratio. The negative sign in Equation 8.2 indicates that 
μorb is in the opposite direction to L and is due to the negative charge of the electron.
 The electron also has an intrinsic angular momentum S, that is, spin. The spin 
of the electron has a spin magnetic moment, denoted by μspin, but the relationship 
between μspin and S is not the same as that in Equation 8.2. The gyromagnetic ratio 
is a factor of 2 greater,

 μspin = −
e

me

 S [8.3]

Orbital 

magnetic 

moment of the 

electron

Spin magnetic 

moment of the 
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I
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L

r
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Figure 8.4 An orbiting electron is equivalent to 

a magnetic dipole moment μorb.
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 The overall magnetic moment of the electron consists of μorb and μspin appropri-
ately added. We cannot simply add them numerically as they are vector quantities. 
Furthermore, the overall magnetic moment μatom of the atom itself depends on the 
orbital motions and spins of all the electrons. Electrons in closed subshells, however, 
do not contribute to the overall magnetic moment because for every electron with a 
given L (or S), there is another one with an opposite L (or S). The reason is that 
the direction of L is space quantized by mℓ and all negative and positive values of 
mℓ are occupied in a closed shell. Similarly, there are as many electrons spinning up 
as there are spinning down, so there is no net electron spin in a closed shell and no 
net μspin. Thus, only unfilled subshells contribute to the overall magnetic moment 
of an atom.
 Consider an atom that has closed inner shells and a single electron in an s orbital 
(ℓ = 0). This means that the orbital magnetic moment is zero and the atom has a 
magnetic moment due to the spin of the electron alone, μatom = μspin. In the presence 
of an external magnetic field along the z direction, the magnetic moment cannot 
simply rotate and align with the field because quantum mechanics requires the spin 
angular momentum to be space quantized, that is, Sz (the component of S along z) 
must be msħ where ms = ±1

2  is the spin magnetic quantum number. The torque 
experienced by the spinning electron causes the spin magnetic moment to precess 
about the external magnetic field, as shown in Figure 8.5. This precession is such 
that Sz = −1

2 ħ and leads to an average magnetic moment μz along the field given by 
Equation 8.3 with Sz, that is,

 μz = −
e

me

 Sz = −
e

me

(msħ) =
eħ

2me

= β [8.4]

The quantity β = eħ∕2me is called the Bohr magneton and has the value 9.27 × 
10−24 A m2 or J T−1.
 Thus, the spin of a single electron has a magnetic moment of one Bohr magneton 
along the field.

8.1.3 MAGNETIZATION VECTOR M

Consider a tightly wound long solenoid, ideally infinitely long, with free space (or 
vacuum) as the medium inside the solenoid, as shown in Figure 8.6a. The magnetic 

B

z

S

μspin
μz

Sz
Figure 8.5 The spin magnetic moment precesses about an 

external magnetic field along z and has a value μz along z.

Magnetic 

moment along 
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field inside the solenoid is denoted by Bo to specifically identify this field as in free 
space. This field depends on the current I through the solenoid wire and the number 
of turns per unit length n and is given by2

 Bo = μonI = μoI′ [8.5]

where I′ is the current per unit length of the solenoid, that is, I′ = nI, and μo is the 
absolute permeability of free space in henries per meter, H m−1.
 If we now place a cylindrical material medium to fill the inside of this solenoid, 
as in Figure 8.6b, we find that the magnetic field has changed. The new magnetic 
field in the presence of a medium is denoted as B. We will take Bo to be the applied 
magnetic field into which the material medium is placed.
 Each atom of the material responds to the applied field Bo and develops, or 
acquires, a net magnetic moment μm along the applied field. We can view each 
magnetic moment μm as the result of the precession of each atomic magnetic moment 
about Bo. The medium therefore develops a net magnetic moment along the field 
and becomes magnetized. The magnetic vector M describes the extent of magneti-
zation of the medium. M is defined as the magnetic dipole moment per unit 

volume. Suppose that there are N atoms in a small volume ΔV and each atom i has 

a magnetic moment μmi (where i = 1 to N ). Then M is defined by

 M =
1

ΔV
 ∑

N

i=1

μmi = nat μav [8.6]

where nat is the number of atoms per unit volume and μav is the average magnetic 

moment per atom. We can assume that each atom acquires a magnetic moment μav 

along Bo. Each of these magnetic moments along Bo can be viewed as an elementary 

current loop at the atomic scale, as schematically depicted in Figure 8.6b. These 

elementary current loops are due to electronic currents within the atom and arise 

from both orbital and spin motions of the electrons. Each current loop has its current 

plane normal to Bo.

I

B

I

M

A

(b)

I

I

(a)

ℓ

Bo

Figure 8.6 (a) Consider a long solenoid. With free space as the medium inside, the magnetic field is Bo. 

(b) A material medium inserted into the solenoid develops a magnetization M.

 2 The proof of this comes out from Ampere’s law and can be found in any textbook of electromagnetism.
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 Consider a cross section of the magnetized medium, as in Figure 8.7. All the 
elementary current loops in this plane have the current circulation in the same direc-
tion inasmuch as each atom acquires the same magnetic moment μav. All neighbor-
ing loops in the bulk have adjacent currents in opposite directions that cancel each 
other, as apparent in Figure 8.7. Thus, there are no net bulk currents, or internal 
currents, within the bulk of the material. However, the currents at the surface in the 
surface loops cannot be canceled and this leads to a net surface current, as depicted 
in Figure 8.7. The surface currents are induced by the magnetization of the medium 
by the applied magnetic field and therefore depend on the magnetization M of the 
specimen.
 From the definition of M, the total magnetic moment of the cylindrical speci-
men is

 Total magnetic moment = M (Volume) = MAℓ

 Suppose that the magnetization current on the surface per unit length of the 
specimen is Im. Then the total circulating surface current is Imℓ and the total magnetic 
moment of the specimen, by definition, is

 Total magnetic moment = (Total current) × (Cross-sectional area) = ImℓA

 Equating the two total magnetic moments, we find

 M = Im [8.7]

 We derived this for a particular sample geometry, a cylindrical specimen, in 
which M is along the axis of the cylindrical specimen and Im flows in a plane per-
pendicular to M. The relationship, however, is more general, as derived in more 
advanced texts. It should be emphasized that the magnetization current Im is not due 
to the flow of free charge carriers, as in a current-carrying copper wire, but due to 
localized electronic currents within the atoms of the solid at the surface. Equation 
8.7 states that we can represent the magnetization of a medium by a surface current 
per unit length Im that is equal to M.

Surface currents

Surface currents

Figure 8.7 Elementary current loops result in surface currents.

There is no internal current, as adjacent currents on neighboring 

loops are in opposite directions.

Magnetization 

and surface 

currents
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8.1.4 MAGNETIZING FIELD OR MAGNETIC FIELD INTENSITY H

The magnetized specimen in Figure 8.6b placed inside the solenoid develops mag-
netization currents on the surface. It therefore behaves like a solenoid. We can now 
regard the solenoid with medium inside, as depicted in Figure 8.8. The magnetic 
field within the medium now arises from not only the conduction current per unit 
length I′ in the solenoid wires but also from the magnetization current Im on the 
surface. The magnetic field B inside the solenoid is now given by the usual solenoid 
expression but with a current that includes both I′ and Im, as shown in Figure 8.8:

 B = μo(I′ + Im) = Bo + μoM

 This relationship is generally valid and can be written in vector form as

 B = Bo + μoM [8.8]

 The field at a point inside a magnetized material is the sum of the applied field 
Bo and a contribution from the magnetization M of the material. The magnetization 
arises from the application of Bo due to the current of free carriers in the solenoid 
wires, called the conduction current, which we can externally adjust. It becomes 
useful to introduce a vector field that represents the effect of the external or conduc-
tion current alone. In general, B − μoM at a point is the contribution of the external 
currents alone to the magnetic field at that point inside the material that we called 
Bo. B − μoM represents a magnetizing field because it is the field of the external 
currents that magnetize the material. The magnetizing field H is defined as

 H =
1
μo

 B − M [8.9]

or

 H =
1
μo

 Bo

 The magnetizing field is also known as the magnetic field intensity and is 
measured in A m−1. The reason for the division by μo is that the resulting vector field 
H becomes simply related to the external conduction currents (through Ampere’s law). 
Since in the solenoid Bo is μonI, we see that the magnetizing field in a solenoid is

 H = nI = Total conduction current per unit length [8.10]

Magnetic 
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medium
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Figure 8.8 The field B in the material inside 

the solenoid is due to the conduction current I 

through the wires and the magnetization current 

Im on the surface of the magnetized medium, or 

B = Bo + μoM.
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 It is generally helpful to imagine H as the cause and B as the effect. The cause 
H depends only on the external conduction currents, whereas the effect B depends 
on the magnetization M of matter.

8.1.5 MAGNETIC PERMEABILITY AND MAGNETIC SUSCEPTIBILITY

Suppose that at a point P in a material, the magnetic field is B and the magnetizing 
field is H. We let Bo be the magnetic field at P in the absence of any material (i.e., 
in free space). The magnetic permeability of the medium at P is defined as the 
magnetic field per unit magnetizing field,

 μ =
B

H
 [8.11]

 It relates the effect B to the cause H at the same point P inside a material. In 
simple qualitative terms, μ represents to what extent a medium is permeable by 
magnetic fields. Relative permeability μr of a medium is the fractional increase in 
the magnetic field with respect to the field in free space when a material medium 
is introduced. For example, suppose that the field in a solenoid with free space in it 
is Bo but with material inserted it is B. Then μr is defined by

 μr =
B

Bo

=
B

μoH
 [8.12]

From Equations 8.11 and 8.12, clearly,

 μ = μoμr [8.13]

 The magnetization M produced in a material depends on the net magnetic field B. 
It would be natural to proceed as in dielectrics by relating M to B analogously to 
relating P (polarization) to E (electric field). However, for historic reasons, M is related 
to H, the magnetizing field. Suppose that the medium is isotropic (same properties in 
all directions), then magnetic susceptibility χm of the medium is defined simply by

 M = χmH [8.14]

 This relationship is not obeyed by all magnetic materials. For example, as we will 
see later, ferromagnetic materials do not obey Equation 8.12. Since the magnetic field

 B = μo(H + M) [8.15]

we have
 B = μoH + μoM = μoH + μoχmH = μo(1 + χm)H
and
 μr = 1 + χm [8.16]

 The presence of a magnetizable material is conveniently accounted for by using 
the relative permeability μr, or (1 + χm), to simply multiply μo. Alternatively, one 
can simply replace μo with μ = μoμr. For example, the inductance of the solenoid 
with a magnetic medium inside increases by a factor of μr.
 Table 8.1 provides a summary of various important magnetic quantities, their 
definitions, and units.
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Table 8.1 Magnetic quantities and their units

Magnetic Quantity Symbol Definition Units Comment

Magnetic field; B F = qv × B T = tesla =  Produced by moving charges
 magnetic induction    webers m−2   or currents, acts on moving  

charges or currents.
Magnetic flux Φ ΔΦ = Bnormal ΔA Wb = weber ΔΦ is flux through ΔA and  

      Bnormal is normal to ΔA. 

Total flux through any 

closed surface is zero.

Magnetic dipole μm μm = IA A m2 Experiences a torque in  

 moment      B and a net force in a 

nonuniform B.

Bohr magneton β β = eħ∕2me A m2 or Magnetic moment due to the  
    J T−1  spin of the electron.
     β = 9.27 × 10−24 A m2

Magnetization M Magnetic moment A m−1 Net magnetic moment in a  
 vector   per unit volume   material per unit volume.
Magnetizing field; H H = B∕μo − M A m−1 H is due to external  
 magnetic field     conduction currents only  
 intensity      and is the cause of B in a 

material.
Magnetic susceptibility χm M = χmH None Relates the magnetization of  
      a material to the 

magnetizing field H.
Absolute μo c = [εoμo]

−1∕2 H m−1 = A fundamental constant in  
 permeability    Wb m−1 A−1   magnetism. In free space, 

μo = B∕H.
Relative μr μr = B∕μoH None
 permeability
Magnetic μ μ = μoμr H m−1 Not to be confused with
 permeability     magnetic moment.
Inductance L L = Φtotal∕I H (henries) Total flux threaded per unit  
     current.
Magnetostatic Evol dEvol = H dB J m−3 dEvol is the energy required  
 energy density      per unit volume in 

changing B by dB.

AMPERE’S LAW AND THE INDUCTANCE OF A TOROIDAL COIL Ampere’s law provides 
a relationship between the conduction current I and the magnetic field intensity H threading 
this current. The conduction current I is the current due to the flow of free charge carriers 
through a conductor and not due to the magnetization of any medium. Consider an arbitrary 
closed path C around a conductor carrying a current I, as shown in Figure 8.9. The tangential 
component of H to the curve C at point P is Ht.

 If dl is an infinitesimally small path length 
of C at P, as shown in Figure 8.9, then the summation of Ht dl around the path C gives the 
conduction current enclosed within C. This is Ampere’s law,

 ∮
C

 Ht dl = I  [8.17]

 EXAMPLE 8.1

Ampere’s law
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 Consider the toroidal coil with N turns shown in Figure 8.10. First assume that the toroid 
core is air (μr ≈ 1). Suppose that the current through the coils is I. By symmetry, the magnetic 
field intensity H inside the toroidal core is the same everywhere and is directed along the 
circumference. Suppose that l is the length of the mean circumference C. The current is linked 
N times by the circumference C, so Equation 8.17 is

 ∮
C

 Ht dl = Hℓ = NI

or

 H =
NI

ℓ

 The magnetic field Bo with air as core material is then simply

 Bo = μoH =
μoNI

ℓ

 When the toroidal coil has a magnetic medium with a relative permeability μr, the mag-
netic field intensity is still H because the conduction current I has not changed. But the 
magnetic field B is now different than Bo and is given by

 B = μoμr H =
μoμr NI

ℓ
 [8.18]

 If A is the cross-sectional area of the toroid, then the total flux Φ through the core is 
BA or μoμrNAI∕ℓ. The current I in Figure 8.10 threads the flux N times. The inductance L of 
the toroidal coil, by definition, is then

 L =
Total flux threaded

Current
=

NΦ
I

=
μoμr N2A

ℓ
 [8.19]

Having a magnetic material as the toroid core increases the inductance by a factor of μr in 
the same way a dielectric material increases the capacitance by a factor of εr.

O r
dl

P

C

I

Ht

Figure 8.9 Ampere’s circuital law.

I
A

H
C

ℓ

N turns

Figure 8.10 A toroidal coil with N turns.

MAGNETOSTATIC ENERGY PER UNIT VOLUME Consider a toroidal coil with N turns that 
is energized from a voltage supply through a rheostat, as shown in Figure 8.11. The core of 
the toroid may be any material. Suppose that by adjusting the rheostat we increase the current 

 EXAMPLE 8.2

Magnetic 

field inside 

toroidal coil

Inductance of 

toroidal coil
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i supplied to the coil. The current i produces magnetic flux Φ in the core, which is BA, where 
B is the magnetic field and A is the cross-sectional area. We can now use Ampere’s law for 
H to relate the current i to H, as in Example 8.1. If ℓ is the mean circumference, then

 Hℓ = Ni [8.20]

 The changing current means that the flux is also changing (both increasing). We know 
from Faraday’s law that a changing flux that threads a circuit generates a voltage v in that 
circuit given by the rate of change of total threaded flux, or NΦ. Lenz’s law makes the polar-
ity of the induced voltage oppose the applied voltage. Suppose that in a time interval δt 
seconds, the magnetic field within the core changes by δB; then δΦ = AδB and

 v =
δ(Total flux threaded)

δt
=

NδΦ
δt

= NA 

δB

δt
 [8.21]

 The battery has to supply the current i against this induced voltage v, which means 
that it has to do electrical work iv every second. In other words, the battery has to do work 
iv δt in a time interval δt to supply the necessary current to increase the magnetic field 
by  δB. The electric energy δE that is input into the coil in time δt is then, using Equa-
tions 8.20 and 8.21,

 δE = iv δt = (Hℓ

N )(NA
δB

δt )δt = (Aℓ)H δB

 This energy δE is the work done in increasing the field in the core by δB. The volume 
of the toroid is Aℓ. Therefore, the total energy or work required per unit volume to increase 
the magnetic field from an initial value B1 to a final value B2 in the toroid is

 Evol = ∫
B2

B1

 H dB [8.22]

where the integration limits are determined by the initial and final magnetic field. This is the 
expression for calculating the energy density (energy per unit volume) required to change 
the field from B1 to B2. It should be emphasized that Equation 8.22 is valid for any medium. 
We conclude that an incremental energy density of dEvol = H dB is required to increase the 
magnetic field by dB at a point in any medium including free space.
 We can now consider a core material that we can represent by a constant relative perme-
ability μr. This means we can exclude those materials that do not have a linear relationship 
between B and H, such as ferromagnetic and ferrimagnetic materials, which we will discuss 
later. If the core is free space or air, then μr = 1.
 Suppose that we increase the current in Figure 8.11 from zero to some final value I so 
that the magnetic field changes from zero to some final value B. Since the medium has a 
constant relative permeability μr, we can write

 B = μrμoH

v

i
B

Figure 8.11 Energy required to magnetize a 

toroidal coil.

Work done 

per unit 

volume during 

magnetization
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and use this in Equation 8.22 to integrate and find the energy per unit volume needed to 
establish the field B or field intensity H

 Evol =
1
2

 μr 
μoH

2 =
B2

2μrμo

 [8.23]

 This is the energy absorbed from the battery per unit volume of core medium to estab-
lish the magnetic field. This energy is stored in the magnetic field and is called magnetostatic 

energy density. It is a form of magnetic potential energy. If we were to suddenly remove the 
battery and short those terminals, the current will continue to flow for a short while (deter-
mined by L∕R) and do external work in heating the resistor. This external work comes from 
the stored energy in the magnetic field. If the medium is free space, or air, then the energy 
density is

 Evol(air) =
1
2

 μoH2 =
B2

2μo

 A magnetic field of 2 T corresponds to a magnetostatic energy density of 1.6 MJ m−3 
or 1.6 J cm−3. The energy in a magnetic field of 2 T in a 1 cm3 volume (size of a thimble) 
has the work ability (potential energy) to raise an average-sized apple roughly by 5 feet, or 
1.6 m. We should note that as long as the core material is linear, that is, μr is independent 
of the magnetic field itself, magnetostatic energy density can also be written as

 Evol =
1
2

 HB [8.24]

8.2  MAGNETIC MATERIAL CLASSIFICATIONS

In general, magnetic materials are classified into five distinct groups: diamagnetic, 
paramagnetic, ferromagnetic, antiferromagnetic, and ferrimagnetic. Table 8.2 provides 
a summary of the magnetic properties of these classes of materials.

8.2.1 DIAMAGNETISM

Typical diamagnetic materials have a magnetic susceptibility that is negative and 
small. For example, the silicon crystal is diamagnetic with χm = −5.2 × 10−6. The 
relative permeability of diamagnetic materials is slightly less than unity. When a 
diamagnetic substance such as a silicon crystal is placed in a magnetic field, the 
magnetization vector M in the material is in the opposite direction to the applied 
field μoH and the resulting field B within the material is less than μoH. The negative 
susceptibility can be interpreted as the diamagnetic substance trying to expel the 
applied field from the material. When a diamagnetic specimen is placed in a non-
uniform magnetic field, the magnetization M of the material is in the opposite direc-
tion to B and the specimen experiences a net force toward smaller fields, as depicted 
in Figure 8.12. A substance exhibits diamagnetism whenever the constituent atoms 
in the material have closed subshells and shells. This means that each constituent 
atom has no permanent magnetic moment in the absence of an applied field. Covalent 
crystals and many ionic crystals are typical diamagnetic materials because the 

Energy 

density of a 

magnetic field

Magnetostatic 

energy density 

in free space

Magnetostatic 

energy in a 

linear 

magnetic 

medium



Table 8.2 Classification of magnetic materials

 χm 

Type (typical values) χm versus T Comments and Examples

Diamagnetic Negative and T independent Atoms of the material have closed 
  small (−10−6)    shells. Organic materials, e.g., 

many polymers; covalent solids, 
e.g., Si, Ge, diamond; some ionic 
solids, e.g., alkalihalides; some 
metals, e.g., Cu, Ag, Au.

 Negative and Below a critical Superconductors 
  large (−1)  temperature
Paramagnetic Positive and small Independent of T Due to the alignment of spins of 
  (10−5−10−4)    conduction electrons. Alkali and 

transition metals.
 Positive and Curie or Curie–Weiss Materials in which the constituent 
  small (10−5)  law, χm = C∕(T − TC)   atoms have a permanent magnetic 

moment, e.g., gaseous and liquid 
oxygen; ferromagnets (Fe), 
antiferromagnets (Cr), and 
ferrimagnets (Fe3O4) at high 
temperatures.

Ferromagnetic Positive and Ferromagnetic below May possess a large permanent 
  very large  and paramagnetic   magnetization even in the 
   above the Curie  absence of an applied field.
   temperature   Some transition and rare earth 

metals, Fe, Co, Ni, Gd, Dy.
Antiferromagnetic Positive and Antiferromagnetic  Mainly salts and oxides of 
  small   below and   transition metals, e.g., MnO, 
   paramagnetic above  NiO, MnF2, and some 
   the Néel temperature  transition metals, α–Cr, Mn.
Ferrimagnetic Positive and Ferrimagnetic below May possess a large permanent 
  very large  and paramagnetic  magnetization even in the 
   above the Curie  absence of an applied field. 
   temperature  Ferrites.
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NS F

M

Figure 8.12 A diamagnetic material placed in a nonuniform magnetic 

field experiences a force toward smaller fields.

This repels the diamagnetic material away from a permanent magnet.
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constituent atoms have no unfilled subshells. Superconductors, as we will discuss 
later, are perfect diamagnets with χm = −1 and totally expel the applied field from 
the material.

8.2.2 PARAMAGNETISM

Paramagnetic materials have a small positive magnetic susceptibility. For example, 
oxygen gas is paramagnetic with χm = 2.1 × 10−6 at atmospheric pressure and room 
temperature. Each oxygen molecule has a net magnetic dipole moment μmol. In 
the  absence of an applied field, these molecular moments are randomly oriented 
due to the random collisions of the molecules, as depicted in Figure 8.13a. The 
magnetization of the gas is zero. In the presence of an applied field, the molecu-
lar  magnetic moments take various alignments with the field, as illustrated in 
Figure 8.13b. The degree of alignment of μmol with the applied field and hence 
magnetization M increases with the strength of the applied field μoH. Magnetiza-
tion M typically decreases with increasing temperature because at higher tempera-
tures there are more molecular collisions, which destroy the alignments of 
molecular magnetic moments with the applied field. When a paramagnetic sub-
stance is placed in a nonuniform magnetic field, the induced magnetization M is 
along B and there is a net force toward greater fields. For example, when liquid 
oxygen is poured close to a strong magnet, as depicted in Figure 8.14, the liquid 
becomes attracted to the magnet.
 Many metals are also paramagnetic, such as magnesium with χm = 1.2 × 10−5. 
The origin of paramagnetism (called Pauli spin paramagnetism) in these metals 
is due to the alignment of the majority of spins of conduction electrons with 
the  field.

M

μ
o
H

(a) μav = 0 and M = 0 (b) μav ≠ 0 and M = χmH

Figure 8.13 (a) In a paramagnetic material, each individual 

atom possesses a permanent magnetic moment, but due to 

thermal agitation there is no average moment per atom and  

M = 0. (b) In the presence of an applied field, individual  

magnetic moments take alignments along the applied field 

and M is finite and along B.

NS
Liquid oxygen

Dewar

Strong magnet

Figure 8.14 A paramagnetic 

 material placed in a nonuniform 

magnetic field experiences a force 

toward greater fields.

This attracts the paramagnetic 

 material (e.g., liquid oxygen) toward 

a permanent magnet.
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8.2.3 FERROMAGNETISM

Ferromagnetic materials such as iron can possess large permanent magnetizations 
even in the absence of an applied magnetic field. The magnetic susceptibility χm 
is typically positive and very large (even infinite) and, further, depends on the 
applied field intensity. The relationship between the magnetization M and 
the applied magnetic field μoH is highly nonlinear. At sufficiently high fields, the 
magnetization M of the ferromagnet saturates. The origin of ferromagnetism is 
the quantum mechanical exchange interaction (discussed later) between the con-
stituent atoms that results in regions of the material possessing permanent mag-
netization. Figure 8.15 depicts a region of the Fe crystal, called a magnetic 

domain, that has a net magnetization vector M due to the alignment of the mag-
netic moments of all Fe atoms in this region. This crystal domain has magnetic 

ordering as all the atomic magnetic moments have been aligned parallel to each 
other. Ferromagnetism occurs below a critical temperature called the Curie tem-
perature TC. At temperatures above TC, ferromagnetism is lost and the material 
becomes paramagnetic.

8.2.4 ANTIFERROMAGNETISM

Antiferromagnetic materials such as chromium have a small but positive suscepti-
bility. They cannot possess any magnetization in the absence of an applied field, in 
contrast to ferromagnets. Antiferromagnetic materials possess a magnetic ordering 
in which the magnetic moments of alternating atoms in the crystals align in opposite 
directions, as schematically depicted in Figure 8.16. The opposite alignments of 
atomic magnetic moments are due to quantum mechanical exchange forces (described 
later in Section 8.3). The net result is that in the absence of an applied field, there 
is no net magnetization. Antiferromagnetism occurs below a critical temperature 
called the Néel temperature TN. Above TN, antiferromagnetic material becomes 
paramagnetic.

M

Figure 8.15 In a magnetized region of a 

 ferromagnetic material such as iron, all the 

magnetic moments are spontaneously aligned 

in the same direction.

There is a strong magnetization vector M even 

in the absence of an applied field.

M=0

Figure 8.16 In this  

antiferromagnetic BCC crystal 

(Cr), the magnetic moment of the 

center atom is canceled by the 

magnetic moments of the corner 

atoms (one-eighth of the corner 

atom belongs to the unit cell).
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8.2.5 FERRIMAGNETISM

Ferrimagnetic materials such as ferrites (e.g., Fe3O4) exhibit magnetic behavior sim-
ilar to ferromagnetism below a critical temperature called the Curie temperature TC. 
Above TC they become paramagnetic. The origin of ferrimagnetism is based on 
magnetic ordering, as schematically illustrated in Figure 8.17. All A atoms have their 
spins aligned in one direction and all B atoms have their spins aligned in the oppo-
site direction. As the magnetic moment of an A atom is greater than that of a B 
atom, there is net magnetization M in the crystal. Unlike the antiferromagnetic case, 
the oppositely directed magnetic moments have different magnitudes and do not 
cancel. The net effect is that the crystal can possess magnetization even in the 
absence of an applied field. Since ferrimagnetic materials are typically nonconduct-
ing and therefore do not suffer from eddy current losses, they are widely used in 
high-frequency electronics applications.
 All useful magnetic materials in electrical engineering are invariably ferromag-
netic or ferrimagnetic.

8.3   FERROMAGNETISM ORIGIN  

AND THE EXCHANGE INTERACTION

The transition metals iron, cobalt, and nickel are all ferromagnetic at room tem-
perature. The rare earth metals gadolinium and dysprosium are ferromagnetic 
below room temperature. Ferromagnetic materials can exhibit permanent magneti-
zation even in the absence of an applied field; that is, they possess a susceptibility 
that is infinite.
 In a magnetized iron crystal, all the atomic magnetic moments are aligned in 
the same direction, as illustrated in Figure 8.15, where the moments in this case have 
all been aligned along the [100] direction, which gives net magnetization along this 
direction. It may be thought that the reason for the alignment of the moments is the 
magnetic forces between the moments, just as bar magnets will tend to align head 
to tail in an SNSN . . . fashion. This is not, however, the cause, as the magnetic 
potential energy of interaction is small, indeed smaller than the thermal energy.
 The iron atom has the electron structure [Ar]3d64s2. An isolated iron atom has 
only the 3d subshell with four of the five orbitals unfilled. By virtue of Hund’s rule, 
the electrons try to align their spins so that the five 3d orbitals contain two paired 

M

A B

Figure 8.17 Illustration of magnetic ordering in the 

 ferrimagnetic crystal.

All A atoms have their spins aligned in one direction  

and all B atoms have their spins aligned in the opposite 

direction. As the magnetic moment of an A atom is 

greater than that of a B atom, there is net magnetization 

M in the crystal.
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electrons and four unpaired electrons, as in Figure 8.18. The isolated atom has four 
parallel electron spins and hence a spin magnetic moment of 4β.
 The origin of Hund’s rule, visualized in Figure 8.19, lies in the fact that when 
the spins are parallel (same ms), as a requirement of the Pauli exclusion principle, 
the electrons must occupy orbitals with different mℓ and hence possess different 
spatial distributions (recall that mℓ determines the orientation of an orbit). Different 
mℓ values result in a smaller Coulombic repulsion energy between the electrons 
compared with the case where the electrons have opposite spins (different ms), where 
they would be in the same orbital (same mℓ), that is, in the same spatial region. It 
is apparent that even though the interaction energy between the electrons has nothing 
to do with magnetic forces, it does depend nonetheless on the orientations of their 
spins (ms), or on their spin magnetic moments, and it is less when the spins are 
parallel. Two electrons parallel their spins not because of the direct magnetic inter-
action between the spin magnetic moments but because of the Pauli exclusion 

principle and the electrostatic interaction energy. Together they constitute what is 
known as an exchange interaction, which forces two electrons to take ms and mℓ 
values that result in the minimum of electrostatic energy. In an atom, the exchange 
interaction therefore forces two electrons to take the same ms but different mℓ if this 
can be done within the Pauli exclusion principle. This is the reason an isolated Fe 
atom has four unpaired spins in the 3d subshell.
 In the crystal, of course, the outer electrons are no longer strictly confined to 
their parent Fe atoms, particularly the 4s electrons. The electrons now have wave-
functions that belong to the whole solid. Something like Hund’s rule also operates 
at the crystal level for Fe, Co, and Ni. If two 3d electrons parallel their spins and 
occupy different wavefunctions (and hence different negative charge distributions), 
the resulting mutual Coulombic repulsion between them and also with all the other 
electrons and the attraction to the positive Fe ions result in an overall reduction of 
potential energy. This reduction in energy is again due to the exchange interaction 
and is a direct consequence of the Pauli exclusion principle and the Coulombic 
forces. Thus, the majority of 3d electrons spontaneously parallel their spins without 
the need for the application of an external magnetic field. The number of electrons 
that actually parallel their spins depends on the strength of the exchange interaction, 
and for the iron crystal this turns out to be about 2.2 electrons per atom. Since 
typically the wavefunctions of the 3d electrons in the whole iron crystal show 

3d6 4s2

Figure 8.18 The isolated Fe atom 

has four unpaired spins and a spin 

magnetic moment of 4β.

m
ℓ2

m
ℓ1

Lower energyHigher energy

Figure 8.19 Hund’s rule for an atom with 

many electrons is based on the exchange 

interaction.
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localization around the iron ions, some people prefer to view the 3d electrons as 
spending the majority of their time around Fe atoms, which explains the reason for 
drawing the magnetized iron crystal as in Figure 8.15.
 It may be thought that all solids should follow the example of Fe and become 
spontaneously ferromagnetic since paralleling spins would result in different spa-
tial distributions of negative charge and probably a reduction in the electrostatic 
energy, but this is not generally the case at all. We know that, in the case of covalent 
bonding, the electrons have the lowest energy when the two electrons spin in 
opposite directions. In covalent bonding in molecules, the exchange interaction does 
not reduce the energy. Making the electron spins parallel leads to spatial negative 
charge distributions that result in a net mutual electrostatic repulsion between the 
positive nuclei.
 In the simplest case, for two atoms only, the exchange energy depends on the 
interatomic separation between two interacting atoms and the relative spins of the 
two outer electrons (labeled as 1 and 2). From quantum mechanics, the exchange 
interaction can be represented in terms of an exchange energy Eex as

 Eex = −2JeS1 · S2 [8.25]

where S1 and S2 are the spin angular momenta of the two electrons and Je is a 
numerical quantity called the exchange integral that involves integrating the wave-
functions with the various potential energy interaction terms. It therefore depends 
on the electrostatic interactions and hence on the interatomic distance. For the major-
ity of solids, Je is negative, so the exchange energy is negative if S1 and S2 are in 
the opposite directions, that is, the spins are antiparallel (as we found in covalent 
bonding). This is the antiferromagnetic state. For Fe, Co, and Ni, however, Je is 
positive. Eex is then negative if S1 and S2 are parallel. Spins of the 3d electrons on 
the Fe atoms therefore spontaneously align in the same direction to reduce the 
exchange energy. This spontaneous magnetization is the phenomenon of ferromag-
netism. Figure 8.20 illustrates how Je changes with the ratio of interatomic separation 
to the radius of the 3d subshell (r∕rd). For the transition metals Fe, Co, and Ni, the 
r∕rd is such that Je is positive.3 In all other cases, it is negative and does not produce 
ferromagnetic behavior. It should be mentioned that Mn, which is not ferromagnetic, 

Je

r
rd

0

+

–

Mn

Fe

Co
Ni

Gd

Cr

Figure 8.20 The exchange integral as a function of r∕rd, 

where r is the interatomic distance and rd the radius of the 

d orbit (or the average d subshell radius).

Cr to Ni are transition metals. For Gd, the x-axis is r∕rf, 

where rf is the radius of the f orbit.

 3 According to H. P. Myers, Introductory Solid State Physics 2nd ed., London: Taylor and Francis Ltd., 1997, p. 362, 
there have been no theoretical calculations of the exchange integral Je for any real magnetic substance.
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can be alloyed with other elements to increase r∕rd and hence endow ferromagnetism 
in the alloy.

SATURATION MAGNETIZATION IN IRON The maximum magnetization, called saturation 

magnetization Msat, in iron is about 1.75 × 106 A m−1. This corresponds to all possible net 
spins aligning parallel to each other. Calculate the effective number of Bohr magnetons per 
atom that would give Msat, given that the density and relative atomic mass of iron are 7.86 g cm−3 
and 55.85, respectively.

SOLUTION

The number of Fe atoms per unit volume is

 nat =
ρNA

Mat
=

(7.86 × 103 kg m−3) (6.022 × 1023 mol−1)

55.85 × 10−3 kg mol−1

 = 8.48 × 1028 atoms m−3

 If each Fe atom contributes x number of net spins, then since each net spin has a mag-
netic moment of β, we have,

 Msat = nat(xβ)

so

 x =
Msat

nat β
=

1.75 × 106

(8.48 × 1028) (9.27 × 10−24)
≈ 2.2

 In the solid, each Fe atom contributes only 2.2 Bohr magnetons to the magnetization 
even though the isolated Fe atom has 4 Bohr magnetons. There is no orbital contribution to 
the magnetic moment per atom in the solid because all the outer electrons, 3d and 4s electrons, 
can be viewed as belonging to the whole crystal, or being in an energy band, rather than 
orbiting individual atoms. A 3d electron is attracted by various Fe ions in the crystal and 
therefore does not experience a central force, in contrast to the 3d electron in the isolated Fe 
atom that orbits the nucleus. The orbital momentum in the crystal is said to be quenched.
 We should note that when the magnetization is saturated, all atomic magnetic moments 
are aligned. The resulting magnetic field within the iron specimen in the absence of an applied 
magnetizing field (H = 0) is

 Bsat = μoMsat = 2.2 T

8.4   SATURATION MAGNETIZATION  

AND CURIE TEMPERATURE

The maximum magnetization in a ferromagnet when all the atomic magnetic moments 
have been aligned as much as possible is called the saturation magnetization Msat. 
In the iron crystal, for example, this corresponds to each Fe atom with an effective 
spin magnetic moment of 2.2 Bohr magnetons aligning in the same direction to give 
a magnetic field μoMsat or 2.2 T. As we increase the temperature, lattice vibrations 
become more energetic, which leads to a frequent disruption of the alignments of 
the spins. The spins cannot align perfectly with each other as the temperature 

 EXAMPLE 8.3
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increases due to lattice vibrations randomly agitating the individual spins. When an 
energetic lattice vibration passes through a spin site, the energy in the vibration may 
be sufficient to disorientate the spin of the atom. The ferromagnetic behavior disap-
pears at a critical temperature called the Curie temperature, denoted by TC, when 
the thermal energy of lattice vibrations in the crystal can overcome the potential 
energy of the exchange interaction and hence destroy the spin alignments. Above the 
Curie temperature, the crystal behaves as if it were paramagnetic. The saturation 
magnetization Msat, therefore, decreases from its maximum value Msat(0) at absolute 
zero of temperature to zero at the Curie temperature. Figure 8.21 shows the depen-
dence of Msat on the temperature when Msat has been normalized to Msat(0) and the 
temperature is the reduced temperature, that is, T∕TC. At T∕TC = 1, Msat = 0. When 
plotted in this way, the ferromagnets cobalt and nickel follow closely the observed 
behavior for iron. We should note that since for iron TC = 1043 K, at room tem-
perature, T∕TC = 0.29 and Msat is very close to its value at Msat(0).
 Since at the Curie temperature, the thermal energy, of the order of kTC, is suf-
ficient to overcome the energy of the exchange interaction Eex that aligns the spins, 
we can take kTC as an order of magnitude estimate of Eex. For iron, Eex is ∼0.09 eV 
and for cobalt this is ∼0.1 eV.
 Table 8.3 summarizes some of the important properties of the ferromagnets Fe, 
Co, Ni, and Gd (rare earth metal).

Figure 8.21 Normalized saturated magnetization 

versus reduced temperature T∕TC where TC is 

the Curie temperature (1043 K).
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Table 8.3 Properties of the ferromagnets Fe, Co, Ni, and Gd

 Fe Co Ni Gd

Crystal structure BCC HCP FCC HCP
Bohr magnetons per atom 2.22 1.72 0.62 7.1
Msat(0) (MA m−1) 1.75 1.45 0.50 2.0
Bsat = μoMsat(T) 2.2 1.82 0.64 2.5
TC 770 °C 1127 °C 358 °C 16 °C
 1043 K 1400 K 631 K 289 K
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8.5   MAGNETIC DOMAINS:  

FERROMAGNETIC MATERIALS

8.5.1 MAGNETIC DOMAINS

A single crystal of iron does not necessarily possess a net permanent magnetization 
in the absence of an applied field. If a magnetized piece of iron is heated to a tem-
perature above its Curie temperature and then allowed to cool in the absence of a 
magnetic field, it will possess no net magnetization. The reason for the absence of 
net magnetization is due to the formation of magnetic domains that effectively can-
cel each other, as discussed below. A magnetic domain is a region of the crystal in 
which all the spin magnetic moments are aligned to produce a magnetic moment in 
one direction only.
 Figure 8.22a shows a single crystal of iron that has a permanent magnetization 
as a result of ferromagnetism (aligning of all atomic spins). The crystal is like a bar 
magnet with magnetic field lines around it. As we know, there is potential energy 
(PE), called magnetostatic energy, stored in a magnetic field, and we can reduce 
this energy in the external field by dividing the crystal into two domains where the 
magnetizations are in the opposite directions, as shown in Figure 8.22b. The external 
magnetic field lines are reduced and there is now less potential energy stored in the 
magnetic field. There are only field lines at the ends. This arrangement is energeti-
cally favorable because the magnetostatic energy has been reduced by decreasing the 
external field lines. However, there is now a boundary, called a domain wall (or 
Bloch wall), between the two domains where the magnetization changes from one 
direction to the opposite direction and hence the atomic spins do, also. It requires 
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Figure 8.22 (a) Magnetized bar of ferromagnet in which there is only one domain and hence 

an external magnetic field. (b) Formation of two domains with opposite magnetizations reduces 

the external field. There are, however, field lines at the ends. (c) Domains of closure fitting at 

the ends eliminate the external fields at the ends. (d) A specimen with several domains and  

closure domains. There is no external magnetic field and the specimen appears unmagnetized.
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energy to rotate the atomic spin through 180° with respect to its neighbor because 
the exchange energy favors aligning neighboring atomic spins (0°). The wall in 
Figure 8.22b is a 180° wall inasmuch as the magnetization through the wall is rotated 
by 180°. It is apparent that the wall region where the neighboring atomic spins 
change their relative direction (or orientation) from one domain to the neighboring 
one has higher PE than the bulk of the domain, where all the atomic spins are 
aligned. As we will show below, the domain wall is not simply one atomic spacing 
but has a finite thickness, which for iron is typically of the order of 0.1 μm, or 
several hundred atomic spacings. The excess energy in the wall increases with the 
area of the wall.
 The magnetostatic energy associated with the field lines at the ends in Figure 8.22b 
can be further reduced by eliminating these external field lines by closing the ends 
with sideway domains with magnetizations at 90°, as shown in Figure 8.22c. These 
end domains are closure domains and have walls that are 90° walls. The magnetiza-
tion is rotated through 90° through the wall. Although we have reduced the magne-
tostatic energy, we have increased the potential energy in the walls by adding 
additional walls. The creation of magnetic domains continues (spontaneously) until 
the potential energy reduction in creating an additional domain is the same as the 
increase in creating an additional wall. The specimen then possesses minimum poten-
tial energy and is in equilibrium with no net magnetization. Figure 8.22d shows a 
specimen with several domains and no net magnetization. The sizes, shapes, and 
distributions of domains depend on a number of factors, including the size and shape 
of the whole specimen. For iron particles of dimensions less than of the order of 
0.01 μm, the increase in the potential energy in creating a domain wall is too costly 
and these particles are single domains and hence always magnetized.
 The magnetization of each domain is normally along one of the preferred direc-
tions in which the atomic spin alignments are easiest (the exchange interaction is the 
strongest). For iron, the magnetization is easiest along any one of six ⟨100⟩ directions 
(along cube edges), which are called easy directions. The domains have magnetiza-
tions along these easy directions. The magnetization of the crystal along an applied 
field occurs, in principle, by the growth of domains with magnetizations (or com-
ponents of M) along the applied field (H), as illustrated in Figure 8.23a and b. For 
simplicity, the magnetizing field is taken along an easy direction. The Bloch wall 
between the domains A and B migrates toward the right, which enlarges the domain 

A B

[100]

HA B

(a) (b)

Figure 8.23 (a) An unmagnetized crystal of iron in the  

absence of an applied magnetic field. Domains A and B are 

the same size and have opposite magnetizations. (b) When an 

external magnetic field is applied, the domain wall migrates 

into domain B, which enlarges A and shrinks B. The result is 

that the specimen now acquires net magnetization.
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M versus H depends on the crystal direction and is easiest 

along [100] and hardest along [111].

A and shrinks domain B, with the net result that the crystal has an effective mag-
netization M along H. The migration of the Bloch wall is caused by the spins in the 
wall, and also spins in section B adjacent to the wall, being gradually rotated by the 
applied field (they experience a torque). The magnetization process therefore involves 
the motions of Bloch walls in the crystal.

8.5.2 MAGNETOCRYSTALLINE ANISOTROPY

Ferromagnetic crystals characteristically exhibit magnetic anisotropy, which means 
that the magnetic properties are different along different crystal directions. In the 
case of iron (BCC), the spins in a domain are most easily aligned in any of the six 
[100] type directions, collectively labeled as ⟨100⟩, and correspond to the six edges 
of the cubic unit cell. The exchange interactions are such that spin magnetic moments 
are most easily aligned with each other if they all point in one of the six ⟨100⟩ 
directions. Thus ⟨100⟩ directions in the iron crystal constitute the easy directions for 
magnetization. When a magnetizing field H along a [100] direction is applied, as 
illustrated in Figure 8.23a and b, domain walls migrate to allow those domains (e.g., A) 
with magnetizations along H to grow at the expense of those domains (e.g., B) with 
magnetizations opposing H. The observed M versus H behavior is shown in 
Figure 8.24. Magnetization rapidly increases and saturates with an applied field of 
less than 0.01 T.
 On the other hand, if we want to magnetize the crystal along the [111] direction 
by applying a field along this direction, then we have to apply a stronger field than 
that along [100]. This is clearly shown in Figure 8.24, where the resulting magneti-
zation along [111] is smaller than that along [100] for the same magnitude of applied 
field. Indeed, saturation is reached at an applied field that is about a factor of 4 greater 
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than that along [100]. The [111] direction in the iron crystal is consequently known 
as the hard direction. The M versus H behavior along [100], [110], and [111] 
directions in an iron crystal and the associated anisotropy are shown in Figure 8.24.
 When an external field is applied along the diagonal direction OD in Figure 8.24, 
initially all those domains with M along OA, OB, and OC, that is, those with mag-
netization components along OD, grow by consuming those with M in the wrong 
direction and eventually take over the whole specimen. This is an easy process 
(similar to the process along [100]) and requires small fields and represents the 
processes from 0 to P on the magnetization curve for [111] in Figure 8.24. However, 
from P onwards, the magnetizations in the domains have to be rotated away from 
their easy directions, that is, from OA, OB, and OC toward OD. This process con-
sumes substantial energy and hence needs much stronger applied fields.
 It is apparent that the magnetization of the crystal along [100] needs the least 
energy, whereas that along [111] consumes the greatest energy. The excess energy 
required to magnetize a unit volume of a crystal in a particular direction with respect 
to that in the easy direction is called the magnetocrystalline anisotropy energy and 
is denoted by K. For iron, the anisotropy energy is zero for [100] and largest for 
the  [111] direction, about 48 kJ m−3 or 3.5 × 10−6 eV per atom. For cobalt, which 
has the HCP crystal structure, the anisotropy energy is at least an order of magnitude 
greater. Table 8.4 summarizes the easy and hard directions, and the anisotropy energy 
K for the hard direction.

8.5.3 DOMAIN WALLS

We recall that the spin magnetic moments rotate across a domain wall. We men-
tioned that the wall is not simply one atomic spacing wide, as this would mean two 
neighboring spins being at 180° to each other and hence possessing excessive 
exchange interaction. A schematic illustration of the structure of a typical 180° 
Bloch wall, between two domains A and B, is depicted in Figure 8.25. It can be 
seen that the neighboring spin magnetic moments are rotated gradually, and over 
several hundred atomic spacings the magnetic moment reaches a rotation of 180°. 
Exchange forces between neighboring atomic spins favor very little relative rotation. 

Table 8.4 Exchange interaction, magnetocrystalline anisotropy energy K, and saturation magnetostriction coefficient λsat

  Eex ≈ kTC   K λsat 

Material Crystal (meV) Easy Hard (mJ cm−3) (× 10−6)

Fe BCC  90 <100>; cube edge <111>; cube diagonal  48 20 [100]
      −20 [111]
Co HCP 120 // to c axis ⊥ to c axis 450

Ni FCC  50 <111>; cube diagonal <100>; cube edge   5 −46 [100]
      −24 [111]

 NOTE: K is the magnitude of what is called the first anisotropy constant (K1) and is approximately the magnitude of the anisotropy energy. 
Eex is an estimate from kTC, where TC is the Curie temperature. All approximate values are from various sources. (Further data can be 
found in Jiles, D., Introduction to Magnetism and Magnetic Materials, London, England: Chapman and Hall, 1991.)
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Had it been left to exchange forces alone, relative rotation of neighboring spins 
would be so minute that the wall would have to be very thick (infinitely thick) to 
achieve a 180° rotation.
 However, magnetic moments that are oriented away from the easy direction pos-
sess excess energy, called the anisotropy energy (K). If the wall is thick, then it will 
contain many magnetic moments rotated away from the easy direction and there 
would be a substantial anisotropy energy in the wall. Minimum anisotropy energy 
in the wall is obtained when the magnetic moment changes direction by 180° from 
the easy direction along +z to that along −z in Figure 8.25 without any intermediate 
rotations away from z. This requires a wall of one atomic spacing. In reality, the wall 
thickness is a compromise between the exchange energy, demanding a thick wall, 
and anisotropy energy, demanding a thin wall. The equilibrium wall thickness is that 
which minimizes the total potential energy, which is the sum of the exchange energy 
and the anisotropy energy within the wall. This thickness turns out to be ∼0.1 μm 
for iron and less for cobalt, in which the anisotropy energy is greater.

Domain A Domain BBloch wall

Easy direction
z or [001] Gradual rotation

of magnetic moments

–z or [001]
Easy direction

Figure 8.25 In a Bloch wall, the neighboring spin magnetic moments rotate gradually, 

and it takes several hundred atomic spacings to rotate the magnetic moment by 180°.

MAGNETIC DOMAIN WALL ENERGY AND THICKNESS The Bloch wall energy and thick-
ness depend on two main factors: the exchange energy Eex (J atom−1) and magnetocrystalline 
energy K (J m−3). Suppose that we consider a Bloch wall of unit area, and thickness δ, and 
calculate the potential energy Uwall in this wall due to the exchange energy and the magne-
tocrystalline anisotropy energy. The spins change by 180° across the thickness δ of the Bloch 
wall as in Figure 8.25. The contribution Uexchange from the exchange energy arises because it 
takes energy to rotate one spin with respect to another. If the thickness δ is large, then the 
angular change from one spin to the next will be small, and the exchange energy contribution 
Uexchange will also be small. Thus, Uexchange is inversely proportional to δ. Uexchange is also 
directly proportional to Eex which gauges the magnitude of this exchange energy; it costs Eex 
to rotate the two spins 180° to each other. Thus, Uexchange ∝ Eex∕δ.
 The anisotropy energy contribution Uanisotropy arises from having spins point away from 
the easy direction. If the thickness δ is large, there are more and more spin moments that are 
aligned away from the easy direction, and the anisotropy energy contribution Uanisotropy is also 
large. Thus, Uanisotropy is proportional to δ, and also, obviously, to the anisotropy energy K that 
gauges the magnitude of this energy. Thus, Uanisotropy ∝ Kδ.

 EXAMPLE 8.4
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 Figure 8.26 shows the contributions of the exchange and anisotropy energies, Uexchange 
and Uanisotropy, to the total Bloch wall energy as a function of wall thickness δ. It is clear that 
exchange and anisotropy energies have opposite (or conflicting) requirements on the wall 
thickness. There is, however, an optimum thickness δ′ that minimizes the Bloch wall energy, 

that is, a thickness that balances the requirements of exchange and anisotropy forces.

 If the interatomic spacing is a, then there would be N = δ∕a atomic layers in the wall. 
Since the spin moment angle changes by 180° across δ, we can calculate the relative spin 
orientations (180°∕N) of adjacent atomic layers, and hence we can find the exact contributions 
of exchange and anisotropy energies. We do not need the exact mathematics, but the final 
result is that the potential energy Uwall per unit area of the wall is approximately

 Uwall ≈
π2Eex

2aδ
+ Kδ

The first term on the right is the exchange energy contribution (proportional to Eex∕δ), and 
the second is the anisotropy energy contribution (proportional to Kδ); both have the features 
we discussed.
 Show that the minimum energy occurs when the wall has the thickness

 δ′ = (π2Eex

2aK )
1∕2

Taking Eex ≈ kTC, where TC is the Curie temperature, and for iron, K ≈ 50 kJ m−3, and  
a ≈ 0.3 nm, estimate the thickness of a Bloch wall and its energy per unit area.

SOLUTION

We can differentiate Uwall with respect to δ,

 
dUwall

dδ
= −

π2Eex

2aδ2 + K

and then set it to zero for δ = δ′ to find,

 δ′ = (π2Eex

2aK )
1∕2

Since TC = 1043 K, Eex = kTC = (1.38 × 10−23 J K−1)(1043 K) = 1.4 × 10−20 J, so that

 δ′ = (π2Eex

2aK )
1∕2

= [ π2(1.4 × 10−20)

2(0.3 × 10−9) (50,000) ]
1∕2

= 6.8 × 10−8 m or 68 nm

Domain wall thickness δδ′

Potential energy

Domain wall

energy Uwall

Anisotropy energy Uanisotropy

Exchange energy UexchangeFigure 8.26 The potential energy of a 

domain wall depends on the exchange 

and anisotropy energies.

Potential 

energy of a 

Bloch wall

Bloch wall 

thickness
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and Uwall =
π2Eex

2aδ′
+ Kδ′ =

π2(1.4 × 10−20)

2(0.3 × 10−9) (6.8 × 10−8)
+ (50 × 103) (6.8 × 10−8)

 = 0.007 J m−2  or  7 mJ m−2

A better calculation gives δ′ and Uwall as 40 nm and 3 mJ m−2, respectively, about the same 
order of magnitude.4 The Bloch wall thickness is roughly 70 nm or δ∕a = 230 atomic layers. 
It is left as an exercise to show that when δ = δ′, the exchange and anisotropy energy con-
tributions are equal.

8.5.4 MAGNETOSTRICTION

If we were to strain a ferromagnetic crystal (by applying a suitable stress) along a 
certain direction, we would change the interatomic spacing not only along this direc-
tion but also in other directions and hence change the exchange interactions between 
the atomic spins. This would lead to a change in the magnetization properties of the 
crystal. In the converse effect, the magnetization of the crystal generates strains or 
changes in the physical dimensions of the crystal. For example, in very qualitative 
terms, when an iron crystal is magnetized along the [111] direction by a strong field, 
the atomic spins within domains are rotated from their easy directions toward the 
hard [111] direction. These electron spin rotations involve changes in the electron 
charge distributions around the atoms and therefore affect the interatomic bonding 
and hence the interatomic spacing. When an iron crystal is placed in a magnetic field 
along an easy direction [100], it gets longer along this direction but contracts in the 
transverse directions [010] and [001], as depicted in Figure 8.27. The reverse is true 
for nickel. The longitudinal strain Δℓ∕ℓ along the direction of magnetization is called 
the magnetostrictive constant, denoted by λ. The magnetostrictive constant depends 
on the crystal direction and may be positive (extension) or negative (contraction). 
Further, λ depends on the applied field and can even change sign as the field is 
increased; for example, λ for iron along the [110] direction is initially positive and 
then, at higher fields, becomes negative. When the crystal reaches saturation mag-
netization, λ also reaches saturation, called saturation magnetostriction strain λsat, 
which is typically 10−6–10−5. Table 8.4 summarizes the λsat values for Fe and Ni 
along the easy and hard directions. The crystal lattice strain energy associated with 
magnetostriction is called the magnetostrictive energy, which is typically less than 
the anisotropy energy.
 Magnetostriction is responsible for the transformer hum noise one hears near power 
transformers. As the core of a transformer is magnetized one way and then in the 
opposite direction under an alternating voltage, the alternating changes in the longitu-
dinal strain vibrate the surrounding environment, air, oil, and so forth, and generate an 
acoustic noise at twice the main frequency, or 120 Hz, and its harmonics. (Why?)
 The magnetostrictive constant can be controlled by alloying metals. For example, 
λsat along the easy direction for nickel is negative and for iron it is positive, but for 
the alloy 85% Ni–15% Fe, it is zero. In certain magnetic materials, λ can be quite 

 4 See, for example, Jiles, D., Introduction to Magnetism and Magnetic Materials, London, England: Chapman and 
Hall, 1991.
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large, greater than 10−4, which has opened up new areas of sensor applications based 
on the magnetostriction effect. For example, it may be possible to develop torque 
sensors for automotive steering applications by using Co-ferrite type magnetic mate-
rials5 (e.g., CoO–Fe2O3 or similar compounds) that have λsat of the order of 10−4.

8.5.5 DOMAIN WALL MOTION

The magnetization of a single ferromagnetic crystal involves the motions of domain 
boundaries to allow the favorably oriented domains to grow at the expense of domains 
with magnetizations directed away from the field (Figure 8.23). The motion of a 
domain wall in a crystal is affected by crystal imperfections and impurities and is 
not smooth. For example, in a 90° Bloch wall, the magnetization changes direction 
by 90° across the boundary. Due to magnetostriction (Figure 8.27), there is a change 
in the distortion of the lattice across the 90° boundary, which leads to a complicated 
strain and hence stress distribution around this boundary. We also know that crystal 
imperfections such as dislocations and point defects also have strain and stress dis-
tributions around them. Domain walls and crystal imperfections therefore interact 
with each other. Dislocations are line defects that have a substantial volume of 
strained lattice around them. Figure 8.28 visualizes a dislocation with tensile and 
compressive strains around it and a domain wall that has a tensile strain on the side 
of the dislocation. If the wall gets close to the dislocation, the tensile and compres-
sive strains cancel, which results in an unstrained lattice and hence a lower strain 
energy. This energetically favorable arrangement keeps the domain boundary close 
to the dislocation. It now takes greater magnetic field to snap away the boundary 
from the dislocation. Domain walls also interact with nonmagnetic impurities and 
inclusions. For example, an inclusion that finds itself in a domain becomes magne-
tized and develops south and north poles, as shown in Figure 8.29a. If the domain 
wall were to intersect the inclusion and if there were to be two neighboring domains 
around the inclusion, as in Figure 8.29b, then the magnetostatic energy would be 
lowered—energetically a favorable event. This reduction in magnetostatic potential 
energy means that it now takes greater force to move the domain wall past the 
impurity, as if the wall were “pinned” by the impurity.
 The motion of a domain wall in a crystal is therefore not smooth but rather jerky. 
The wall becomes pinned somewhere by a defect or an impurity and then needs a 
greater applied field to break free. Once it snaps off, the domain wall is moved until 
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Figure 8.27 Magnetostriction means that the iron 

crystal in a magnetic field along x, an easy direction, 

elongates along x but contracts in the transverse  

directions (in low fields).

 5 See, for example, D. Jiles and C. C. H. Lo, Sensors and Actuators, A106, 3, 2003.
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it is attracted by another type of imperfection, where it is held until the field increases 
further to snap it away again. Each time the domain wall is snapped loose, lattice 
vibrations are generated, which means loss of energy as heat. The whole domain 
wall motion is nonreversible and involves energy losses as heat to the crystal.

8.5.6 POLYCRYSTALLINE MATERIALS AND THE M VERSUS H BEHAVIOR

The majority of the magnetic materials used in engineering are polycrystalline and 
therefore have a microstructure that consists of many grains of various sizes and 
orientations depending on the preparation and thermal history of the component. In 
an unmagnetized polycrystalline sample, each crystal grain will possess domains, as 
depicted in Figure 8.30. The domain structure in each grain will depend on the size 
and shape of the grain and, to some extent, on the magnetizations in neighboring 
grains. Although very small grains, perhaps smaller than 0.1 μm, may be single 
domains, in most cases the majority of the grains will have many domains. Overall, 
the structure will possess no net magnetization, provided that it was not previously 
subjected to an applied magnetic field. We can assume that the component was 
heated to a temperature above the Curie point and then allowed to cool to room 
temperature without an applied field.
 Suppose that we start applying a very small external magnetic field (μoH) along 
some direction, which we can arbitrarily label as +x. The domain walls within var-
ious grains begin to move small distances, and favorably oriented domains (those 
with a component of M along +x) grow a little larger at the expense of those point-
ing away from the field, as indicated by point a in Figure 8.31. The domain walls 
that are pinned by imperfections tend to bow out. There is a very small but net 
magnetization along the field, as indicated by the Oa region in the magnetization 
versus magnetizing field (M versus H) behavior in Figure 8.31. As we increase the 
magnetizing field, the domain motions extend larger distances, as shown for point b 
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Figure 8.29 Interaction of a Bloch wall with a nonmagnetic  

(no permanent magnetization) inclusion. (a) The inclusion becomes 

magnetized and there is magnetostatic energy. (b) This arrangement 

has lower potential energy and is thus favorable.
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in Figure 8.31, and walls encounter various obstacles such as crystal imperfections, 
impurities, second phases, and so on, which tend to attract the walls and thereby 
hinder their motions. A domain wall that is stuck (or pinned) at an imperfection at 
a given field cannot move until the field increases sufficiently to provide the neces-
sary force to snap the wall free, which then suddenly surges forward to the next 
obstacle. As a wall suddenly snaps free and shoots forward to the next obstacle, 
essentially two causes lead to heat generation. Sudden changes in the lattice distortion, 
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Figure 8.30 Schematic illustration of magnetic 

domains in the grains of an unmagnetized  

polycrystalline iron sample.
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Figure 8.31 M versus H behavior of a previously unmagnetized polycrystalline iron specimen.

An example grain in the unmagnetized specimen is that at O. (a) Under very small fields, the domain boundary motion  

is reversible. (b) The boundary motions are irreversible and occur in sudden jerks. (c) Nearly all the grains are single  

domains with saturation magnetizations in the easy directions. (d) Magnetizations in individual grains have to be rotated 

to align with the field H. (e) When the field is removed, the specimen returns along d to e. (f) To demagnetize the specimen, 

we have to apply a magnetizing field of Hc in the reverse direction.
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due to magnetostriction, create lattice waves that carry off some of the energy. Sud-
den changes in the magnetization induce eddy currents that dissipate energy via Joule 
heating (domains have a finite electrical resistance). These processes involve energy 
conversion to heat and are irreversible. Sudden jerks in the wall motions lead to 
small jumps in the magnetization of the specimen as the magnetizing field is 
increased; the phenomenon is known as the Barkhausen effect. If we could exam-
ine the magnetization precisely with a highly sensitive instrument, we would see 
jumps in the M versus H behavior, as shown in the inset in Figure 8.31.
 As we increase the field, magnetization continues to increase by jerky domain 
wall motions that enlarge domains with favorably oriented magnetizations and shrink 
away those with magnetizations pointing away from the applied field. Eventually 
domain wall motions leave each crystal grain with a single domain and magnetization 
in one of the easy directions, as indicated by point c in Figure 8.31. Although some 
grains would be oriented to have the easy direction and hence M along the applied 
field, the magnetization in many grains will be pointing at some angle to H as shown 
for point c in Figure 8.31. From then until point d, the increase in the applied field 
forces the magnetization in a grain, such as that at point c to rotate toward the direc-
tion of H. Eventually the applied field is sufficiently strong to align M along H, and 
the specimen reaches saturation magnetization Msat, directed along H or +x, as at 
point d in Figure 8.31.
 If we were to decrease and remove the magnetizing field, the magnetization in 
each grain would rotate to align parallel with the nearest easy direction in that grain. 
Further, in some grains, additional small domains may develop that reduce the mag-
netization within that grain, as indicated at point e in Figure 8.31. This process, from 
point d to point e, leaves the specimen with a permanent magnetization, called the 
remanent or residual magnetization and denoted by Mr.
 If we were now to apply a magnetizing field in the reverse direction −x, the 
magnetization of the specimen, still along +x, would decrease and eventually, at a 
sufficiently large applied field M would be zero and the sample would have been 
totally demagnetized. This is shown as point f in Figure 8.31. The magnetizing field 
Hc required to totally demagnetize the sample is called the coercivity or the coercive 

field. Some authors and various data sheets define Hc as the intrinsic coercivity. It 
represents the resistance of the sample to demagnetization. We should note that at 
point f in Figure 8.31, the sample again has grains with many domains, which means 
that during the demagnetization process, from point e to point f, new domains had 
to be generated. The demagnetization process invariably involves the nucleation of 
various domains at various crystal imperfections to cancel the overall magnetization. 
The treatment of the nucleation of domains is beyond the scope of this book; we will 
nonetheless, accept it as required process for the demagnetization of the crystal grains.
 If we continue to increase the applied magnetic field along −x, as illustrated in 
Figure 8.32a, the process from point f onward becomes similar to that described for 
magnetization from point a to point d in Figure 8.31 along +x except that it is now 
directed along −x. At point g, the sample reaches saturation magnetization along the 
−x direction. The full M versus H behavior as the magnetizing field is cycled between 
+x to −x has a closed loop shape, shown in Figure 8.32a, called the hysteresis loop. 
We observe that in both +x and −x directions, the magnetization reaches saturation 
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Msat when H reaches Hsat, and on removing the applied field, the specimen retains 
an amount of permanent magnetization, represented by points e and h and denoted 
by Mr. The necessary applied field of magnitude Hc that is needed to demagnetize 
the specimen is the coercivity (or coercive field), which is represented by points f 
and i. The initial magnetization curve, Oabcd in Figure 8.31, which starts from an 
unmagnetized state, is called the initial magnetization curve.

 We can, of course, monitor the magnetic field B instead of M, as in Figure 8.32b, 
where

 B = μoM + μoH [8.26]

which leads to a hysteresis loop in the B versus H behavior. The very slight increase 
in B with H when M is in saturation is due to the permeability of free space (μoH).
The area enclosed within the B versus H hysteresis loop, shown as the hatched region 
in Figure 8.32b, represents the energy dissipated per unit volume per cycle of applied 
field variation. Notice that the magnetizing field Hc for M = 0 is different than H′c for 
B = 0 in the material. We will call H′c the coercivity on the B–H loop.6 H′c is smaller 
than Hc because we are trying to make B = 0 in Equation 8.26, and this occurs at 
a finite (and negative) M, before we reach point f on path def in Figure 8.32a.
 Suppose we do not take a magnetic material to saturation but still subject the 
specimen to a cyclic applied field alternating between the +x and −x directions. 
Then the hysteresis loop would be different than that when the sample is taken all 
the way to saturation, as shown in Figure 8.33. The magnetic field in the material 
does not reach Bsat (corresponding to Msat) but instead reaches some maximum value 
Bm when the magnetizing field is Hm. There is still a hysteresis effect because the 
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Figure 8.32 (a) A typical M versus H hysteresis curve. (b) The corresponding B versus H hysteresis 

curve. The shaded area inside the hysteresis loop is the energy loss per unit volume per cycle.

 6 Unfortunately there is no accepted consensus on the exact terminology for Hc and H′c, which adds to confusion. 
Nonetheless, intrinsic coercivity Hc defined on the M–H curve seems a reasonable definition. Hci is also used  
for Hc.
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magnetization and demagnetization processes are nonreversible and do not retrace 
each other. The shape of the hysteresis loop depends on the magnitude of the applied 
field in addition to the material and sample shape and size. The area enclosed within 
the loop is still the energy dissipated per unit volume per cycle of applied field 
oscillation. The hysteresis loop taken to saturation, as in Figure 8.32a and b, is called 
the saturation (major) hysteresis loop. It is apparent from Figure 8.33 that the 
remanence and coercivity exhibited by the sample depend on the B–H loop. The 
quoted values normally correspond to the saturation hysteresis loop.
 Ferrimagnetic materials exhibit properties that closely resemble those of ferro-
magnetic materials. One can again identify distinct magnetic domains and domain 
wall motions during magnetization and demagnetization that also lead to B–H hys-
teresis curves with the same characteristic parameters, namely, saturation magnetiza-
tion (Msat and Bsat at Hsat), remanence (Mr and Br), coercivity (Hc), hysteresis loss, 
and so on.

8.5.7 DEMAGNETIZATION

The B–H hysteresis curves, as in Figure 8.32b, that are commonly given for magnetic 
materials represent B versus H behavior observed under repeated cycling. The applied 
field intensity H is cycled back and forward between the −x and +x directions. If 
we were to try and demagnetize a specimen with a remanent magnetization at point 
e in Figure 8.34 by applying a reverse field intensity, then the magnetization would 
move along from point e to point f. If at point f we were to suddenly switch off the 
applied field, we would find that B does not actually remain zero but recovers along 
f to point e′ and attains some value B′r. The main reason is that small domain wall 
motions are reversible and as soon as the field is removed, there is some reversible 
domain wall motion “bouncing back” the magnetization along f–e′. We can antici-
pate this recovery and remove the field intensity at some point f ′ so that the sample 
recovers along f ′O and the magnetization ends up being zero. However, to remove 
the field intensity at point f ′, we need to know not only the exact B–H behavior but 
also the exact location of point f ′ (or the recovery behavior). The simplest method 
to demagnetize the sample is first to cycle H with ample magnitude to reach saturation 
and then to continue cycling H but with a gradually decreasing magnitude, as 

B

H–H

–B

Bsat

Hsat
Hm

Small cyclic
applied field

Magnetized
to saturation

Bm

Figure 8.33 The B versus H hysteresis loop  

depends on the magnitude of the applied field in 

addition to the material and sample shape and size.
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depicted in Figure 8.35. As H is cycled with a decreasing magnitude, the sample 
traces out smaller and smaller B–H loops until the B–H loops are so small that they 
end up at the origin when H reaches zero. The demagnetization process in Figure 
8.35 is commonly known as deperming. Undesirable magnetization of various mag-
netic devices such as recording heads is typically removed by this deperming process 
(for example, a demagnetizing gun brought close to a magnetized recording head 
implements deperming by applying a cycled H with decreasing magnitude).

B

H–H

–B

e

f
e′

O

f ′

Br

–Hc B′r

Figure 8.34 Removal of the  

demagnetizing field at point f does 

not necessarily result in zero  

magnetization as the sample  

recovers along f–e′.

B

H–H

–B

Figure 8.35 A magnetized specimen 

can be demagnetized by cycling  

the field intensity with a decreasing 

magnitude, that is, tracing out smaller 

and smaller B–H loops until the origin 

is reached, H = 0.

ENERGY DISSIPATED PER UNIT VOLUME AND THE HYSTERESIS LOOP Consider a toroi-

dal coil with an iron core that is energized from a voltage supply through a rheostat, as shown 

in Figure 8.11. Suppose that by adjusting the rheostat we can adjust the current i supplied to 

the coil and hence the magnetizing field H in the core material. H and i are simply related 

by Ampere’s law. However, the magnetic field B in the core is determined by the B–H char-

acteristics of the core material. From electromagnetism (see Example 8.2), we know that the 

battery has to do work dEvol per unit volume of core material to increase the magnetic field 

by dB, where

 dEvol = H dB

so that the total energy or work involved per unit volume in changing the magnetic field from 

an initial value B1 to a final value B2 in the core is

 Evol = ∫
B2

B1

H dB [8.27]

where the integration limits are determined by the initial and final magnetic fields.

 Equation 8.27 corresponds to the area between the B–H curve and the B axis between 

B1 and B2. Suppose that we take the iron core in the toroid from point P on the hysteresis 

curve to Q, as shown in Figure 8.36. This is a magnetization process for which energy is put 

into the sample. The work done per unit volume from P to Q is the area PQRS, shown as 

 EXAMPLE 8.5

Work done 

per unit 

volume 

during 

magnetization
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hatched. On returning the sample to the same initial magnetization (same magnetic field B 
as we had at P), taking it from Q to S, energy is returned from the core into the electric 
circuit. This energy per unit volume is the area QRS, shown as gray, and is less than PQRS 
during magnetization. The difference is the energy dissipated in the sample as heat (moving 
domain walls and so on) and corresponds to the hysteresis loop area PQS. Over one full cycle, 
the energy dissipated per unit volume is the total hysteresis loop area.
 The hysteresis loop and hence the energy dissipated per unit volume per cycle depend 
not only on the core material but also on the magnitude of the magnetic field (Bm), as appar-
ent in Figure 8.33. For example, for magnetic steels used in transformer cores, the hysteresis 
power loss Ph per unit volume of core is empirically expressed in terms of the maximum 
magnetic field Bm and the ac frequency f as7

 Ph = KfBn
m [8.28]

where K is a constant that depends on the core material (typically, K = 150.7), f is the ac 
frequency (Hz), Bm is the maximum magnetic field (T) in the core (assumed to be in the 
range 0.1–1.5 T), and n = 1.6. According to Equation 8.28, the hysteresis loss can be decreased 
by operating the transformer with a reduced magnetic field.

8.6 SOFT AND HARD MAGNETIC MATERIALS

8.6.1 DEFINITIONS

Based on their B–H behavior, engineering materials are typically classified into soft 
and hard magnetic materials. Their typical B–H hysteresis curves are shown in 
Figure 8.37. Soft magnetic materials are easy to magnetize and demagnetize and hence 
require relatively low magnetic field intensities. Put differently, their B–H loops are 
narrow, as shown in Figure 8.37. The hysteresis loop has a small area, so the hyster-
esis power loss per cycle is small. Soft magnetic materials are typically suitable for 
applications where repeated cycles of magnetization and demagnetization are involved, 
as in electric motors, transformers, and inductors, where the magnetic field varies 
cyclically. These applications also require low hysteresis losses, or small hysteresis 
loop area. Electromagnetic relays that have to be turned on and off require the relay 
iron to be magnetized and demagnetized and therefore need soft magnetic materials.
 Hard magnetic materials, on the other hand, are difficult to magnetize and 
demagnetize and hence require relatively large magnetic field intensities, as apparent 

 7 This is the power engineers Steinmetz equation for commercial magnetic steels. It has been applied not only 
to silicon irons (Fe + few percent Si) but also to a wide range of magnetic materials.
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in Figure 8.37. Their B–H curves are broad and almost rectangular. They possess 
relatively large coercivities, which means that they need large applied fields to be 
demagnetized. The coercive field for hard materials can be millions of times greater 
than those for soft magnetic materials. Their characteristics make hard magnetic 
materials useful as permanent magnets in a variety of applications. It is also clear 
that the magnetization can be switched from one very persistent direction to another 
very persistent direction, from +Br to −Br, by a suitably large magnetizing field 
intensity. As the coercivity is strong, both the states +Br and −Br persist until a 
suitable (large) magnetic field intensity switches the field from one direction to the 
other. It is apparent that hard magnetic materials can also be used in magnetic stor-
age of digital data, where the states +Br and −Br can be made to represent 1 and 0 
(or vice versa).

8.6.2 INITIAL AND MAXIMUM PERMEABILITY

It is useful to characterize the magnetization of a material by a relative permeability 
μr, since this simplifies magnetic calculations. For example, inductance calculations 
become straightforward if one could represent the magnetic material by μr alone. But 
it is clear from Figure 8.38a that

 μr =
B

μoH

is not even approximately constant because it depends on the applied field and the 
magnetic history of the sample. Nonetheless, we still find it useful to specify a 
relative permeability to compare various materials and even use it in various calcu-
lations. The definition μr = B∕(μoH) represents the slope of the straight line from 
the origin O to the point P, as shown in Figure 8.38a. This is a maximum when the 
line becomes a tangent to the B–H curve at P, as in the figure. Any other line from 
O to the B–H curve that is not a tangent does not yield a maximum relative perme-
ability (the mathematical proof is left to the reader, though the argument is intuitively 
acceptable from the figure). The maximum relative permeability, as defined in 
Figure 8.38a, is denoted by μr,max and serves as a useful magnetic parameter. 

B

H–H

–B

Hard

Soft

Figure 8.37 Soft and hard magnetic materials.
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The point P in Figure 8.38a that defines the maximum permeability corresponds to 
what is called the “knee” of the B–H curve. Many transformers are designed to 
operate with the maximum magnetic field in the core reaching this knee point. For 
pure iron, μr,max is less than 104, but for certain soft magnetic materials such as 
supermalloys (a nickel–iron alloy), the values of μr,max can be as high as 106.
 Initial relative permeability, denoted as μri, represents the initial slope of the 
initial B versus H curve as the material is first magnetized from an unmagnetized 
state, as illustrated in Figure 8.38b. This definition is useful for soft magnetic mate-
rials that are employed at very low magnetic fields (e.g., small signals in electronics 
and communications engineering). In practice, weak applied magnetic fields where 
μri is useful are typically less than 10−4 T. In contrast, μr,max is useful when the 
magnetic field in the material is not far removed from saturation. Initial relative 
permeability of a magnetically soft material can vary by orders of magnitude. For 
example, μri for iron is 150, whereas for supernumetal-200, a commercial alloy of 
nickel and iron, it is about 2 × 105.

8.7   SOFT MAGNETIC MATERIALS:  

EXAMPLES AND USES

Table 8.5 identifies what properties are desirable in soft magnetic materials and also 
lists some typical examples with various applications. An ideal soft magnetic mate-
rial would have zero coercivity (Hc), a very large saturation magnetization (Bsat), zero 
remanent magnetization (Br), zero hysteresis loss, and very large μr,max and μri. A 
number of example materials, from pure iron to ferrites, which are ferrimagnetic, are 
listed in Table 8.5. Pure iron, although soft, is normally not used in electric machines 
(except in a few specific relay-type applications) because its good conductivity 
allows large eddy currents to be induced under varying fields. Induced eddy currents 
in the iron lead to Joule losses (RI2), which are undesirable. The addition of a few 
percentages of silicon to iron (silicon–iron), known typically as silicon–steels, 
increases the resistivity and hence reduces the eddy current losses. Silicon–iron is 
widely used in power transformers and electric machinery.

B
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O
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Slope = μr,maxμo

B = μoH

Slope = μriμo

B = μoH

Figure 8.38 Definitions of (a) maximum permeability and (b) initial permeability.
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 The nickel–iron alloys with compositions around 77% Ni–23% Fe constitute an 
important class of soft magnetic materials with low coercivity, low hysteresis losses, 
and high permeabilities (μri and μr,max). High μri makes these alloys particularly 
useful in low magnetic field applications that are typically found in high-frequency 
work in electronics (e.g., audio and wide-band transformers). They have found many 
engineering uses in sensitive relays, pulse and wide-band transformers, current 
transformers, magnetic recording heads, magnetic shielding, and so forth. Alloying 
iron with nickel increases the resistivity and hence reduces eddy current losses. The 
magnetocrystalline anisotropy energy is least at these nickel compositions, which 
leads to easier domain wall motions and hence smaller hysteresis losses. There are 
a number of commercial nickel–iron alloys whose application depends on the exact 
composition (which may also have a few percentages of Mo, Cu, or Cr) and the 
method of preparation (e.g., mechanical rolling). For example, supermalloy 
(79%  Ni–16% Fe–5% Co) has μri ≈ 105, compared with commercial grade iron, 
which has μri less than 103.

Table 8.5 Selected soft magnetic materials and some typical values and applications

Magnetic μoHc Bsat Br   Wh 

Material (T) (T) (T) μri μr,max (J m−3) Typical Applications

Ideal soft 0 Large 0 Large Large 0  Transformer cores, inductors, electric 

  machines, electromagnet cores, 

relays, magnetic recording heads.

Iron (commercial) <10−4 2.2 <0.1 150 104 250 Large eddy current losses. Generally 
 grade, 0.2%        not preferred in electric machinery 
 impurities         except in some specific applications 

(e.g., some electromagnets and 
relays).

Silicon iron <10−4 2.0 0.5–1 103 104–4 × 105 30–100 Higher resistivity and hence lower eddy 
 (Fe: 2–4% Si)          current losses. Wide range of electric 

machinery (e.g., transformers, 
motors, generators).

Supermalloy 2 × 10−7 0.7–0.8 <0.1 105 106 <0.5 High permeability, low-loss electric 
 (79% Ni–15.5%        devices, e.g., specialty transformers, 
 Fe–5% Mo–0.5% Mn)        magnetic amplifiers.
78 Permalloy 5 × 10−6 0.86 <0.1 8 × 103 105 <0.1 Low-loss electric devices, audio 
 (78.5%        transformers, HF transformers, 
 Ni–21.5% Fe)        recording heads, filters, inductors.
Glassy metals, 2 × 10−6 1.6 <10−6 — 105 20 Low-loss transformer cores. 
 Fe–Si–B
Ferrites, 10−5 0.4 <0.01 2 × 103 5 × 103 <0.01  HF low-loss applications. Low
 Mn–Zn ferrite.         conductivity ensures negligible 

eddy current losses. HF transformers, 
inductors (e.g., pot cores, E and U 
cores), antenna rods, recording heads.

 NOTE: Wh is the hysteresis loss, energy dissipated per unit volume per cycle in hysteresis losses, J m−3 cycle−1, typically at Bm = 1 T.



 8 .7  SOFT MAGNETIC MATERIALS: EXAMPLES AND USES 805

 Amorphous magnetic metals, as the name implies, have no crystal structure 
(they only have short-range order) and consequently possess no crystalline imper-
fections such as grain boundaries and dislocations. They are prepared by rapid 
solidification of the melt by using special techniques such as melt spinning (as 
described in Chapter 1). Typically they are thin ribbons by virtue of their prepara-
tion method. Since they have no crystal structure, they also have no magnetocrys-
talline anisotropy energy, which means that all directions are easy. The absence of 
magnetocrystalline anisotropy and usual crystalline defects which normally impede 
domain wall motions, leads to low coercivities and hence to soft magnetic proper-
ties. The coercivity, however, is not zero inasmuch as there is still some magnetic 
anisotropy due to the directional nature of the strains frozen in the metal during 
rapid solidification. By virtue of their disordered structure, these metallic glasses 
also have higher resistivities and hence they have smaller eddy current losses. 
Although they are ideally suited for various transformer and electric machinery 
applications, their limited size and shape, at present, prevent their use in power 
applications.
 Ferrites are ferrimagnetic materials that are typically oxides of mixed transition 
metals, one of which is iron. For example, Mn ferrite is MnFe2O4 and MgZn ferrite 
is Mn1−xZnxFe2O4. They are normally insulators and therefore do not suffer from 
eddy current losses. They are ideal as magnetic materials for high-frequency work 
where eddy current losses would prevent the use of any material with a reasonable 
conductivity. Although they can have high initial permeabilities and low losses, they 
do not possess as large saturation magnetizations as ferromagnets, and further, their 
useful temperature range (determined by the Curie temperature) is lower. There are 
many types of commercial ferrites available depending on the application, tolerable 
losses, and the required upper frequency of operation. MnZn ferrites, for example, 
have high initial permeabilities (e.g., 2 × 103) but are only useful up to about 1 MHz, 
whereas NiZn ferrites have lower initial permeability (e.g., 102) but can be used up 
to 200 MHz. Generally, the initial permeability in the high-frequency region decreases 
with frequency.
 Garnets are ferrimagnetic materials that are typically used at the highest frequen-
cies that cover the microwave range (1–300 GHz). The yttrium iron garnet, YIG, 
which is Y3Fe5O12, is one of the simplest garnets with a very low hysteresis loss at 
microwave frequencies. Garnets have excellent dielectric properties with high resis-
tivities and hence low losses. The main disadvantages are the low saturation mag-
netization, which is 0.18 T for YIG, and low Curie temperature, 280 °C for YIG. 
The compositions of garnets depend on the properties required for the particular 
microwave application. For example, Y2.1Gd0.98Fe5O12 is a garnet that is used in 
X-band (8–12 GHz) three-port circulators handling high microwave powers (e.g., 
peak power 200 kW and average power 200 W).

AN INDUCTOR WITH A FERRITE CORE Consider a toroidal coil with a ferrite core. Suppose 
that the coil has 200 turns and is used in HF work with small signals. The mean diameter of 
the toroid is 2.5 cm and the core diameter is 0.5 cm. If the core is a MnZn ferrite with 
μr = 2 × 103, what is the approximate inductance of the coil?

 EXAMPLE 8.6
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SOLUTION

The inductance L of a toroidal coil is given by

 L =
μriμoN2A

ℓ

so

 L =
(2 × 103) (4π × 10−7 H m−1) (200)2π(0.005

2
 m)

2

(π 0.025 m)
= 0.025 H or 25 mH

 Had the core been air, the inductance would have been 1.26 × 10−5 H or 12.6 μH. The 
main assumption is that B is uniform in the core, and this will be only so if the diameter of 
the toroid (2.5 cm) is much greater than the core diameter (0.5 cm). Here this ratio is 5 and 
the calculation is only approximate.

8.8   HARD MAGNETIC MATERIALS: 

EXAMPLES AND USES

An ideal hard magnetic material, as summarized in Table 8.6, has very large coerciv-
ity and remanent magnetic field. Further, since they are used as permanent magnets, 
the energy stored per unit volume in the external magnetic field should be as large 
as possible since this is the energy available to do work. This energy density (J m−3) 

Table 8.6 Selected hard magnetic materials and typical values

 μoHc Br (BH)max 

Magnetic Material (T) (T) (kJ m−3) Examples and Uses

Ideal hard Large Large Large Permanent magnets in various 
     applications.
Alnico (Fe–Al–Ni–Co–Cu) 0.05–0.1 1.0 40–50  Wide range of permanent  

 magnet applications.
Alnico (Columnar) 0.075 1.35 60
Strontium ferrite 0.3–0.5 0.3–0.5 20–35 Starter motors, dc motors, 
 (sintered)      loudspeakers, telephone 

receivers, various toys.
Rare earth cobalt, e.g., 0.9–1.2 1.1 200–250 Servo motors, stepper motors, 
 Sm2Co17 (sintered)      couplings, clutches, quality 

audio headphones.
NdFeB magnets 1.0–1.5 1.0–1.4 300–350  Wide range of applications, small  

  motors (e.g., in hand tools), 
audio equipment, hard drives, 
MRI body scanners.

Hard particles,  0.03 0.2  Audio and video tapes,  
 γ-Fe2O3     floppy disks.

 NOTE: Hc is the intrinsic coercivity.
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in the external field depends on the maximum value of the product BH in the second 
quadrant of the B–H characteristics and is denoted as (BH)max. It corresponds to the 
largest rectangular area that fits the B–H curve in the second quadrant, as shown in 
Figure 8.39.
 When the size of a ferromagnetic sample falls below a certain critical dimension, 
of the order of 0.1 μm for cobalt, the whole sample becomes a single domain, as 
depicted in Figure 8.40, because the cost of energy in generating a domain wall is 
too high compared with the reduction in external magnetostatic energy. These small 
particle-like pieces of magnets are called single domain fine particles. Their mag-
netic properties depend not only on the crystal structure of the particle but also on 
the shape of the particle because different shapes give rise to different external 
magnetic fields. For a spherical iron particle, the magnetization M will be in an easy 
direction, for example, along [100] taken along +z. To reverse the magnetization 
from +z to −z by an applied field, we have to rotate the spins around past the hard 
direction, as shown in Figure 8.40, since we cannot generate reverse domains (or 
move domain walls). The rotation of magnetization involves substantial work due to 
the magnetocrystalline anisotropic energy, and the result is high coercivity. The 
higher the magnetocrystalline anisotropy energy, the greater the coercivity. The energy 
involved in creating a domain wall increases with the magnetocrystalline anisotropy 
energy. The critical size below which a particle becomes a single domain therefore 
increases with the crystalline anisotropy. Barium ferrite crystals have the hexagonal 
structure and hence have a high degree of magnetocrystalline anisotropy. Critical 
size for single domain barium ferrite particles is about 1–1.5 μm, and the coercivity 
μoHc of small particles can be as high as 0.3 T, compared with values 0.02–0.1 T 
in multidomain barium ferrite pieces.
 Particles that are not spherical may even have higher coercivity as a result of 
shape anisotropy. Consider an ellipsoid (elongated) fine particle, shown in Figure 8.41a. 
If the magnetization M is along the long axis (along z), then the potential energy in 
the external magnetic field is less than if M were along the minor axis (along y), as 
compared in Figure 8.41a and b. Thus, we have to do work to rotate M from the 
long to the short axis, or from Figure 8.41a to b. An elongated fine particle therefore 
has its magnetization along its length, and the effect is called shape anisotropy. If 
we have to reverse the magnetization from +z to −z by applying a reverse field, then 
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Figure 8.39 Hard magnetic materials 
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we can only do so by rotating the magnetization, as shown in Figure 8.41a to c. M 
has to be rotated around through the minor axis, and this involves substantial work. 
Thus the coercivity is high. In general, the greater the elongation of the particle with 
respect to its width, the higher the coercivity. Small spherical Fe–Cr–Co particles 
have a coercivity μoHc at most 0.02 T, but elongated and aligned particles can have 
a coercivity as high as 0.075 T due to shape anisotropy.
 High coercivity magnets can be fabricated by having elongated fine particles 
dispersed by precipitation in a structure. Fine particles will be single domains. Alnico 
is a popular permanent magnet material that is an alloy of the metals Al, Ni, Co, 
and Fe (hence the name). Its microstructure consists of fine elongated Fe–Co rich 
particles, called the α′-phase, dispersed in a matrix that is Ni–Al rich and called the 
α-phase. The structure is obtained by an appropriate heat treatment that allows fine α′ 
particles to precipitate out from a solid solution of the alloy. The α′ particles are 

M

M

(a) (b) (c)

M

+z

–z

–y +yFigure 8.41 A single domain elongated 

particle.

Due to shape anisotropy, magnetization 

prefers to be along the long axis as in (a). 

Work has to be done to change M from 

(a) to (b) to (c).

This small neodymium-iron-boron permanent 
magnet (diameter about the same as one-cent 
coin) is capable of lifting up to 10 pounds.  
Nd-Fe-B magnets typically have large (BH)max 
values (200–275 kJ m−3).

 Photo by S. Kasap.
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strongly magnetic, whereas the α-phase matrix is weakly magnetic. When the heat 
treatment is carried out in the presence of a strong applied magnetic field, the α′ 
particles that are formed have their elongations (or lengths) and hence their magne-
tizations along the applied field. The demagnetization process requires the rotations 
of the magnetizations in single domain elongated α′ particles, which is a difficult 
process (shape anisotropy), and hence the coercivity is high. The main drawback of 
the Alnico magnet is that the alloy is mechanically hard and brittle and cannot be 
shaped except by casting or sintering before heat treatment. There are, however, other 
alloy permanent magnets that can be machined.
 A variety of permanent magnets are made by compacting high-coercivity par-
ticles by using powder metallurgy (e.g., powder pressing or sintering). The particles 
are magnetically hard because they are sufficiently small for each to be of single 
domain or they possess substantial shape anisotropy (elongated particles may be 
ferromagnetic alloys, e.g., Fe–Co, or various hard ferrites). These are generically 
called powdered solid permanent magnets. An important class is the ceramic magnets 
that are made by compacting barium ferrite, BaFe12O9, or strontium ferrite, SrFe12O9, 
particles. The barium ferrite has the hexagonal crystal structure with a large magneto-
crystalline anisotropy, which means that barium ferrite particles have high coercivity. 
The ceramic magnet is typically formed by wet pressing ferrite powder in the pres-
ence of a magnetizing field, which allows the easy directions of the particles to be 
aligned, and then drying and carefully sintering the ceramic. They are used in many 
low-cost applications.
 Rare earth cobalt permanent magnets based on samarium–cobalt (Sm–Co) 
alloys have very high (BH)max values and are widely used in many applications 
such as dc motors, stepper and servo motors, traveling wave tubes, klystrons, and 

One important application of permanent 
magnets is in small dc motors. Toothbrushes 
that operate from batteries use dc motors 
with strong permanent magnets to get the 
required torque to drive the brushes.

 Photo by S. Kasap.
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gyroscopes. The intermetallic compound SmCo5 has a hexagonal crystal structure 
with high magnetocrystalline anisotropy and hence high coercivity. The SmCo5 
powder is pressed in the presence of an applied magnetic field to align the mag-
netizations of the particles. This is followed by careful sintering to produce a 
solid powder magnet. The Sm2Co15 magnets are more recent and have particularly 
high values of (BH)max up to about 250 kJ m−3. Sm2Co15 is actually a generic 
name and the alloy may contain other transition metals substituting for some of 
the Co atoms.
 The more recent neodymium–iron–boron, NdFeB, powdered solid magnets can 
have very large (HB)max values up to about 350 kJ m−3. The tetragonal crystal struc-
ture has the easy direction along the long axis and possesses high magnetocrystalline 
anisotropic energy. This means that we need a substantial amount of work to rotate 
the magnetization around through the hard direction, and hence the coercivity is also 
high. The main drawback is the lower Curie temperature, typically around 300 °C, 
whereas for Alnico and rare earth cobalt magnets, the Curie temperatures are above 
700 °C. Another method of preparing NdFeB magnets is by the recrystallization of 
amorphous NdFeB at an elevated temperature in an applied field. The grains in the 
recrystallized structure are sufficiently small to be single domain grains and therefore 
possess high coercivity.

(BH)max FOR A PERMANENT MAGNET Consider the permanent magnet in Figure 8.42. 
There is a small air gap of length ℓg where there is an external magnetic field that is available 
to do work. For example, if we were to insert an appropriate coil in the gap and pass a cur-
rent through the coil, it would rotate as in a moving coil panel meter. Show that the magnetic 
energy per unit volume stored in the gap is proportional to the maximum value of BH. How 
does (BH)max vary with the magnetizing field?

SOLUTION

Let ℓm be the mean length of the magnet from one end to the other, as shown in Figure 8.42. 
We assume that the cross-sectional area A is constant throughout. There are no windings 
around the magnet and no current, I = 0. Ampere’s law for H involves integrating H along 
a closed path or around the mean path length ℓm + ℓg. Suppose that Hm and Hg are the mag-
netic field intensities in the permanent magnet and in the gap, respectively. Then H dℓ inte-
grated around ℓm + ℓg is

 ∮  H dℓ = Hmℓm + Hgℓg = 0

 EXAMPLE 8.7

ℓm

ℓg

Figure 8.42 A permanent magnet with a small air gap.
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so that

 Hg = −Hm

ℓm

ℓg

and hence

 Bg = −μo 

ℓm

ℓg

 Hm [8.29]

 Equation 8.29 is a relationship between Bg in the gap and Hm in the magnet. In addition, 
we have the B–H relationship for the magnetic material itself between the magnetic field Bm 
and intensity Hm in the magnet, that is,

 Bm = f (Hm) [8.30]

 The magnetic flux in the magnet and in the air gap must be continuous. Since we 
assumed a uniform cross-sectional area, the continuity of flux across the air gap implies that 
Bm = Bg. Thus we need to equate Equation 8.29 to Equation 8.30. Equation 8.29 is a straight 
line with a negative slope in a Bg versus Hm plot, as shown in Figure 8.43a. Equation 8.30 
is, of course, the B–H characteristics of the material. The two intersect at point P, as shown 
in Figure 8.43a, where Bg = Bm = B′m and Hm = H′m.

 We know that there is magnetic energy in the air gap given by

  Emag = (Gap volume)(Magnetic energy density in the gap)

  = (Aℓg)(1

2
 BgHg) =

1

2
 (Aℓg)B′mH′m(ℓm

ℓg
)

  =
1

2
 (Aℓm)B′mH′m

  =
1

2
 (Magnet volume)B′mH′m  [8.31]

 Thus, the external magnetic energy depends on the magnet volume and the product of 

B′m and H′m of the magnet characteristics at the operating point P. For a given magnet size, 

the magnetic energy in the gap is proportional to the rectangular area B′mH′m, OB′mPH′m in 

Figure 8.43a, and we have to maximize this area for the best energy extraction. Figure 8.43b 
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Figure 8.43 (a) Point P represents the operating point of the magnet and determines the magnetic 

field inside and outside the magnet. (b) Energy density in the gap is proportional to BH, and for a given 

geometry and size of gap, this is a maximum at a particular magnetic field B*m or B*g.
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shows how the product BH varies with B in a typical magnetic material. BH is maximum at 
(BH)max, when the magnetic field is B*m and the field intensity is H*m. We can appropriately 
choose the air-gap size to operate at these values, in which case we will be only limited by 
the (BH)max available for that magnetic material. It is clear that (BH)max is a good figure of 
merit for comparing hard magnetic materials. According to Table 8.6, we can extract four to 
five times more work from a rare earth cobalt magnet than from an Alnico magnet of the 
same size if we were not limited by economics and weight. It should be mentioned that 
Equation 8.31 is only approximate as it neglects all fringe fields.

8.9  ENERGY BAND DIAGRAMS AND MAGNETISM

8.9.1 PAULI SPIN PARAMAGNETISM

Consider a paramagnetic metal such as sodium. The paramagnetism arises from the 
alignment of the spins of conduction electrons with the applied magnetic field. A 
conduction electron in a metal has an extended wave function and does not orbit any 
particular metal ion. The conduction electron’s magnetic moment arises from the 
electron spin alone, and μspin is in the opposite direction to the spin; μspin can be either 
up (ms = −1

2)  or down (ms = +1
2) . In the absence of a magnetic field, the energies 

of magnetic moment up and down states (or wavefunctions) are the same and there 
are as many electrons with magnetic moment up as there are with magnetic moment 
down. Figure 8.44a shows the density of states (number of states per unit energy per 
unit volume) for states with magnetic moment up (↑), denoted as g↑(E), and for states 
with magnetic moment down (↓), denoted as g↓(E). Both states have the same energy 
and both are equally occupied. All energy levels up to the Fermi energy EF are occu-
pied as shown in Figure 8.44a. Effectively we are viewing the energy band of the 
metal as two subbands corresponding to magnetic moment up and down bands. The 
bands overlap in the absence of a field and are indistinguishable.
 Consider what happens in the presence of an applied field Bo along the z direc-
tion. If a conduction electron’s magnetic moment μz is along the field (aligned with 

E E

ΔE

M

z

g↓(E) g↑(E) g↑(E)g↓(E)

(a) No field (b) With magnetic field

EF

μspinμspin

EF

Moment

up

states

Moment

down

states

ne

Bo

EF

Figure 8.44 Pauli spin paramagnetism in metals due to conduction electrons.
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the field), then it has a lower potential energy. Thus, those electron wavefunctions 
with a magnetic moment up have lower energy, whereas those wavefunctions with 
a magnetic moment down have higher energy. In the presence of a field Bo, there-
fore, all states with magnetic moment up, and hence g↑(E), are lowered in energy 
by βBo where β is the Bohr magneton. All states with magnetic moment down, and 
hence g↓(E), are raised by βBo. Both shifts are shown in Figure 8.44b. Those elec-
trons with magnetic moment down near EF in the g↓(E) band can now find lower 
energy states in the g↑(E) band and hence flip their spins and transfer to the g↑(E) 
band. There are now more electrons in states with magnetic moment up in the g↑(E) 
band than in the g↓(E) band. When averaged over all conduction electrons there is 
now a net magnetic moment per conduction electron along the z direction or the 
applied field.
 To find the net magnetic moment per conduction electron we have to find how 
many electrons transfer from the g↓(E) band to the g↑(E) band. The energy separation 
ΔE between the magnetic moment down and up states is 2βBo. All electrons, ne per 

unit volume, in the g↓(E) band around EF within an energy range 1
2ΔE transfer to 

the g↑(E) band. ΔE is small, so ne is approximately g↓(EF) (1
2ΔE)  or 1

2 g(EF) (1
2ΔE)  

because g(EF) includes states with spin up and down, that is, 1
2 g(EF) = g↓(EF) . The 

magnetic moment down band decreases by ne and the magnetic moment up band 

increases by ne and the net magnetic moment per unit volume is

  M ≈ 2neμz = 2[1
2 g(EF) (1

2ΔE) ]β

  = 2[1
2 g(EF) (1

22βBo) ]β = β2g(EF)Bo

Using Bo = μoH and the definition χm = M∕H, the paramagnetic susceptibility is

 χpara ≈ μoβ2g(EF) [8.32]

We see that the density of states at the Fermi level determines the susceptibility.

Pauli spin 

para-

magnetism

PAULI SPIN PARAMAGNETISM OF SODIUM The Fermi energy of sodium, EF, is 3.15 eV. 
Using the density of states g(E) expression for the free conduction electrons in a metal, 
evaluate the paramagnetic susceptibility of sodium and compare with the experimental value 
of 9.1 × 10−6.

SOLUTION

The density of states g(E) in the free electron model is

 g(E) = (8π21∕2)(me

h2 )
3∕2

 E1∕2

 We have to evaluate g(E) at the Fermi energy E = EF = 3.15 eV,

 g(EF) = (8π 21∕2)( 9.1 × 10−31

(6.626 × 10−34)2)
3∕2

(3.15 × 1.6 × 10−19)1∕2 = 7.54 × 1046 J−1 m−3

 Paramagnetic susceptibility is

 χpara = μoβ2g(EF) = (4π × 10−7) (9.27 × 10−24)2(7.54 × 1046) = 8.16 × 10−6

 EXAMPLE 8.8
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 We need to subtract the diamagnetic from the calculated paramagnetic susceptibility to obtain 
the net susceptibility, which would decrease the calculated value slightly. Nonetheless, given the 
approximate nature of the theory, the calculated value is not far out from the measured value.

8.9.2 ENERGY BAND MODEL OF FERROMAGNETISM

The energy band model of paramagnetism can be extended to explain ferromagne-
tism. Once we start using the energy band model, we are essentially assigning all 
the valence (outer shell) electrons of the atoms to a collective sharing among all the 
atoms; they no longer belong to their individual parents. These valence electrons 
now belong to the whole crystal. (The model is also known as the itinerant electron 

model.)
 Recall that in a ferromagnetic crystal there is an internal magnetization, even in 
the absence of an applied field, due to a net number of unpaired spins; that is, over-
all, the crystal has more electrons with spins up than with spins down. The reason 
is the exchange energy, which causes the spin magnetic moments of two electrons 
to line up parallel to each other so that their energy is lowered in much the same 
way as Hund’s rule works within an atom. In magnetic metals such as Fe, Ni, and 
Co, there are two bands of interest, the s-band and the d-band. The two bands over-
lap but the s-band is much wider. We can represent the density of states for magnetic 
moment up and magnetic moment down states separately. Consider the d-band. The 
density of states g↑(E) for magnetic moment up states is lowered by ΔE with respect 

to the density of states g↓(E) for magnetic moment down states due to the exchange 

energy as shown in Figure 8.45a. The energy lowering ΔE for the s-band can be 

neglected as in Figure 8.45b. All the states up to the Fermi energy are occupied. For 

Fe, the d-band magnetic moment up states are filled almost to the top of the band 

(this band is 96 percent full), and magnetic moment down states are filled roughly 

halfway. Thus, there are many more electrons with moments up than moments down; 

put differently there are many electrons that have aligned their spins. The spin mag-

netic moment alignment of electrons is exactly what is needed to generate a net 

magnetization. (In some books, the spin magnetic moment down band is sketched 

lower than the spin magnetic moment up band in contrast to Figure 8.45a. Both 

sketches are correct since both would also result in a net number of electrons having 

EE

(a) (b)

ΔE

Magnetic

moment

EF

d-band s-band

EF

g↓(E) g↓(E)g↑(E) g↑(E)

Figure 8.45 Energy band model of 

 ferromagnetism. (a) The split d-band. (b) The 

s-band is not affected. The arrows in the 

bands are spin magnetic moments.
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their spins in parallel, and hence a net magnetization within the crystal. Another way 
to look at it is to realize that there are two bands: one band for the “majority of 
spins,” and another band for the “minority spins.”)
 The s-band is filled up to EF, and there are almost equal numbers of electrons 
with up and down moments in this band. The ferromagnetic effect arises from the 
behavior of electrons mainly in the d-band. Electrical conduction, on the other hand, 
is determined by electrons in the s-band. The reason is that the s-band is very wide 
compared with the d-band, and the electron effective mass in the s-band is very 
small. Thus, electrons have a much higher mobility in the s-band than in the d-band. 
When an s-electron is scattered (by phonons, impurities, defects, etc.) into the d-band, 
it does not make any significant contribution to conduction because the drift mobil-
ity is very small in this band. The spin of the electron cannot be flipped easily in a 
scattering process. An s-electron with its moment down can be easily scattered into 
the empty states in the corresponding moment-down d-band (there are many empty 
states at EF), but the moment-up electron has no states in the moment-up d-band 
into which it can be scattered. Conduction occurs by moment-up electrons; these are 
the favored electrons for conduction.
 The band model is particularly useful in explaining the noninteger number of Bohr 
magnetons that give rise to the ferromagnetism. The isolated Fe atom has six 3d and 
two 4s electrons or 8 valence electrons. These electrons in the crystal become shared 
by all the atoms. If N is the number of atoms per unit volume, then one unit volume 
of crystal has 8N valence electrons. 8N electrons enter the s and d bands, filling states 
starting from the lowest energy.8 The exact distribution of electrons depends on how 
many states are available at each energy as electrons fill the bands. We simply sum-
marize the results of the filling process that is shown in Figure 8.45 for Fe:

0.3N electrons in the moment-up s-band (N states available)
0.3N electrons in the moment-down s-band (N states available)
4.8N electrons in the moment-up d-band (5N states available)
2.6N electrons in the moment-down d-band (5N states available)

 To find how many electrons have parallel spin magnetic moments, we simply 
sum the above, which is 2.2N moment-up electrons per unit volume or 2.2N Bohr 
magnetons per unit volume, or 2.2 Bohr magnetons per atom. The saturation mag-
netization Msat is then (2.2N)β or 2.2 T. There is therefore a natural explanation for 
a noninteger number of spins per atom in the band model of ferromagnetism.

8.10  ANISOTROPIC AND GIANT MAGNETORESISTANCE

In general, magnetoresistance refers to the change in the resistance of a material 
(any material) when it is placed in a magnetic field. When a nonmagnetic metal such 
as copper is placed in a magnetic field, the change in its resistivity, and hence the 
sample resistance, is so small that it has no real practical use. When a magnetic 

 8 8N is used to emphasize that all these valence electrons belong to the crystal, i.e., 8N ≈ 7 × 1024 cm−3.
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metal, such as iron, is placed in a magnetic field, the change in the resistivity depends 
on the direction of the current flow with respect to the magnetic field. The resistiv-
ity ρ∕∕ for current flow parallel to the magnetic field decreases, and the resistivity 
ρ⊥, perpendicular to the field, increases by roughly the same amount. The change 
in the resistivity due to the applied magnetic field is anisotropic (depends on the 
direction) and is called anisotropic magnetoresistance (AMR). The change in resis-
tivity is limited to a few percent, but, nonetheless, is still useful. The physical origin 
of this phenomenon is based on the applied field being able to tilt the orbital angu-
lar momenta of the 3d electrons as shown in Figure 8.46a. The field rotates the 3d 
orbitals, which changes the scattering of the conduction electrons according to their 
direction of travel; hence ρ∕∕ and ρ⊥ are different, as shown in Figure 8.46b.
 On the other hand, a very large magnetoresistance, called giant magnetoresis-

tance (GMR), has been observed in certain special multilayer structures, which 
exhibit substantial changes in the resistance (e.g., more than 10 percent) when a 
magnetic field is applied.9 The discovery of GMR in 1988 was one of the most 

Albert Fert (left) and Peter Grünberg (right) were  
awarded the 2007 Nobel Prize “for the discovery of  
Giant Magnetoresistance”. Alfred Fert is at Université 
Paris-Sud, Orsay, France and Peter Grünberg is at 
Forschungszentrum Jülich, Germany. This image was 
taken in 2007 in the auditorium of the Stockholm 
University.

 © dpa picture alliance archive/Alamy Stock Photo.

Figure 8.46 (a) The origin of 

anisotropic magnetoresistance 

(AMR). The electrons traveling along 

the field experience more scattering 

than those traveling perpendicular 

to the field. (b) Resistivity depends 

on the current flow direction with 

respect to the applied magnetic 

field.
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 9 GMR was discovered in the late 1980s by Peter Grünberg (Julich, Germany), and Albert Fert (University of 
Paris-Sud) and their coworkers. Magnetoresistance itself, however, has been well known, and dates back to Lord 
Kelvin’s experiments in 1857.
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important developments in magnetic devices. GMR based devices are widely used 
in the read heads of hard disk drives, and also in various magnetic field sensors.
 The special multilayer structure in its simplest form has two ferromagnetic layers 
(such as Fe or Co or their alloys, etc.) separated by a nonmagnetic transition metal 
layer (such as Cu), called the spacer, as shown in Figure 8.47a. The magnetic layers 
are thin (less than 10 nm), and the nonmagnetic layer is even thinner. The magneti-
zations of the two ferromagnetic layers are not random; they depend on the thickness 
of the spacer because the two layers are “coupled” indirectly through this thin 
spacer.10 In the absence of an external field, two magnetic layers are coupled in such 
a way that their magnetizations are antiparallel or in opposite directions; this arrange-
ment is also called an antiferromagnetically coupled configuration. We will use the 
notation FNA to represent the antiparallel configuration, where N stands for the 
nonmagnetic metal.
 We can apply an external magnetic field to one of the layers and rotate its 
magnetization so that the two magnetizations are now in parallel as in Figure 8.47c. 
This parallel configuration is frequently called ferromagnetically coupled layers 
and is denoted as FNF. The two structures have a giant difference in their resis-
tances, hence the term giant magnetoresistance. The resistance of the antiparallel 
FNA in Figure 8.47b structure is much higher than that of the parallel structure 
FNF in Figure 8.47c.
 The current flow through this multilayer structure (whether along or perpendicular 
to the layers) will involve electrons crossing from one layer to another, passing through 

 10 The physics of the coupling process between the two magnetic layers is an indirect exchange interaction, the 
details of which are not needed to understand the basics of the GMR phenomenon.
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Figure 8.47 A highly simplified view of the principle of the giant magnetoresistance effect. 

(a) The basic trilayer structure. (b) Antiparallel magnetic layers with high resistance RAP. (c) An 

external field aligns layers; parallel alignment has a lower resistance RP.



818 C H A P T E R  8  ∙ MAGNETIC PROPERTIES AND SUPERCONDUCTIVITY

the interfaces. Recall that it is the electrons around the Fermi energy that are involved 
in the conduction and that their mean speed is orders of magnitude larger than the drift 
velocity. The electron trajectories are therefore not parallel to the current flow (and 
should not be confused with current flow lines).
 Consider the antiparallel FNA structure. The magnetic moment up electron in 
the first magnetic layer is the favored conduction electron; that is, it suffers very 
little scattering. However, when this moment-up electron arrives at the A layer in 
which the magnetization is reversed, it finds itself with the wrong spin or wrong 
moment. It is now an unfavored electron and is subject to scattering. Thus, the 
moment-up electron suffers scattering not only in the bulk of A but, more signifi-
cantly, as it crosses the N-layer into the A-layer, that is, at the interface as in Fig-
ure 8.47b. The antiparallel FNA structure therefore has a high resistance, denoted 
as RAP. In contrast, when the magnetizations are parallel, the moment-up electron is 
the favored electron in both the layers and experiences very little scattering. The 
resistance RP of this parallel (FNF) structure is smaller than RAP (RP < RAP). The 
difference in the resistances RP and RAP in this simple trilayer is roughly 10 percent 
or less. But, in multilayered structures, which have a series of alternating magnetic 
and nonmagnetic layers (e.g., 50 or more magnetic and nonmagnetic alternating lay-
ers as in FNANFANFA . . .), the change in the resistance can be impressively large, 
exceeding 100 percent at low temperature and 60–80 percent at room temperature.
 The GMR effect is often measured by quoting the change in the resistance with 
respect to RP,

 (ΔR

Rp
)

GMR

=
RAP − RP

Rp

 [8.33]

Further, the magnetoresistance effect can be measured either by passing a current 
that flows in the plane of the layers or perpendicular to the plane. Most experiments 
use the first one, in what is known as current in plane (CIP) measurements; but 
the biggest change, however, is observed for currents perpendicular to the plane of 
the layers. Table 8.7 summarizes typically reported ΔR∕RP values for the GMR effect 
in simple trilayers and multilayers.
 The structures with antiparallel and parallel magnetic alignments are obviously 
two extreme cases. If the angle between the magnetization vectors M1 and M2 of 

Giant 

magnetoresis-

tance effect

Table 8.7 GMR effect in trilayers and multilayers

  ΔR∕RP Temperature 

Sample Structure and Layer Thicknesses (%) (K)

CoFe/CAgCu/CoFe Trilayer 4–7 300
NiFe/Cu/Co Trilayer, 10/2.5/2.2 nm (spin valve) 4.6 300
Co90Fe10/Cu/Co90Fe10 Trilayer, 4/2.5/0.8 nm (spin valve) 7 300
[Co/Cu]100 100 layers of Co/Cu, 1 nm / 1 nm 80 300
[Co/Co]60 60 layers Co/Cu, 0.8 nm / 0.83 nm 115 4.2

 Data from Grünberg, P., Sensors and Actuators A, 91, 153, 2001.
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the two magnetic layers is θ, then the resistance of the structure depends on θ, with 
the minimum for θ = 0 (FNF) and the maximum for θ = 180° (FNA) as shown in 
Figure 8.48. The fractional change in the resistance depends on θ as

 
ΔR

RP

= (ΔR

RP
)max

1 − cos θ
2

 [8.34]

As expected, the change is maximum when θ = 180°.

 One of the best applications of GMR is in a spin valve, in which the current 
flow is controlled by an external applied magnetic field. Stated differently, the resis-
tance of the valve is controlled by an applied field. Figure 8.49a shows one possible 
simple spin valve structure. The magnetization of the Co magnetic layer is fixed, 
that is, pinned, by having this layer next to an antiferromagnetic layer, called the 
pinning layer. The exchange interaction between the ferromagnetic Co layer and the 
antiferromagnetic CoMn layer effectively pins the direction of the Co layer; it takes 
an enormous field to change the magnetization of the Co layer. A Cu spacer layer 
separates the Co and the next magnetic FeNi layer. The FeNi layer is called the free 
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Figure 8.48 Resistance of the multilayer structure depends on the relative orientations of magnetiza-
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820 C H A P T E R  8  ∙ MAGNETIC PROPERTIES AND SUPERCONDUCTIVITY

layer because its magnetization can be changed by an external magnetic field. Nor-
mally, in the absence of a field, the magnetization of the FeNi layer is antiparallel 
to the Co layer, and the structure has a high resistance RAP. An applied external field 

Bo = μoH can rotate the FeNi layer’s magnetization and can easily align FeNi’s 
magnetization fully in parallel with that of Co so that the resistance becomes mini-
mum, i.e., RP as in Figure 8.49b. It is clear that the external field can be used to 
control the flow of current through this structure. (The name spin valve reflects the 
fact that the valve operation relies on the spin of the electrons.) The free layer should 
be relatively soft to be able to respond to the applied field, whereas the pinned layer 
should have sufficient coercivity not to lose its magnetization. Figure 8.49c shows 
a typical magnetoresistance versus applied field characteristics for one particular type 
of spin valve. The spin valve exhibits hysteresis; that is, the signal ΔR versus H depends 
on the direction of magnetization as shown in the figure.

8.11  MAGNETIC RECORDING MATERIALS

8.11.1 GENERAL PRINCIPLES OF MAGNETIC RECORDING

Outside electric machinery (mainly rotating machines and transformers), magnetic 
materials are most widely used in magnetic recording media to store information in 
digital form. The deep disappointment of accidentally losing valuable stored informa-
tion on the hard drive of one’s computer is well known to most computer users. 
Magnetic materials in magnetic recording essentially fall into three categories: those 
used in magnetic heads to write (record), those used in read sensors, and those used 
in magnetic media in which the information is stored either permanently or until the 
next write requirement.
 As a very simple example, consider magnetic recording of digital data (1s and 0s) 
on a magnetic disk in a hard disk drive (HDD), as shown schematically in Figure 8.50.11 
The information storage medium, that is the recording medium, is a thin film of 
magnetic material coated, for example, by sputtering, on a disk substrate, which 
rotates inside the hard drive. The substrate is called the platter. The information is 
recorded as magnetization patterns on this thin-film magnetic medium. The digital 
information is converted into current pulses that flow into a miniature electromagnet 
write element with a very small air gap. This gapped core electromagnet is called 
the inductive write head or element. The current modulates the magnetic field 
intensity in the core of the electromagnet and hence the field in the gap and around 
it. The recording of information is achieved by the fringing magnetic field around 
the gap region, magnetizing the magnetic medium passing under the head at a con-
stant speed. As the fringing field changes according to the current signal, so does 
the magnetization of the regions that pass under the write head. Thus, the electrical 
signal is stored as a spatial magnetic pattern in the magnetic film in circular tracks. 
The fringing fields of the write head modulate the magnetization in the thin mag-
netic film in the direction of motion; that is, in a circular path in a disc medium. 

 11 See for example Chapters 4 and 49 in the Springer Handbook of Electronic and Photonic Materials, 2nd 
Edition, ed. S. Kasap and P. Capper, Springer Science, New York, 2017.
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This type of magnetic information storage is called longitudinal magnetic record-

ing (LMR).

 The information that is written in the thin film as different orientations of mag-
netization is sensed by a read element, such as a giant magneto resistance (GMR) 
sensor. Figure 8.51a shows how an inductive head and a GMR sensor are used to 
write and read the magnetic information in the thin film. Both the write and the read 
heads are in a single compact assembly that moves radially across the rotating disk 
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Figure 8.50 The basic principle of magnetic data storage on a disc inside a hard drive. The disk substrate is 

called the platter. There may be several platters with write/read heads on both sides of each disk.

Figure 8.51 (a) A schematic illustration of the write and read heads with magnetic shielding. The write and read 

elements would be integrated into a single head. The GMR sensor is actually very much smaller than the inductive 

write head. (b) A thin film write head. (c) Magnified cross section of the write head. Usually there are more coil 
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to write or read the information into tracks, called magnetic bit tracks, on the 
magnetic medium as shown in Figure 8.50. The read-write head is on an air bearing 
and the head to thin magnetic film separation is roughly 10 nm or less. GMR sensor 
has a width that is something like 50 nm or less (∼1000 times thinner than the human 
hair) so that we can squeeze more information into a given area on the magnetic 
storage medium.
 The inductive write head is normally a thin-film head, which has a very small 
width as shown in Figure 8.51b and c. Consequently, the information can be written 
into a very small area on the magnetic storage medium. The write head shown in 
Figure 8.51b and c are fabricated from films of various ferromagnetic metals or fer-
rite alloys that have sufficiently small eddy current losses to be useable at high 
frequencies. The head is manufactured by using typical thin film deposition tech-
niques. The magnetic core is in the form of a thin film whose thickness is a few 
microns and whose width determines the track width. The gap at the end of the core 
has the same width as the core, but its spacing is very small (e.g., 100 nm) and 
generates the necessary fringing field. A spiral-type coil made by depositing a non-
magnetic metal thin film threads the core. The magnetic core is like a U-shaped core 
that is threaded by the metal strips of the coil. If the core is a metallic material, the 
coil metal is appropriately insulated from it by thin films of insulation. The width 
w of the bit-track is determined by the width of the write head in Figure 8.51b, and 
is typically 100 nm or less.
 The resistance of the GMR sensor depends on the external magnetic field, as 
explained in Section 8.10. In this case, the field that influences the GMR sensor 
comes from that of the magnetized patch of the disk that is under the GMR sensor. 
The principle of the GMR is shown in Figure 8.49. The GMR sensor is a multilay-
ered thin-film device whose resistance changes by roughly 10 percent or so in 
response to an applied field. This change in the resistance generates the read signal. 
The voltage from the sensor is maximum on locations on the film where magnetic 
field changes sharply (dB∕dx is largest) and this corresponds to the transition region 
from one-bit to the next. Normally a constant current is passed through the GMR 
sensor, and the read signal is the voltage variation across the sensor; this voltage is 
due to the resistance variation induced by the field from the magnetization pattern 
under the sensor. Modern GMR sensors are operated in the current perpendicular 

Inside of a typical hard disk drive used in a laptop computer.

 Photo by S. Kasap.
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to the plane (CPP) mode because the current is passed perpendicular to the thin-film 
layers in the GMR device (Figure 8.47).
 In perpendicular magnetic recording (PMR), the stored information in the 
magnetic film corresponds to magnetization directions that are perpendicular to the 
film surface and the disk velocity, as shown in Figure 8.52; induced M is either up 
or down. The easy direction of the grains are also perpendicular. More bits can be 
packed to a given surface area, for reasons explained below, and many recent mag-
netic HDDs use this technology. The write operation in this case is distinctly differ-
ent than that in longitudinal storage. There is an inductive write head with a narrow 
“write pole” that brings the magnetic flux onto the film.
 The magnetic thin film has a magnetically soft underlayer (SUL) that can be 
easily magnetized. Remember also that magnetic flux prefers to flow through high 
permeability regions in a medium. Thus, the flux flows from the write pole to the 
underlayer and then to the return pole, which has a large cross sectional area as 
shown in Figure 8.52.12 It is clear that the magnetic field lines pass through the 
whole film perpendicularly, and the write operation does not depend on the fringe 
field; a distinct advantage. The magnetizing field is strong under the write pole where 
the cross sectional area is small, but it is weak under the return pole. The strong 
field at the write pole is able to magnetize the thin film and write the information, 
but the weak field under the return pole cannot erase this magnetization.
 The magnetic thin film for storage is usually a heterogeneous granular medium. 
The thin film has small crystalline grains and a region between the grains that is 
nonmagnetic as shown in Figure 8.53a. For example, the crystalline grains could be 
CoCrPt and the intergrain region may be an amorphous oxide such as SiO2 or a 
mixture of SiO2–TiO2. Notice that the information boundary between the patches is 
rugged because it follows the grain boundaries. If we did not have a magnetic insu-
lation (a nonmagnetic medium) between the grains, then the exchange interaction 
between the atoms in two neighboring grains would force the two grains to align 
their magnetizations; we would not be able to magnetize a small patch on the track. 
The nonmagnetic intergrain region is essential.

Inductive
write head Core

Write

Write pole Vertical recording
medium

Soft magnetic
underlayer

Platter

Return pole
Air bearing

Figure 8.52 (a) A simplified illustration of  

perpendicular magnetic recording. (b) The  

magnetically soft underlayer (SUL) provides  

an image of opposite polarity that increases  

the magnetizing field though the thin film.

 12 To understand the true function of the soft underlayer, we need to go into the fact that the write pole (say  
N at one instant) sees an induced opposite image pole (S) in the underlayer in the same way a positive charge 
+Q on an infinite dielectric medium sees an opposite image charge −Q within the dielectric. The field lines flow 
+Q to −Q. It is clear though the field from the write pole cuts through the magnetic film.
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 How small can we make one-bit patch (the magnetized region for one bit) in 
Figure 8.53a to store as much information as possible? Consider longitudinal record-
ing. Let λ be the length of a one-bit patch, t be the thickness of the film and w be 
the track width in which information is stored as in Figure 8.53b. The volume of 
one-bit is λwt. Clearly, we would like λw to be as small as possible to increase the 
storage capacity. One possibility is to reduce the number of grains in the one-bit 
volume and hence the patch area. The signal-to-noise ratio (SNR) in a granular 
magnetic recording medium depends on the number of grains (domains) N in the 
one-bit volume (Figure 8.53a). The more grains, the higher the signal is, that is  
the signal is proportional to N. The noise depends on how many grains would have 
the wrong magnetization and is proportional to13 √N . In terms of commonly used 
decibels (dB), this is

 SNRgrain ≈ 20 log√N = 10 logN [8.35]

 A 20 dB SNR implies that a bit-volume should have 100 grains, which we can 
take very roughly as the number of minimum grains Nmin we need; some authors use 
a higher Nmin. It is also obvious that we cannot simply reduce λw to increase the 
storage capacity because we need at least Nmin grains in the bit-volume. In perpen-
dicular recording, we can reduce λw and increase t, keeping the bit volume the same, 
which is one of its advantages.
 The boundary between two neighboring one-bit patches is quite rugged, zig-
zagged, because the bit boundary follows the surfaces of the grains with the same 
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Figure 8.53 (a) A simplified view of longitudinal recording track with magnetized crystalline grains in a track. σ is 

the rms variation in the position of the boundary between two neighboring bits. (b) The definitions of λ, w and t 

involved in a bit-track with a magnetized one-bit volume in gray. (c) Transmission electron microscope image of a 

granular magnetic thin film medium for high density storage.

 (c) Courtesy of Kazuhiro Hono.
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 13 We can understand this with an analogy to the random walk example (impurity diffusion) in Section 1.8.2.  
If I take N random steps, my root mean square distance from the origin is proportional to √N , which is noise 
because the direction is random. (Remember that this is an analogy, not an explanation of the physics.)  
The increase in SNR with smaller grains was particularly well known in the era of photographic films.
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magnetization as shown in Figure 8.53a. The root mean square variation σ in the 
position of the boundary represents another form of noise, jitter noise, inherent in 
a granular medium even if we had a perfect write head. The jitter noise σ increases 
with grain size d, and a very rough estimate gives σ ≈ d∕3. The signal is proportional 
to the bit length λ whereas noise is proportional to σ so the SNR ratio will be roughly 
proportional to λ∕σ, that is14

 SNRjitter ≈ 20 log(λ∕σ) [8.36]

It is desirable to keep σ less than 10 percent of the bit length λ. We need to adjust 
our Nmin above to reflect both granular and jitter noise because both contribute sig-
nificantly to the overall SNR.
 Both granular and jitter noise are important limitations in using granular media 
as a magnetic storage medium. We can try to reduce the grain size, and hence σ, as 
we try and shrink the bit-volume, but there is still another fundamental limit.
 We know that the energy involved in thermal fluctuations is roughly kT. The 
energy involved in rotating the magnetization M in a magnetized grain (essentially, 
a domain) from one direction to the opposite direction (changing 1 to 0 or vice versa) 
depends on the magnetocrystalline anisotropy energy, measured in energy per unit 
domain volume (J m−3), which was defined in Section 8.5.2. In the present case, this 
energy is given a special name called uniaxial magnetocrystalline energy Ku due 
to the HCP crystal structure and the shape of the grains. Both influence Ku. Thus, 
if Vgrain is the average grain volume, the energy needed to rotate M in a grain is 
KuVgrain and this must be much greater than kT, say by a numerical factor of r (e.g., 
r = 40 − 60) for a thermally stable operation. We need at least KuVgrain ≈ rkT. We 
cannot therefore expect to reduce the grain volume as much as we like because of 
this fundamental limit. The advantage of perpendicular recording is that the magne-
tizing field is within the main magnetic flux through the whole thickness of the film 
and it is stronger than in longitudinal recording; see Figure 8.52. We can therefore 
increase the film thickness from t to t′ and shrink λ to λ′ as in Figure 8.53b. More 
importantly, we can use a magnetic medium that has a higher Ku because the mag-
netizing field is stronger. This means Vgrain can be smaller. Consequently, we can 
reduce the grain size (d) and still have sufficient Nmin number of grains within a 
one-bit volume to avoid SNR problems.
 When the grain size becomes so small that thermal energy (i.e., thermal fluc-
tuations) can easily randomize the alignments of magnetized grains, then basically 
the medium exhibits paramagnetic behavior as described in Section 8.2.2. This is 
called the superparamagnetic state, and represents a fundamental limit on how 
small we can make the domains.

8.11.2  MATERIALS FOR MAGNETIC STORAGE

The magnetic recording medium in a hard disk drive (Figure 8.50) is in the form of 
a magnetic thin film deposited onto hard substrate, for example, an aluminum disk. 

 14 See, for example, D. Weller and T. McDaniel (Seagate), “Media for Extremely High Density Recording” in 
Advanced Magnetic Nanostructures, Ed D. Sellmyer and R. Skomski, Springer, New York, 2006, Chapter 11, 
pp. 295–325.

Approximate 

jitter noise
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The deposition of the magnetic thin film involves vacuum deposition techniques such 
as sputtering, electron beam evaporation or electroplating. Typical film thicknesses 
are less than 30 nm. The film is not a single phase homogenous magnetic medium. 
The magnetic material consists of crystalline grains (at present roughly 10 nm in 
size) separated by a nonmagnetic amorphous region that is usually an oxide as men-
tioned above and shown in Figure 8.53c; it is a phase-separated medium. Each grain 
is a single magnetic domain inasmuch as the grains are too small to support several 
domains. Table 8.8 summarizes the properties of a typical thin-film storage medium. 
The film must be such that it is able to retain the spatial magnetization pattern writ-
ten on it after it has passed the write head. This requires high remanent magnetiza-
tion Mr. High remanent magnetization is also important in the reading process 
because the magnetic flux that penetrates into the sensor depends on this remanent 
magnetization, given a particular speed of motion under the read head. Thus, the 
read operation also requires a medium with high Mr. Further, it should be difficult 
to undesirably erase the magnetic information on the disk by demagnetizing it under 
stray fields, and this requires high coercivity Hc. However, Hc cannot be too high 
because, otherwise, the inductive head will not be able to change the magnetization 
M of a magnetic grain; we need a semihard magnetic medium. Most thin films are 
alloys of Co because Co has a high degree of magnetocrystalline anisotropy energy 
and hence good coercivity Hc. Alloying Co with Cr provides good corrosion resis-
tance and increases Hc. Alloying with Pt also increases Hc. The desired film proper-
ties can usually be obtained by alloying Co with other elements and optimizing the 
deposition conditions; for example CoCrPt–SiO2 is considered to be a good magnetic 
storage medium but there are many others. The crystal grains have the HCP structure, 
which has a large Ku.
 The magnetically soft underlayer (SUL) beneath the magnetic thin film in Fig-
ure 8.52 has to be sufficiently soft to be easily magnetized so that the magnetic field 
lines from the write head, after passing through the thin film, will be restricted to 
this layer. Consequently we need a soft medium with a high μr, e.g., greater than 
100, and a high Msat that should match that of the write pole. There are several soft 

Table 8.8 Selected examples of materials for perpendicular magnetic recording (PMR)

 Example μoHc μoMr Bsat Ku 

Medium Material (T) (T)  (T)  (kJ m−3) Comment

Recording CoCrPt–oxide, 0.4–0.5 0.60–0.65  250–500 Semihard magnetic thin film,  
 CoCrPtB–oxide       about 20 nm. Deposited 

by sputtering.
Write pole FeCo alloy   2–2.4  Generates a large field  
        entering into the 

recording medium.
Soft underlayer CoTaZr   1.4  μr = 600. Amorphous;  
        thickness less than  

100 nm; has low noise.

 NOTE: Ku is the uniaxial magnetocrystalline anisotropy energy. Data collected from various sources.
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magnetic media that serve as an SUL and a typical example is listed in Table 8.8. 
There is usually a thin interlayer between the storage thin film and the SUL, as 
shown in Figure 8.54, to magnetically separate the two layers. The interlayer can 
also be used to control the grain orientations and size distribution in the recording 
film. Further, the recording film itself may consist of several thin layers to tune the 
magnetic properties of this medium. The interlayer may have two sublayers to tune 
its properties as well. The current materials research on perpendicular recording 
involves optimizing the interlayer and the soft underlayer towards higher capacity. 
There is also a very thin top overcoat layer, usually carbon, to protect the magnetic 
thin film’s surface.
 The thin film inductive recording head in Figure 8.51c must be able to produce 
a strong magnetizing field. The thin film coil is normally Cu and the oxide insulation 
maybe SiO2 or Al2O3. The magnetic core is a soft medium that can be easily mag-
netized such as an NiFe alloy. The narrow pole at the tip of the write head above 
the thin film storage medium has a large Msat or Bsat (Figure 8.32). For example CoFe 
alloys can have Bsat around 2.4 T. What is important in recording digital information 
is that the write head should generate a strong magnetizing field and whose direction 
can be reversed by the coil. Table 8.8 summarizes some of the properties of materi-
als involved in perpendicular magnetic recording.
 So far we have only considered a granular magnetic recording medium. Within 
this material system, a one-bit volume has many independent grains that have to be 
magnetized. There is a limit to the bit-size as we need to have a certain number of 
grains (Nmin); put differently, the grain size cannot be arbitrarily small. Suppose that 
we fabricate a recording medium in which a bit is a well-defined nanostructure, and 
these nanostructures are patterned to form a periodic array of “isolated magnetic 
islands” as shown in Figure 8.55a. An SEM image of such a bit-patterned record-

ing medium (BPRM) is shown in Figure 8.55b. Clearly, we no longer have a 
granular medium and Equation 8.35 does not apply. Indeed, intuitively, we can 
expect an N-fold increase in storage capacity, breaking through the limits of multi-
grain media. Further, we can develop write and read techniques that involve syn-
chronization with the periodicity in the bit-pattern; obviously such new techniques 
would require a more demanding technology for the inductive write head. This is 
the advantage of BPRM. The array of magnetic bits in Figure 8.55b have a pitch of 
35 nm, which corresponds roughly to 0.5 Tb in−2, a significant jump in areal storage 
density. The magnetic medium in this case is a multilayer of Co/Pd films deposited 
by sputtering on a patterned array of SO2 nanoposts. Magnetic bit arrays of smaller 

Figure 8.54 The basic multilayered structure for  

information storage in perpendicular magnetic recording.
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pitches have also been recorded with areal bit densities over 1 Tb in−2. While the 
BPRM has the potential for a much higher areal density, the actual techniques used 
for writing and reading the bits are quite different. Further, the BPRM is not free of 
imperfections such as variations in the periodicity of the array of magnetic bits, 
which is essentially noise within this material system. Nonetheless, such BPRM have 
been shown to have potential areal recording densities 1–1.5 Tb in−2, a factor of 10 
higher than granular PRM.

AREAL DENSITY IN GRANULAR RECORDING MEDIA Consider a longitudinal recording 
medium as in Figure 8.53a. Suppose that the magnetic grains have a uniaxial magnetocrystal-
line anisotropy energy Ku of 500 kJ m−3. The stability of magnetized grains against thermal 
fluctuations means that the energy involved in rotating the magnetization M of a grain in the 
wrong direction must be much greater than the thermal energy kT. Taking the ratio r = 50 in 
KuVgrain ≈ rkT we find the minimum volume for a grain

Vgrain ≈ (50)(0.0259 eV)(1.602 × 10−19 J∕eV)∕(500 × 103 J m−3) = 4.15 × 10−25 m3 or 415 nm3.

 If d is the mean grain size, we can take d3 to very roughly represent the grain volume. 
Thus, d 3 ≈ Vgrain so that d ≈ 7.5 nm. 
 The one-bit volume will have N grains. If p is the volume fraction (packing factor) of 
the grains in the film structure in Figure 8.53c, only the volume p(λwt) is occupied by N 
magnetic grains. Thus,

 p(λwt) = NVgrain [8.37]

from which we can find λw, the area of one-bit, and hence the areal bit density in a track

 Dbit = Areal bit density =
1

λw
=

pt

NVgrain

=
ptKu

NrkT
 [8.38]

This expression ignores the fact that the tracks are not side by side on the disk but have a 
guard band between them. The actual Dbit for the disk will be about 70 percent of the above 
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(b) SEM image of a particular bit-patterned medium. Capping each post is a multilayer of Co/Pd material 

deposited by sputtering. Each post represents a magnetic bit.

 (b) Courtesy of Joel K.W. Yang, Singapore University of Technology and Design.
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value. It is clear from Equation 8.38 that we can increase Dbit by increasing Ku and t, or 
reducing N; but N is limited by the acceptable SNR.
 Further, as an estimate, we can take the packing factor p = 0.85, w = 100 nm (write 
head width), t = 20 nm (film thickness), N = 200 in Equations 8.37 to find λ = 49 nm, 
which is the size of one-bit. We can now use Equation 8.38 with λ = 49 nm and w = 
100 nm to find Dinfo = 205 bits μm−2 or 132 Gb in−2 in tracks and roughly 92.4 Gb in−2 
on the disk.
 Further, from Equation 8.35,

 SNRgrain = 10 logN = 23.0 dB.

Taking σ ≈ d∕3 = 2.5 nm, from Equation 8.36,

 SNRjitter ≈ 20 log(λ∕σ) = 25.8 dB.

 The importance of Ku should be clearly apparent. There are magnetic media with higher Ku 
values than 500 kJ m−3 used in this example. The above estimate calculations show that there is 
a fundamental limit to how much information can be stored in a granular recording medium.

8.12  SUPERCONDUCTIVITY

8.12.1 ZERO RESISTANCE AND THE MEISSNER EFFECT

In 1911 Kamerlingh Onnes at the University of Leiden in Holland observed that 
when a sample of mercury is cooled to below 4.2 K, its resistivity totally vanishes 
and the material behaves as a superconductor, exhibiting no resistance to current 
flow. Other experiments since then have shown that there are many such substances, 
not simply metals, that exhibit superconductivity when cooled below a critical 

temperature Tc that depends on the material. On the other hand, there are also many 
conductors, including some with the highest conductivities such as silver, gold, 
and copper, that do not exhibit superconductivity. The resistivity of these normal 

conductors at low temperatures is limited by scattering from impurities and crystal 
defects and saturates at a finite value determined by the residual resistivity. The two 
distinctly different types of behavior are depicted in Figure 8.56. Between 1911 and 
1986, many different metals and metal alloys had been studied, and the highest 
recorded critical temperature was about 23 K in a niobium–germanium compound 
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(Nb3Ge) whose superconductivity was discovered in the early 1970s. In 1986 Bednorz 
and Müller, at IBM Research Laboratories in Zürich, discovered that a copper oxide–
based ceramic-type compound La–Ba–Cu–O, which normally has high resistivity, 
becomes superconducting when cooled below 35 K. Following this Nobel prize– 
winning discovery, a variety of copper oxide–based compounds (called cuprate ceramics) 
have been synthesized and studied. In 1987 it was found that yttrium barium copper 
oxide (Y–Ba–Cu–O) becomes superconducting at a critical temperature of 95 K, 
which is above the boiling point of nitrogen (77 K). This discovery was particularly 
significant because liquid nitrogen is an inexpensive cryogent that is readily liquified 
and easy to use compared with cryogent liquids that had to be used in the past (liquid 
helium). At present the highest critical temperature for a superconductor is around 
130 K (−143 °C) for Hg–Ba–Ca–Cu–O. These superconductors with Tc above ∼30 K 
are now typically referred as high-Tc superconductors. The quest for a near-room-
temperature superconductor goes on, with many scientists around the world trying 
different materials, or synthesizing them, to raise Tc even higher. There are already 
commercial devices utilizing high-Tc superconductors, for example, thin-film 
SQUIDs15 that can accurately measure very small magnetic fluxes, high-Q filters, 
resonant cavities in microwave communications, superconducting power cables and 
superconducting fault current limiters.
 The vanishing of resistivity is not the only characteristic of a superconductor. A 
superconductor cannot be viewed simply as a substance that has infinite conductiv-
ity below its critical temperature. A superconductor below its critical temperature 
expels all the magnetic field from the bulk of the sample as if it were a perfectly 
diamagnetic substance. This phenomenon is known as the Meissner effect. Suppose 
that we place a superconducting material in a magnetic field above Tc. The magnetic 
field lines will penetrate the sample, as we expect for any low μr medium. However, 
when the superconductor is cooled below Tc, it rejects all the magnetic flux in the 
sample, as depicted in Figure 8.57. The superconductor develops a magnetization M 
by developing surface currents, such that M and the applied field cancel everywhere 
inside the sample. Put differently μoM is in the opposite direction to the applied 

 15 SQUID is a superconducting quantum interference device that can detect very small magnetic fluxes.

In 1986 J. George Bednorz (right) and K. Alex 
Müller, at IBM Research Laboratories in Zurich, 
discovered that a copper oxide based ceramic-
type compound (La-Ba-Cu-O) which normally 
has high resistivity becomes superconducting 
when cooled below 35 K. This Nobel prize 
winning discovery opened a new era of high-
temperature-superconductivity research; now 
there are various ceramic compounds that 
are superconducting above the liquid nitrogen 
(an inexpensive cryogen) temperature (77 K).

 © Emilio Segre Visual Archives/American 
Institute of Physics/Science Source.
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field and equal to it in magnitude. Thus, below Tc a superconductor is a perfectly 
diamagnetic substance (χm = −1). This should be contrasted with the behavior of 
a perfect conductor, which only exhibits infinite conductivity, or ρ = 0, below Tc. If 
we place a perfect conductor in a magnetic field and then cool it below Tc, the 
magnetic field is not rejected. These two types of behavior are identified in Figure 
8.57. If we switch off the field, the field around the superconductor simply disap-
pears. But switching off the field means there is a decreasing applied field. This 
change in the field induces currents in the perfect conductor by virtue of Faraday’s 
law of induction. These currents generate a magnetic field that opposes the change 
(Lenz’s law); in other words, they generate a field along the same direction as the 
applied field to reenforce the decreasing field. As the current can be sustained (ρ = 0) 
without Joule dissipation, it keeps on flowing and maintaining the magnetic field. 
The two final situations are shown in Figure 8.57 and distinguish the Meissner effect, 
a distinct characteristic of a superconductor, from the behavior of a perfect conduc-
tor (ρ = 0 only). The photograph showing the levitation of a magnet above the 
surface of a superconductor (Figure 8.58) is the direct result of the Meissner effect: 
the exclusion of the magnet’s magnetic fields from the interior of the superconductor.
 The transition from the normal state to the superconducting state as the tem-
perature falls below the critical temperature has similarities with phase transitions 
such as solid to liquid or liquid to vapor changes. At the critical temperature, there 
is a sharp change in the heat capacity as one would observe for any phase change. 
In the superconducting state, we cannot treat a conduction electron in isolation. The 
electrons behave collectively and thereby impart the superconducting characteristics 
to the substance, as discussed later.
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B offB

T > Tc T < Tc T < Tc

Figure 8.57 The Meissner effect.

A superconductor cooled below its critical temperature expels all magnetic field lines from 

the bulk by setting up a surface current. A perfect conductor (σ = ∞) shows no Meissner  

effect.
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8.12.2 TYPE I AND TYPE II SUPERCONDUCTORS

The superconductivity below the critical temperature has been observed to disappear 
in the presence of an applied magnetic field exceeding a critical value denoted by 
Bc. This critical field depends on the temperature and is a characteristic of the mate-
rial. Figure 8.59 shows the dependence of the critical field on the temperature. The 
critical field is maximum, Bc(0), when T = 0 K (obtained by extrapolation16). As 
long as the applied field is below Bc at that temperature, the material is in the super-
conducting state, but when the field exceeds Bc, the material reverts to the normal 
state. We know that in the superconducting state, the applied magnetic field lines 
are expelled from the sample and the phenomenon is called the Meissner effect. The 
external field, in fact, does penetrate the sample from the surface into the bulk, but 
the magnitude of this penetrating field decreases exponentially from the surface.  
If the field at the surface of the sample is Bo, then at a distance x from the surface, 
the field is given by an exponential decay,

 B(x) = Bo exp(−
x

λ) [8.39]

where λ is a “characteristic length” of penetration, called the penetration depth, 
and depends on the temperature and Tc (or the material). At the critical temperature, 
the penetration length is infinite and any magnetic field can penetrate the sample 
and destroy the superconducting state. Near absolute zero of temperature, however, 

S

N

S
N

Superconductor
above Tc

Magnet

Surface
currents

Superconductor
below Tc

Figure 8.58 Left: A magnet over a superconductor becomes levitated. The superconductor is a perfect diamagnet which 

means that there can be no magnetic field inside the superconductor. Right: Photograph of a magnet levitating above a  

superconductor immersed in liquid nitrogen (77 K). This is the Meissner effect.

 Photo courtesy of Professor Paul C. W. Chu, University of Houston.

Penetration 

depth

 16 There is a third law to thermodynamics that is not as emphasized as the first two laws, which dominate all 
branches of engineering; that is, one can never reach the absolute zero of temperature.
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typical penetration depths are 10–100 nm. Figure 8.60 shows the Bc versus T behavior 
for three example superconductors, tin, mercury, and lead.
 Superconductors are classified into two types, called Type I and Type II, based 
on their diamagnetic properties. In Type I superconductors, as the applied magnetic 
field B increases, so does the opposing magnetization M until the field reaches the 
critical field Bc, whereupon the superconductivity disappears. At that point, the per-
fect diamagnetic behavior, the Meissner effect, is lost, as illustrated in Figure 8.61. 
A Type I superconductor below Bc is in the Meissner state, where it excludes all 
the magnetic flux from the interior of the sample. Above Bc it is in the normal state, 
where the magnetic flux penetrates the sample as it would normally and the conduc-
tivity is finite.
 In the case of Type II superconductors, the transition does not occur sharply 
from the Meissner state to the normal state but goes through an intermediate phase 
in which the applied field is able to pierce through certain local regions of the 
sample. As the magnetic field increases, initially the sample behaves as a perfect 
diamagnet exhibiting the Meissner effect and rejecting all the magnetic flux. When 
the applied field increases beyond a critical field denoted as Bc1, the lower critical 

field, the magnetic flux lines are no longer totally expelled from the sample. The 
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Figure 8.59 The critical field versus temperature 

in Type I superconductors.

Figure 8.60 The critical field versus temperature 

in three examples of Type I superconductors.
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O B = μoHB = μoH
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Mixed state
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Figure 8.61 Characteristics of Type I and Type II superconductors. B = μoH is the  

applied field and M is the overall magnetization of the sample. Field inside the sample, 

Binside = μoH + μoM, which is zero only for B < Bc (Type I) and B < Bc1 (Type II).
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overall magnetization M in the sample opposes the field, but its magnitude does 
not cancel the field everywhere. As the field increases, M gets smaller and more 
flux lines pierce through the sample until at Bc2, the upper critical field, all field 
lines penetrate the sample and superconductivity disappears. This behavior is 
shown in Figure 8.61. Type II superconductors therefore have two critical fields 
Bc1 and Bc2.
 When the applied field is between Bc1 and Bc2, the field lines pierce through the 
sample through tubular local regions, as pictured in Figure 8.62. The sample develops 
local small cylindrical (filamentary) regions of normal state in a matrix of supercon-
ducting state and the magnetic flux lines go through these filaments of local normal 
state, as shown in Figure 8.62. The state between Bc1 and Bc2 is called the mixed 

state (or vortex state) because there are two states—normal and superconducting—
mixed in the same sample. The filaments of normal state have finite conductivity 
and a quantized amount of flux through them. Each filament is a vortex of flux lines 
(hence the name vortex state). It should be apparent that there should be currents 
circulating around the walls of vortices. These circulating currents ensure that the 
magnetic flux through the superconducting matrix is zero. The sample overall has 
infinite conductivity due to the superconducting regions. Figure 8.63 shows the 
dependence of Bc1 and Bc2 on the temperature and identifies the regions of Meissner, 
mixed, and normal states. All engineering applications of superconductors invariably 
use Type II materials because Bc2 is typically much greater than Bc found in Type I 
materials and, furthermore, the critical temperatures of Type II materials are higher 
than those of Type I. Many superconductors, including the recent high-Tc supercon-
ductors, are of Type II. Table 8.9 summarizes the characteristics of selected Type I 
and Type II superconductors.

8.12.3 CRITICAL CURRENT DENSITY

Another important characteristic feature of the superconducting state is that when 
the current density through the sample exceeds a critical value Jc, it is found that 
superconductivity disappears. This is not surprising since the current through the 
superconductor will itself generate a magnetic field and at sufficiently high current 

Magnetic field lines

Normal state

Superconducting state

Vortex of flux lines

Figure 8.62 The mixed or vortex state in a Type II  

superconductor.
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densities, the magnetic field at the surface of the sample will exceed the critical field 
and extinguish superconductivity. This plausible direct relation between Bc and Jc is 
only true for Type I superconductors, whereas in Type II superconductors, Jc depends 
in a complicated way on the interaction between the current and the flux vortices. 
New high-Tc superconductors have exceedingly high critical fields, as apparent in 
Table 8.9, that do not seem to necessarily translate to high critical current densities. 
The critical current density in Type II superconductors depends not only on the 
temperature and the applied magnetic field but also on the preparation and hence 
the microstructure (e.g., polycrystallinity) of the superconductor material. Critical 
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A high temperature 
superconductor (HTS) power 
cable for use at 10 kV and 
2,300 A. The HTS is Bi223. 
The cable has been installed 
in the city center of Essen 
(Germany) by a German utility 
company RWE Deutschland; 
and it has been in use since 
2014. The superconductor 
shown is manufactured by 
Nexans.

 © Reuters/Alamy Stock 
Photo.

Table 8.9 Examples of Type I and Type II superconductors

Type I Sn Hg Ta V Pb Nb

Tc (K) 3.72 4.15 4.47 5.40 7.19 9.2
Bc (T) 0.030 0.041 0.083 0.14 0.08 0.198

    Y-123 Bi-2223 Hg-1223 

Type II Nb3Sn Nb3Ge La1.85Sr0.15CuO4 YBa2Cu3O7 Bi2Sr2Ca2Cu3O10 HgBa2Ca2Cu3O8

Tc (K) 18.1 23.2 36.5 92 110 133
Bc2 (Tesla) 24.5 38 64 122 39 190 
 at 0 K
Jc (A cm−2)  ∼107   104–107 
 at 0 K

 NOTE: Critical fields are close to absolute zero, obtained by extrapolation. Type I for pure, clean elements. Bc2 
for high-temperature superconductors depends on the crystal direction and represents the lower critical field. 
Values mainly from Wesche, R., “Ch 48: High-Temperature Superconductors,” in Kasap, S. and Capper, P., The Springer 
Handbook of Electronic and Photonic Materials. New York, NY: Springer Science+Business Media, Inc., 2016.
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T

B

24.5 T
Bc2

Nb3Sn
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18 K

Jc

~107 A cm–2

J
Figure 8.64 The critical surface for a niobium–tin 

alloy, which is a Type II superconductor.

current densities in new high-Tc superconductors vary widely with preparation condi-
tions. For example, in Y–Ba–Cu–O, Jc may be greater than 107 A cm−2 in some care-
fully prepared thin films and single crystals but around 103–106 A cm−2 in some of the 
polycrystalline bulk material (e.g., sintered bulk samples). In Nb3Sn, used in supercon-
ducting solenoid magnets, on the other hand, Jc is close to 107 A cm−2 at near 0 K.
 The critical current density is important in engineering because it limits the total 
current that can be passed through a superconducting wire or a device. The limits 
of superconductivity are therefore defined by the critical temperature Tc, critical 
magnetic field Bc (or Bc2), and critical current density Jc. These constitute a surface 
in a three-dimensional plot, as shown in Figure 8.64, which separates the supercon-
ducting state from the normal state. Any operating point (T1, B1, J1) inside this 
surface is in the superconducting state. When the cuprate ceramic superconductors 
were first discovered, their Jc values were too low to allow immediate significant 
applications in engineering. Their synthesis over the last 20 years has advanced to 
a level that we can now benefit from large critical currents and fields. Over the same 
temperature range, ceramic cuprate superconductors now easily outperform the tra-
ditional superconductors for many applications. There are already a number of appli-
cations of these high-Tc superconductors in the commercial market.

SUPERCONDUCTING SOLENOIDS17 Superconducting solenoid magnets can produce very 
large magnetic fields up to ∼15 T or so, whereas the magnetic fields available from a ferro-
magnetic core solenoid is limited to ∼2 T. High field magnets used in magnetic resonance 
imaging are based on superconducting solenoids wound using a superconducting wire. They are 
operated around 4 K with expensive liquid helium as the cryogen. These superconducting wires 
are typically Nb3Sn or NbTi alloy filaments embedded in a copper matrix. A very large current, 
several hundred amperes, is passed through the solenoid winding to obtain the necessary high 
magnetic fields. There is, of course, no Joule heating once the current is flowing in the super-
conducting state. The main problem is the large forces and hence stresses in the coil due to 
large currents. Two wires carrying currents in the opposite direction repel each other, and the 

 EXAMPLE 8.10

 17 Designing a superconducting solenoid is by no means trivial, and the enthusiastic student is referred to a 
very readable description given by James D. Doss, Engineer’s Guide to High Temperature Superconductivity, 
New York: John Wiley & Sons, 1989, ch. 4. Photographs and descriptions of catastrophic failure in high field 
solenoids can be found in an article by G. Broebinger, A. Passner, and J. Bevk, “Building World-Record Magnets” 
in Scientific American, June 1995, pp. 59–66.
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force is proportional to I2. Thus the magnetic forces between the wires of the coil give rise to 
outward radial forces trying to “blow open” the solenoid, as depicted in Figure 8.65. The forces 
between neighboring wires are attractive and hence give rise to compressional forces squeezing 
the solenoid axially. The solenoid has to have a proper mechanical support structure around it 
to prevent mechanical fracture and failure due to large forces between the windings. The copper 
matrix serves as mechanical support to cushion against the stresses as well as a good thermal 
conductor in the event that superconductivity is inadvertently lost during operation.
 Suppose that we have a superconducting solenoid that is 10 cm in diameter and 1 m in 
length and has 500 turns of Nb3Sn wire, whose critical field Bc at 4.2 K (liquid He tem-
perature) is about 20 T and critical current density Jc is 3 × 106 A cm−2. What is the current 
necessary to set up a field of 5 T at the center of a solenoid? What is the approximate energy 
stored in the solenoid? Assume that the critical current density decreases linearly with the 
applied field. Further, assume also that the field across the diameter of the solenoid is approx-
imately uniform (field at the windings is the same as that at the center).

SOLUTION

We can assume that we have a long solenoid, that is, length (100 cm) ≫ diameter (10 cm). 
The field at the center of a long solenoid is given by

 B =
μo NI

ℓ

Magnetic Resonance Imaging (MRI) machines use a 
superconducting electromagnet (solenoid) similar in 
principle to Figure 8.65. The bore of the magnet has the 
patient. The magnets are cooled by liquid He and can 
generate the large magnetic field (3 T in this case) that is 
needed for MRI imaging.

 Image courtesy of GE Healthcare.

Superconductor

Copper matrix
Solenoid

Air

Radial forces
Mechanical
support structure

Coil windings

Figure 8.65 A solenoid carrying a current experiences radial forces pushing the coil apart and axial 

forces compressing the coil.
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so the current necessary for B = 5 T is

 I =
Bℓ

μoN
=

(5)(1)
(4π × 10−7) (500)

= 7958 A  or  7.96 kA

 As the coil is 1 m and there are 500 turns, the coil wire radius must be 1 mm. If all the 
cross section of the wire were of superconducting medium, then the corresponding current 
density would be

 Jwire =
1

πr2 =
7958

π(0.001)2 = 2.5 × 109 A m−2  or  2.5 × 105 A cm−2

 The actual current density through the superconductors will be greater than this as the 
wires are embedded in a metal matrix. Suppose that 20 percent by cross-sectional area (and 
hence as volume percentage) is the superconductor; then the actual current density through 
the superconductor is

 Jsuper =
Jwire

0.2
= 1.25 × 106 A cm−2

 We now need the critical current density J′c at a field of 5 T. Assuming Jc decreases linearly 
with the applied field and vanishes when B = Bc, we can find J′c, from linear interpolation

 J′c = Jc

Bc − B

Bc

= (3 × 106 A cm−2)
20 T − 5 T

20 T
= 2.25 × 106 A cm−2

 The actual current density Jsuper through the superconductors is less than this critical 
value J′c. We can assume that the superconducting solenoid will operate “safely” (with all 
other designs correctly implemented). It should be emphasized that accurate and reliable 
calculations will involve the actual Jc–Bc–Tc surface, as in Figure 8.64 for the given material.
 Since the field in the solenoid is B = 5 T, assuming that this is uniform along the axis 
and the core is air, the energy density or energy per unit volume is

 Evol =
B2

2μo

=
52

2(4π × 10−7)
= 9.95 × 106 J m−3

so the total energy

 E = Evol [Volume] = (9.95 × 106 J m−3)[(1 m)(π0.052 m2)].

 = 7.81 × 104 J  or  78.1 kJ

 If all this energy can be converted to electrical work, it would light a 100 W lamp for 
13 min (and if converted to mechanical work, it could lift a 7,900 kg truck by 1 m).

8.13  SUPERCONDUCTIVITY ORIGIN

Although superconductivity was discovered in 1911, the understanding of its origin 
did not emerge until 1957 when Bardeen, Cooper, and Schrieffer formulated the 
theory (called the BCS theory) in terms of quantum mechanics. The quantum 
mechanical treatment is certainly beyond the scope of this book, but one can none-
theless grasp an intuitive understanding, as follows. The cardinal idea is that, at 
sufficiently low temperatures, two oppositely spinning and oppositely traveling elec-
trons can attract each other indirectly through the deformation of the crystal lattice 
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of positive metal ions. The idea is illustrated pictorially in Figure 8.66. The electron 
1 distorts the lattice around it and changes its vibrations as it passes through this 
region. Random thermal vibrations of the lattice at low temperatures are not strong 
enough to randomize this induced lattice distortion and vibration. The vibrations of 
this distorted region now look differently to another electron, 2, passing by. This 
second electron feels a “net” attractive force due to the slight displacements of pos-
itive metal ions from their equilibrium positions. The two electrons interact indirectly 
through the deformations and vibrations of the lattice of positive ions. This indirect 
interaction at sufficiently low temperatures is able to overcome the mutual Coulom-
bic repulsion between the electrons and hence bind the two electrons to each other. 
The two electrons are called a Cooper pair. The intuitive diagram in Figure 8.66, 
of course, does not even convey the intuition why the spins of the electrons should 
be opposite. The requirement of opposite spins comes from the formal quantum 
mechanical theory. The net spin of the Cooper pair is zero and their net linear 
momentum is also zero. There is a further significance to the pairing of electron 
spins in the Cooper pair. As a quasi-particle, or an entity, the Cooper pair has no 
net spin and hence the Cooper pairs do not obey the Fermi–Dirac statistics.18 They 
can therefore all “condense” to the lowest energy state and possess one single wave-
function that can describe the whole collection of Cooper pairs. All the paired elec-
trons are described collectively by a single coherent wavefunction Ψ, which extends 
over the whole sample. A crystal imperfection cannot simply scatter a single Cooper 
pair because all the pairs behave as a single entity—like a “huge molecule.” Scat-
tering one pair involves scattering all, which is simply not possible. An analogy may 
help. One can scatter an individual football player running on his own. But if all the 
team members got together and moved forward arm in arm as a rigid line, then the 
scattering of any one now is impossible, as the rest will hold him in the line and 
continue to move forward (don’t forget, it’s only an analogy!). Superconductivity is 
said to be a macroscopic manifestation of quantum mechanics.
 The BCS theory has had good success with traditional superconductors, but it 
is believed that it does not apply to high-Tc superconductors, that is, lattice vibrations 
are not involved in the formation of Cooper pairs. The formation of a Cooper pair 
is still the key concept in explaining the superconductivity but the Cooper electrons 
are believed to be coupled by “spin waves” within the crystal. The spin of a moving 

Lattice vibration

1

2

Figure 8.66 A pictorial and intuitive 

view of an indirect attraction between 

two oppositely traveling electrons via 

lattice distortion and vibration.

 18 In fact, the Cooper pair without a net spin behaves as if is were a boson particle.
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electron modifies the spins of the atoms around it, generating a spin wave, which 
affects another nearby electron. The interactions lead to the formation of a Cooper 
pair. Obviously, at high temperatures, lattice vibrations have sufficient energy to 
disassociate the pair, and the crystal returns to the normal state.

ADDITIONAL TOPICS

8.14  JOSEPHSON EFFECT

The Josephson junction is a junction between two superconductors that are separated 
by a thin insulator (a few nanometers thick) as depicted in Figure 8.67. If the insu-
lating barrier is sufficiently thin, then there is a probability that the Cooper pairs 
can tunnel across the junction. The wavefunction Ψ of the Cooper pair, however, 
changes phase by θ when it tunnels through the junction, not unexpected as the pair 
goes through a potential barrier. The maximum superconducting current Ic that can 
flow through this weak link depends on not only the thickness and area (size) of the 
insulator but also on the superconductor materials and the temperature. The current 
I, or the supercurrent, through the junction due to Cooper pair tunneling is deter-
mined by the phase angle θ,

 I = Ic sin θ [8.40]

where Ic is the maximum current or the critical current. If the current through the 
junction is controlled by an external circuit, then the tunneling Cooper pairs on either 
side of the junction (in the superconductors) adjust their respective phases to main-
tain the phase change to satisfy Equation 8.40. If we plot the I–V characteristics of 
this junction as in Figure 8.68, we would find that for I < Ic, the behavior follows 
the vertical OC line with no voltage across the junction.
 If the current through the junction exceeds Ic, then the Cooper pairs cannot tun-
nel through the insulator because Equation 8.40 cannot be satisfied. There is still a 
current through the junction, but it is due to the tunneling of normal, that is, single 
electrons as represented by the curve OABD in Figure 8.68. Thus, the current switches 
from point C to point B and then follows the normal tunneling curve B to D. At 
point B, a voltage develops across the junction and increases with the current. The 
normal tunneling current in the range OA is negligible and rises suddenly when the 
voltage exceeds Va. The reason is that a certain amount of voltage (corresponding 
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Figure 8.67 (a) A Josephson junction is a junction between two superconductors separated by a thin insulator.  

(b) In practice, thin-film technology is used to fabricate a Josephson junction.
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to a potential energy eVa) is needed to provide the necessary energy to disassociate 
the tunneling single electron from its Cooper pair. It is apparent that the thin insula-
tion acts as a weak superconductor or as a weak link in the superconductor; weak 
with regard to the currents that can flow in the superconductor itself. The I–V char-
acteristic in Figure 8.68a is symmetric about O, and is called the dc characteristic 

of the Josephson junction. In addition, the I–V behavior exhibits hysteresis; that is, 
if we were to decrease the current, the behavior does not follow DBC down to O, 
but follows the DBA curve. When the current is decreased nearly to zero, the normal 
tunneling current switches to the supercurrent. The Josephson junction is bistable; 
that is, it has two states corresponding to the superconducting state OC and normal 
state ABD. Thus, the device behaves as an electronic switch whose switching time, 
in theory, is determined by tunneling times, in the picoseconds range. In practice the 
switching time (∼10 ps) is limited by the junction capacitance. Figure 8.68b shows 
the experimental I versus V characteristics for a Josephson junction that is made of 
two tin superconductors with tin oxide as the weak link; it closely follows the 
expected behavior in Figure 4.68a.
 If, on the other hand, a dc voltage is applied across the Josephson junction, then 
the phase change θ is modulated by the applied voltage. The most interesting and 
surprising aspect is that the voltage modulates the rate of change of the phase through 
the barrier, that is,

 
dθ

dt
=

2eV

ħ

 When we integrate this, we find that θ is time and voltage dependent, so, accord-
ing to Equation 8.40, the current is a sinusoidal function of time and voltage, that is,

 I = Ic sin(θo −
2π(2eV)t
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Figure 8.68 (a) I–V characteristics of a Josephson junction for positive currents when the current is controlled by an external 

circuit. (b) Experimental I–V characteristics of an Sn-SnxOy-Sn Josephson junction at T = 1.52 K. SnxOy is tin oxide, the weak link.

 Data extracted from Balsamo et al., Physical Review, 10, 1881, 1974.
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or

 I = Io sin(2π ft)

where Io is a new constant incorporating θo and the frequency of the oscillations of 
the current is given by

 f =
2eV

h
 [8.41]

 The Josephson junction therefore generates an oscillating current of frequency f 
when there is a dc voltage V across it. This is called the ac Josephson effect, a 
remarkable phenomenon originally predicted by Josephson as a graduate student at 
Cambridge (1962). According to the ac Josephson effect, the junction generates an 
ac current at a frequency of 2e∕h Hz per volt or 483.6 MHz per microvolt. Further-
more, the frequency of the current has nothing to do with the material properties of 
the junction but is only determined by the applied voltage through e and h. The ac 
Josephson effect has been adopted to define the voltage standard: One volt is the 
voltage that, when applied to a Josephson junction, will generate an ac current and 
hence an electromagnetic radiation of frequency 483,597.9 GHz.

8.15  FLUX QUANTIZATION

Consider a ring of a superconducting material above its Tc. Suppose that the ring is 
immersed in magnetic flux lines from a magnet placed above it as shown in Fig-
ure 8.69a. When we cool the ring to below Tc, the magnetic flux lines are excluded 
from the ring itself, due to the Meissner effect, but they go through the hole, as 
shown in Figure 8.69b. If we now remove the magnet, we may think that the mag-
netic flux lines simply disappear, but this is not the case. A persistent current is set 
up on the inside surface of the superconducting ring that flows to maintain the flux 
constant in the hollow. This supercurrent generates flux lines in the hollow as if to 
replace those taken away by the removal of the magnet, as depicted in Figure 8.69c. 
Since the current can flow indefinitely in the ring, the overall effect is that the 
magnetic flux is trapped within the ring. Indeed, if we were to bring back the mag-
net, the current in the ring would disappear to ensure that the magnetic flux in 
the  hollow remains unchanged. The origin of flux trapping can be appreciated by 
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Φ

Figure 8.69 (a) Above Tc, the flux lines enter the 

ring. (b) The ring and magnet are cooled through Tc. 
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does not change the flux in the hole.
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considering what would happen if the flux were allowed to change, that is,  
dΦ∕dt ≠ 0. A changing flux would induce a voltage V = −dΦ∕dt around the ring 
that would drive an infinite current I = V∕R where R = 0. This is not possible, and 
hence the flux cannot change, which means we must have dΦ∕dt = 0. One should 
also note that there can be no electric field inside a superconductor because

 E =
J

σ
= 0

since the conductivity σ is infinite.
 What would happen if we have a superconducting ring (below Tc) that initially 
had no flux in the hole? If we were to bring a magnet to it, then the flux lines would 
now be excluded from both the ring itself and also the hole since the trapped flux 
within the ring is zero.
 It turns out that the trapped flux Φ inside the ring is quantized by virtue of super-
conductivity being a quantum phenomenon. The smallest quantized amount of flux 
is called the magnetic flux quantum and is given by h∕2e or 2.0679 × 10−15 Wb. 
The flux Φ in the ring is an integer multiple n of this quantum,

 Φ = n 

h

2e
 [8.42]

Trapped flux 

is quantized

DEFINING TERMS

of the lattice of positive metal ions with which the elec-
trons interact.

Critical magnetic field (Bc) is the maximum field 
that can be applied to a superconductor without de-
stroying the superconducting behavior. Bc decreases 
from its maximum value at absolute zero to zero at Tc.

Critical temperature (Tc) is a temperature that sepa-
rates the superconducting state from the normal state. 
Above Tc, the substance is in the normal state with a 
finite resistivity, but below Tc, it is in the superconduct-
ing state with zero resistivity.

Curie temperature (TC) is the critical temperature at 
which the ferromagnetic and ferrimagnetic properties 
are lost. Above the Curie temperature, the material be-
haves as if it were paramagnetic.

Diamagnetic material has a negative magnetic sus-
ceptibility and reduces or repels applied magnetic 
fields. Superconductors are perfect diamagnets that re-
pel the applied field. Many substances possess weak 
diamagnetism, so the applied field is slightly decreased 
within the material.

Antiferromagnetic materials have crystals in which 
alternating permanent atomic spin magnetic moments 
are equal in magnitude but point in opposite directions 
(antiparallel), which leads to no net magnetization of 
the crystal.

Bloch wall is a magnetic domain wall.

Bohr magneton (β) is a useful elementary unit of 
magnetic moment on the atomic scale. It is equal to the 
magnetic moment of one electron spin along an ap-
plied magnetic field β = eħ∕2me.

Coercivity or coercive field (Hc) measures the ability 

of a magnetized material to resist demagnetization. It is 

the required reverse applied field that would remove 

any remanent magnetization, that is, demagnetize the 

material.

Cooper pair is a quasi-particle formed by the mutual 

attraction of two electrons with opposite spins and op-

posite linear momenta below a critical temperature. It 

has a charge of −2e and a mass of 2me but no net spin. 

It does not obey Fermi–Dirac statistics. The electrons are 

held together by the induced distortions and vibrations 
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Ferrites are ferrimagnetic materials that are ceramics 
with insulating properties. They are therefore used in 
HF applications where eddy current losses are signifi-
cant. Their general composition is (MO)(Fe2O3), where 
M is typically a divalent metal. For magnetically soft 
ferrites, M is typically Fe, Mn, Zn, or Ni, whereas for 
magnetically hard ferrites, M is typically Sr or Ba. 
Hard ferrites such as BaOFe2O3 have the hexagonal 
crystal structure with a high degree of magnetocrystal-
line anisotropy and therefore possess high coercivity 
(difficult to demagnetize).

Ferromagnetic materials have the ability to possess 
large permanent magnetizations even in the absence of 
an applied field. An unmagnetized ferromagnetic ma-
terial normally has many magnetic domains whose 
magnetization vectors add to give no overall magneti-
zation. However, in a sufficiently strong magnetizing 
field, the whole ferromagnetic substance becomes one 
magnetic domain in which all the atomic spin magnetic 
moments are aligned to give a large magnetization 
along the field. Some of this magnetization is retained 
even after the removal of the field.

Giant magnetoresistance (GMR) is the large change 
in the resistance of a special multilayer structure 
when a magnetic field is applied; the simplest struc-
ture usually consists of two thin ferromagnetic layers 
(e.g., Fe) sandwiching an even thinner nonmagnetic 
metal (e.g., Cu).

Hard direction is the crystal direction along which it 
is hardest to align the atomic spin magnetic moments 
relative to the easy direction. Exchange interaction en-
ergy Eex favors the easy direction most (Eex is most 
negative) and favors the hard direction least (Eex is least 
negative).

Hard magnetic materials characteristically have 
high remanent magnetizations (Br) and high coercivi-
ties (Hc), so once magnetized, they are difficult to de-
magnetize. They are suitable for permanent magnet 
applications. They have broad B–H hysteresis loops.

Hard magnetic particles are small particles of vari-
ous shapes that have high coercivity due to having a 
single magnetic domain with high magnetocrystalline 
anisotropy energy, or possessing substantial shape an-
isotropy (aspect ratio—length-to-width ratio).

Domain wall is a region between two neighboring 
magnetic domains of differing orientations of magneti-
zation.

Domain wall energy is the excess energy in the do-
main wall as a result of the gradual orientations of the 
neighboring spin magnetic moments of atoms through 
the wall region. It is the excess energy due to the excess 
exchange interaction energy, magnetocrystalline an-
isotropy energy, and magnetostrictive energy in the 
wall region.

Easy direction is the crystal direction along which the 
atomic magnetic moments (due to spin) are spontane-
ously and most easily aligned. Exchange interaction 
energy is lowest (hence favorable) when the alignment 
of atomic spin magnetic moments is in this direction in 
the crystal. For the iron crystal, it is one of the six [100] 
directions (cube edge).

Eddy current loss is the Joule energy loss (I2R) in a 
ferromagnetic material subjected to changing magnetic 
fields (in ac fields). The varying magnetic field in-
duces voltages in the ferromagnetic material that drive 
currents (called eddy currents) that generate Joule 
heating due to I2R.

Eddy currents are the induced conduction currents 
flowing in a ferromagnetic material as a result of vary-
ing (ac) magnetic fields.

Exchange interaction energy (Eex) is a kind of Cou-
lombic interaction energy between two neighboring 
electrons and positive metal ions that depends on the 
relative spin orientations of the electrons as a conse-
quence of the Pauli exclusion principle. Its exact ori-
gin is quantum mechanical. Qualitatively, different 
spins lead to different electron wavefunctions, differ-
ent negative charge distributions, and hence different 
Coulombic interactions. In ferromagnetic crystals, Eex 
is negative when the neighboring electron spins are 
parallel.

Ferrimagnetic materials possess crystals that con-
tain two sets of atomic magnetic moments that oppose 
each other, but one set has greater strength and there-
fore there is a net magnetization of the crystal. An un-
magnetized ferrimagnetic substance normally has 
many magnetic domains whose magnetization vectors 
add to give no overall magnetization.
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charge q. The magnetic field B in a material is the sum 
of the applied field μoH, and that due to the magnetiza-
tion of the material μoM, that is, B = μo(H + M).

Magnetic field intensity or magnetizing field (H)  
gauges the magnetic strength of external conduction 
currents (e.g., currents flowing in the windings) in the 
absence of a material medium. It excludes the magne-
tization currents that become induced on the surfaces 
of any material placed in a magnetic field. μoH is the 
magnetic field in free space and is considered to be the 
applied magnetic field. The terms intensity or strength 
distinguish H from B, which is simply called the mag-
netic field.

Magnetic flux (Φ) represents to what extent magnetic 
field lines are flowing through a given area perpen-
dicular to the field lines. If δA is a small area perpen-
dicular to the magnetic field B and B is constant over 
δA, then the flux δΦ through δA is defined by δΦ = B δA. 
Total flux through any closed surface is zero.

Magnetic permeability (μ) is the magnetic field gen-
erated per unit magnetizing field, that is, μ = B∕H. 

Permeability gauges the effectiveness of a medium in 

generating as much magnetic field as possible per unit 

magnetizing field. Permeability of free space is the ab-

solute permeability μo, which is the magnetic field gen-

erated in a vacuum per unit magnetizing field.

Magnetic susceptibility (χm) indicates the ease with 

which the material becomes magnetized under an ap-

plied magnetic field. It is the magnetization induced in 

the material per unit magnetizing field, χm = M∕H.

Magnetization or magnetization vector (M) repre-

sents the net magnetic moment per unit volume of ma-

terial. In the presence of a magnetic field, individual 

atomic moments tend to align with the field, which re-

sults in a net magnetization. Magnetization of a speci-

men can be represented by the flow of currents on the 

surface over a unit length of the specimen; M = Im, 

where Im is the surface magnetization current per unit 

length.

Magnetization current (Im) is a bound current per 

unit length that exists on the surface of a substance due 

to its magnetization. It is not, however, due to the flow 

of free charges but arises in the presence of an applied 

magnetic field as a result of the orientations of the 

Hysteresis loop is the magnetization (M) versus ap-

plied magnetic field intensity (H) or B versus H behav-

ior of a ferromagnetic (or ferrimagnetic) substance 

through one cycle as it is repeatedly magnetized and 

demagnetized.

Hysteresis loss is the energy loss involved in magne-

tizing and demagnetizing a ferromagnetic (or ferrimag-

netic) substance. It arises from various energy losses 

involved in the irreversible motions of the domain 

walls. Hysteresis loss per unit volume of specimen is 

the area of the B–H hysteresis loop.

Initial permeability (μriμo) is the initial slope of the B 

versus H characteristic of an unmagnetized ferromag-

netic (or ferrimagnetic) material and typically repre-

sents the magnetic permeability under very small 

applied magnetic fields. Initial relative permeability 

(μri) is the relative permeability of an unmagnetized 

ferromagnetic (or ferrimagnetic) material under very 

small applied fields.

Magnetic dipole moment (μm) is defined as IAun, 

where I is the current flowing in a circuit loop of area 

A and un is the unit vector in the direction of an ad-

vance of a screw when it is turned in the direction of 

the circulating current. Qualitatively, it measures the 

strength of the magnetic field created by a current loop 

and also the extent of interaction of the current loop 

with an externally applied magnetic field. μm is normal 

to the surface of the loop. Magnetic moment in a mag-

netic field experiences a torque that tries to rotate μm to 

align it with the field. In a nonuniform field, the mag-

netic moment experiences a force that attracts it to a 

greater field.

Magnetic domain is a region of a ferromagnetic (or 

ferrimagnetic) crystal that has spontaneous magnetiza-

tion, that is, magnetization in the absence of an applied 

field, due to the alignment of all magnetic moments in 

that region.

Magnetic field, magnetic induction, or magnetic 

flux density (B) is a field that is generated by a current-

carrying conductor that produces a force on a current-

carrying conductor elsewhere. Equivalently, we can 

define it as the field generated by a moving charge that 

acts to produce a force on a moving charge elsewhere. 

The force is called the Lorentz force and is given by 

F = qv × B where v is the velocity of the particle with 
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Magnetostrictive energy is the strain energy in the 
crystal due to magnetostriction, that is, the work done 
in straining the crystal when it becomes magnetized.

Maximum relative permeability (μr,max) is the max-
imum relative permeability of a ferromagnetic (or  
ferrimagnetic) material.

Meissner effect is the repulsion of all magnetic flux 
from the interior of a superconductor. The supercon-
ductor behaves as if it were a perfect diamagnet with 
χm = −1.

Paramagnetic materials have a small and positive 
magnetic susceptibility. In an applied field, they de-
velop a small amount of magnetization in the direction 
of the applied field, so the magnetic field in the mate-
rial is slightly greater. They are attracted to a higher 
magnetic field.

Relative permeability (μr) measures the magnetic 
field in a medium with respect to that in a vacuum, 
μr = B∕μoH. Since B depends on the magnetization of 

the medium, μr measures the ease with which the mate-

rial becomes magnetized.

Remanence or remanent magnetization (Mr) is the 

magnetization that remains in a magnetic material af-

ter it has been fully magnetized and the magnetizing 

field has been removed. It measures the ability of a 

magnetic material to retain a portion of its magnetiza-

tion after the removal of the applied field. The corre-

sponding magnetic field (μoMr) is the remanent 

magnetic field Br.

Saturation magnetization is the maximum magneti-

zation that can be obtained in a ferromagnetic crystal at 

a given temperature when all the magnetic moments 

have been aligned in the direction of the applied field, 

when there is a single magnetic domain with its mag-

netization M along the applied field.

Shape anisotropy is the anisotropy in magnetic 

properties associated with the shape of the ferromag-

netic (or ferrimagnetic) substance. A crystal rod that 

is thin and long prefers to have its magnetization M 

along the length (long axis) of the rod because this 

direction of magnetization creates less external mag-

netic fields and leads to less external magneto-

static  energy compared with the case when M is 

along the width (short axis) of the rod. Reversing the 

electronic motions in the constituent atoms. In the 

bulk, these electronic motions cancel each other and 

there is no net bulk current, but on the surface, they add 

to give a bound surface current Im per unit length, 

which is equal to the magnetization M of the substance.

Magnetocrystalline anisotropy is the anisotropy as-

sociated with magnetic properties such as the magneti-

zation in different directions in a ferromagnetic (or 

ferrimagnetic) crystal. Atomic spins prefer to align 

along certain directions in the crystal, called easy di-

rections. The direction along which it is most difficult 

to align the spins is called the hard direction. For ex-

ample, in the iron crystal, all atomic spins prefer to 

align along one of the [100] directions (easy direc-

tions) and it is most difficult to align the spins along 

one of the [111] directions (hard directions).

Magnetocrystalline anisotropy energy (K) is the en-

ergy needed to rotate the magnetization of a ferromag-

netic (or ferrimagnetic) crystal from its natural easy 

direction to a hard direction. For example, it takes an 

energy of about 48 mJ cm−3 to rotate the magnetization 

of an iron crystal from the easy direction [100] to the 

hard direction [111].

Magnetoresistance generally refers to the change in 

the resistance of a magnetic material when it is placed 

in a magnetic field. The change in the resistance of a 

nonmagnetic metal, such as copper, is usually very 

small. In a magnetic metal, the change in the resistivity 

due to the applied magnetic field is anisotropic; that is, 

it depends on the direction of current flow with respect 

to the applied field and is called anisotropic magneto-

resistance (AMR).

Magnetostatic energy is the potential energy stored 

in an external magnetic field. It takes external work to 

establish a magnetic field, and this energy is said to be 

stored in the magnetic field. Magnetic energy per unit 

volume at a point in free space is given by

Evol(air) =
1

2
 μoH 

2 =
B2

2μo

Magnetostriction is the change in the length of a fer-

romagnetic (or ferrimagnetic) crystal as a result of its 

magnetization. An iron crystal placed in a magnetic 

field along an easy direction becomes longer along this 

direction but contracts in the transverse direction.
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QUESTIONS AND PROBLEMS

8.1 Inductance of a long solenoid Consider the very long (ideally infinitely long) solenoid shown in 
Figure 8.70. If r is the radius of the core and ℓ is the length of the solenoid, then ℓ ≫ r. The total 
number of turns is N and the number of turns per unit length is n = N∕ℓ. The current through the 

coil wires is I. Apply Ampere’s law around C, which is the rectangular circuit PQRS, and show that

 B ≈ μoμrnI

 Further, show that the inductance is

 L ≈ μoμrn
2Vcore

 where Vcore is the volume of the core. How would you increase the inductance of a long solenoid?

  What is the approximate inductance of an air-cored solenoid with a diameter of 1 cm, length of 

20 cm, and 500 turns? What is the magnetic field inside the solenoid and the energy stored in the 

whole solenoid when the current is 1 A? What happens to these values if the core medium has a 

relative permeability μr of 600?

magnetization involves rotating M through the width 

of the rod, where the external magnetic field and 

hence magnetostatic energy are large, and requires 

large substantial work. It is therefore difficult to ro-

tate magnetization around from the long axis to the 

short axis.

Soft magnetic materials characteristically have high 

saturation magnetizations (Bsat) but low saturation 

magnetizing fields (Hsat) and low coercivities (Hc), so 

they can be magnetized and demagnetized easily. They 

have tall and narrow B–H hysteresis loops.

Superconductivity is a phenomenon in which a sub-

stance loses all resistance to current flow (acquires 

zero resistivity) and also exhibits the Meissner effect 

(becomes a perfect diamagnet).

Type I superconductors have a single critical field 

(Bc) above which the superconducting behavior is to-

tally lost.

Type II superconductors have a lower (Bc1) and an 

upper (Bc2) critical field. Below Bc1, the substance is in 

the superconducting phase with Meissner effect; all 

magnetic flux is excluded from the interior. Between 

Bc1 and Bc2, magnetic flux lines pierce through local 

filamentary regions of the superconductor, which be-

have normally. Above Bc2, the superconductor reverts 

to normal behavior.

Inductance of a 

long solenoid

Figure 8.70

BP Q
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n = Turns per unit length

μr

8.2 Magnetization Consider a long solenoid with a core that is an iron alloy (see Problem 8.1 for the 

relevant formulas). Suppose that the diameter of the solenoid is 2 cm and the length of the solenoid 

is 20 cm. The number of turns on the solenoid is 200. The current is increased until the core is 

magnetized to saturation at about I = 2 A and the saturated magnetic field is 1.5 T.

a. What is the magnetic field intensity at the center of the solenoid and the applied magnetic field, 

μoH, for saturation?

b. What is the saturation magnetization Msat of this iron alloy?
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MMF and flux
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Figure 8.71 (a) A simple magnetic circuit 

consisting of a magnetic core and an air 

gap. (b) A more practical electromagnet 

with yokes carrying the flux to the poles 

between which there is an air gap.

c. What is the total magnetization current on the surface of the magnetized iron alloy specimen?
d. If we were to remove the iron-alloy core and attempt to obtain the same magnetic field of 

1.5 T inside the solenoid, how much current would we need? Is there a practical way of doing 
this?

*8.3 Magnetic reluctance Figure 8.71a shows an electromagnet with a rectangular core of area Ac. The 
core has a narrow air gap and we wish to find the magnetic field in the gap; at least estimate it. 
Circuits like this can be easily and approximately solved by using reluctances. Suppose that we apply 
Ampere’s law around the mean circumference, we have

 Hℓc + Hℓg = NI

 We also know that the flux Φ must be continuous. We assume that both H and B are approximately 
uniform across the cross section of the core and also the gap; we neglect the fringing field in the 
gap. The core and the air gap have the same cross-sectional area Ag = Ac. The flux Φ ≈ BcAc ≈ BgAg, 
and B = μH where μ is the total permeability of the region in which B and H are being related. In 
analogy with electrical resistance, the reluctance of a magnetic component, using the core and gap 
as examples, are defined by

 Rc =
ℓc

μc Ac

  and  Rg =
ℓg

μg Ag

 [8.43]

 where μc and μg are the total permeability (μrμo) of the core and gap, respectively. It can be seen that 
μ acts like the electrical conductivity σ in the equivalent electrical resistance equation. Show that

 Φ =
NI

Rc + Rg

=
Magnetomotive force (MMF)

Reluctance of core + Reluctance of gap
 [8.44]

 in which NI acts like an EMF, and is called the magnetomotive force (MMF). The quantity flowing, the 
flux Φ, acts like an electric current. The core and the air gap are in series, so Rc and Rg are added. Clearly 
there is a good analogy with electric circuits. Suppose that the coil has 400 turns, and we pass 1.5 A. The 
core is made of steel with μr ≈ 1000, the length ℓc is 30 cm and the cross sectional area (Ac) is 2 cm2. If 
the air gap is 1 mm, find the magnetic field Bg in the gap. What is the flux in this magnetic circuit?

  Consider the electromagnet in Figure 8.71b. The two yokes essentially guide the flux from the 
core of the electromagnet to the point of use—the air gap. The end of the yoke has a smaller  
cross-sectional area and is called the pole. The pole can even be a different material. Each component 
can be assigned a reluctance so that the total reluctance is Rcore + 2Ryoke + 2Rpole + Rgap. We would 
like to bring as much flux as possible to the gap and generate a field Bg = Φ∕Ag. The yoke should 

be sufficiently long to bring the flux to the gap, the point of use. Is it necessary for the yoke be the 

same material as the core? What determines the choice of the yoke material? If we use a different 

material for the poles, what would you recommend? Does the location of the coil matter?

Reluctance of 

core and gap
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*8.4 Design of an electromagnet Question 8.3 introduced the concept of a magnetic reluctance. Figure 
8.71b shows an electromagnet that we can use to generate a field in a small air gap. There are many 
possible designs. Using the magnetic reluctance approach, design an electromagnet in which the core 
is 12 cm long and has a square cross sectional of area of 16 cm2. The air gap has a square cross 
sectional area of 2 × 2 cm2 and a gap size (ℓg) of 5 mm. The field in the gap is 0.7 T. Your design 
needs to specify NI, the diameters of the core and yoke, and the relative permeability of each com-
ponent (core, yoke, and pole). (Neglect the fringing field.)

8.5 Energy density in electric and magnetic fields in air Compare the energy density stored as Joules 
per cm3 in a region of air that has 2 T of magnetic field and in a region of air that has an electric field 
that is close to the breakdown field of air at STP, that is, Ebr ≈ 32 kV cm−1. What is your conclusion?

8.6 Paramagnetic and diamagnetic materials Consider bismuth with χm = −16.5 × 10−5 and alumi-
num with χm = 2.1 × 10−5. Suppose that we subject each sample to an applied magnetic field Bo of 
1 T applied in the +x direction. What is the magnetization M and the equivalent magnetic field μoM 
in each sample? Which is paramagnetic and which is diamagnetic?

8.7 Mass and molar susceptibilities Sometimes magnetic susceptibilities are reported as molar or mass 
susceptibilities. Mass susceptibility (in m3 kg−1) is χm∕ρ where ρ is the density. Molar susceptibility 
(in m3 mol−1) is χm(Mat∕ρ) where Mat is the atomic mass. Terbium (Tb) has a magnetic molar sus-
ceptibility of 2.1 cm3 mol−1. Tb has a density of 8.2 g cm−3 and an atomic mass of 158.93 g mol−1. 
What is its susceptibility, mass susceptibility, and relative permeability? What is the magnetization 
in the sample in an applied magnetic field of 2 T?

8.8 Pauli spin paramagnetism Paramagnetism in metals depends on the number of conduction 
electrons that can flip their spins and align with the applied magnetic field. These electrons are 
near the Fermi level EF, and their number is determined by the density of states g(EF) at EF. Since 
each electron has a spin magnetic moment of β, paramagnetic susceptibility can be shown to be 
given by

 χpara ≈ μoβ2g(EF)

 where the density of states is given by Equation 4.10. The Fermi energy EF of calcium is 4.68 eV. 

Evaluate the paramagnetic susceptibility of calcium and compare with the experimental value of 

1.9 × 10−5.

8.9 Ferromagnetism and the exchange interaction Consider dysprosium (Dy), which is a rare earth 
metal with a density of 8.54 g cm−3 and atomic mass of 162.50 g mol−1. The isolated atom has the 
electron structure [Xe]4f 106s2. What is the spin magnetic moment in the isolated atom in terms of 
number of Bohr magnetons? If the saturation magnetization of Dy near absolute zero of temperature 
is 2.4 MA m−1, what is the effective number of spins per atom in the ferromagnetic state? How does 
this compare with the number of spins in the isolated atom? What is the order of magnitude for the 
exchange interaction in eV per atom in Dy if the Curie temperature is 85 K?

8.10 Magnetic domain wall energy and thickness The energy of a Bloch wall depends on two main 
factors: the exchange energy Eex (J∕atom) and magnetocrystalline energy K (J m−3). If a is the inter-
atomic distance and δ is the wall thickness, then it can be shown that the potential energy per unit 
area of the wall is

 Uwall =
π2Eex

2aδ
+ Kδ

 Show that the minimum energy occurs when the wall has the thickness

 δ′ = (π2Eex

2aK )
1∕2

 and show that when δ = δ′, the exchange and anisotropy energy contributions are equal. Estimate the 

Bloch energy and wall thickness for Ni, given Example 8.4, Tables 8.3 and 8.4, and a ≈ 0.35 nm. 

(See Example 8.4.)
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*8.11 Toroidal inductor and radio engineers toroidal inductance equation

a. Consider a toroidal coil (Figure 8.10) whose mean circumference is ℓ and that has N tightly 
wound turns around it. Suppose that the diameter of the core is 2a and ℓ ≫ a. By applying 
Ampere’s law, show that if the current through the coil is I, then the magnetic field in the 
core is

 B =
μoμr NI

ℓ
 [8.45]

 where μr is the relative permeability of the medium. Why do you need ℓ ≫ a for this to be 
valid? Does this equation remain valid if the core cross section is not circular but rectangular, 
a × b, and ℓ ≫ a and b?

b. Show that the inductance of the toroidal coil is

 L =
μoμr N 

2A

ℓ
 [8.46]

 where A is the cross-sectional area of the core.
c. Consider a toroidal inductor used in electronics that has a ferrite core size FT-37, that is, round 

but with a rectangular cross section. The outer diameter is 0.375 in (9.52 mm), the inner diam-
eter is 0.187 in (4.75 mm), and the height of the core is 0.125 in (3.175 mm). The initial rela-
tive permeability of the ferrite core is 2000, which corresponds to a ferrite called the 77 Mix. 
If the inductor has 50 turns, then using Equation 8.46, calculate the approximate inductance of 
the coil.

d. Radio engineers use the following equation to calculate the inductances of toroidal coils,

 L(mH) =
AL N 

2

106  [8.47]

 where L is the inductance in millihenries (mH) and AL is an inductance parameter, called an 
inductance index, that characterizes the core of the inductor. AL is supplied by the manufacturers 
of ferrite cores and is typically quoted as millihenries (mH) per 1000 turns. In using Equation 8.47, 
one simply substitutes the numerical value of AL to find L in millihenries. For the FT-37 ferrite 
toroid with the 77 Mix as the ferrite core, AL is specified as 884 mH∕1000 turns. What is the 

inductance of the toroidal inductor in part (c) from the radio engineers equation in Equation 

8.47? What is the percentage difference in values calculated by Equations 8.47 and 8.46? What 

is your conclusion? (Comment: The agreement is not always this close.)

*8.12 A toroidal inductor

a. Equations 8.46 and 8.47 allow the inductance of a toroidal coil in electronics to be calculated. 

Equation 8.47 is the equation that is used in practice. Consider a toroidal inductor used in elec-

tronics that has a ferrite core of size FT-23 that is round but with a rectangular cross section. 

The outer diameter is 0.230 in (5.842 mm), the inner diameter is 0.120 in (3.05 mm), and the 

height of the core is 0.06 in (1.5 mm). The ferrite core is a 43-Mix that has an initial relative 

permeability of 850 and a maximum relative permeability of 3000. The inductance index for this 

43-Mix ferrite core of size FT-23 is AL = 188 (mH∕1000 turns). If the inductor has 25 turns, 

then using Equations 8.46 and 8.47, calculate the inductance of the coil under small-signal 

conditions and comment on the two values.

b. The saturation field Bsat of the 43-Mix ferrite is 0.2750 T. What will be typical dc currents that 

will saturate the ferrite core (an estimate calculation is required)? It is not unusual to find such 

an inductor in an electronic circuit also carrying a dc current. Will your calculation of the 

inductance remain valid in these circumstances?

c. Suppose that the toroidal inductor discussed in parts (a) and (b) is in the vicinity of a very strong 

magnet that saturates the magnetic field inside the ferrite core. What will be the inductance of 

the coil?
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Figure 8.72 (a) A transformer with N turns in the primary. (b) Laminated core reduces eddy 

current losses.

*8.13 The transformer

a. Consider the transformer shown in Figure 8.72a whose primary winding is excited by an ac (sinusoi-
dal) voltage of frequency f. The current flowing into the primary coil sets up a magnetic flux in the 
transformer core. By virtue of Faraday’s law of induction and Lenz’s law, the flux generated in the 
core is the flux necessary to induce a voltage nearly equal and opposite to the applied voltage. Thus,

 v =
d(Total flux linked)

dt
=

NA dB

dt

 where A is the cross-sectional area, assumed constant, and N is the number of turns in the primary 
winding. Show that if Vrms is the rms voltage at the input of the primary winding (Vmax = Vrms √2)  

and Bm is the maximum magnetic field in the core, then

 Vrms = 4.44NAfBm [8.48]

  Transformers are typically operated with Bm at the “knee” of the B–H curve, which cor-
responds roughly to maximum permeability. For transformer irons, Bm ≈ 1.2 T. Taking Vrms = 

120 V and a transformer core with A = 10 cm × 10 cm, what should N be for the primary 
winding? If the secondary winding is to generate 240 V, what should be the number of turns for 
the secondary coil?

b. The transformer core will exhibit hysteresis and eddy current losses. The hysteresis loss per unit 
second, as power loss in watts, is given by

 Ph = K f Bn
mVcore [8.49]

 where K = 150.7, f is the ac frequency (Hz), Bm is the maximum magnetic field (T) in the core 
(assumed to be in the range 0.2–1.5 T), n = 1.6, and Vcore is the volume of the core. The eddy 
current losses are reduced by laminating the transformer core, as shown in Figure 8.72b. The 
eddy current loss is given by

 Pe = 1.65 f 
2B2

m(d 
2

ρ )Vcore [8.50]

 where d is the thickness of the laminated iron sheet in meters (Figure 8.72b) and ρ is its resistiv-
ity (Ω m).

  Suppose that the transformer core has a volume of 0.0108 m3 (corresponds to a mean 
circumference of 1.08 m). If the core is laminated into sheets of thickness 1 mm and the resistiv-
ity of the transformer iron is 6 × 10−7 Ω m, calculate both the hysteresis and eddy current losses 
at f = 60 Hz, and comment on their relative magnitudes. How would you reduce each loss?

8.14 Losses in a magnetic recording head Consider eddy current losses in a permalloy magnetic head 
for audio recording up to 10 kHz. We will use Equation 8.50 for the eddy current losses. Consider a 
magnetic head weighing 30 g and made from a permalloy with density 8.8 g cm−3 and resistivity 
6  ×  10−7 Ω m. The head is to operate at Bm of 0.5 T. If the eddy current losses are not to exceed 
1 mW, estimate the thickness of laminations needed. 
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Figure 8.73 A ferrite antenna of an 

AM receiver.

*8.15 Design of a ferrite antenna for an AM receiver We consider an AM radio receiver that is to 
operate over the frequency range 530–1600 kHz. Suppose that the receiving antenna is to be a coil 
with a ferrite rod as core, as depicted in Figure 8.73. The coil has N turns, its length is ℓ, and the 
cross-sectional area is A. The inductance L of this coil is tuned with a variable capacitor C. The 
maximum value of C is 265 pF, which with L should correspond to tuning in the lowest frequency 
at 530 kHz. The coil with the ferrite core receives the EM waves, and the magnetic field of the EM 
wave permeates the ferrite core and induces a voltage across the coil. This voltage is detected by a 
sensitive amplifier, and in subsequent electronics it is suitably demodulated. The coil with the ferrite 
core therefore acts as the antenna of the receiver (ferrite antenna). We will try to find a suitable design 
for the ferrite coil by carrying out approximate calculations—in practice some trial and error experi-
mentation would also be necessary. We will assume that the inductance of a finite solenoid is

 L =
γμri μo AN2

ℓ
 [8.51]

 where A is the cross-sectional area of the core, ℓ is the coil length, N is the number of turns, μri is 
the initial relative permeability, and γ is a geometric factor that accounts for the solenoid coil being 
of finite length. Assume γ ≈ 0.75. The resonant frequency f of an LC circuit is given by

 f =
1

2π(LC)1∕2
 [8.52]

a. If d is the diameter of the enameled wire to be used as the coil winding, then the length ℓ ≈ Nd. 

If we use an enameled wire of diameter 1 mm, what is the number of coil turns N we need for 
a ferrite rod given that its diameter is 1 cm and its initial relative permeability (μri) is 100?

b. Suppose that the magnetic field intensity H of the signal in free space is varying sinusoidally, 
that is,

 H = Hm sin(2πft) [8.53]

 where Hm is the maximum magnetic field intensity. H is related to the electric field E at a point 
by H = E∕Zspace, where Zspace is the impedance of free space given by 377 Ω. Show that the 

induced voltage at the antenna coil is

 Vm =
Emd

2π377C f γ
 [8.54]

 where f is the frequency of the AM wave and Em is the electric field intensity of the AM sta-

tion at the receiver point. Suppose that the electric field of a local AM station at the receiver is 

10 mV m−1. What is the voltage induced across the ferrite antenna and can this voltage be 

detected by an amplifier? Would you use a ferrite rod antenna at short-wave frequencies, given 

the same C but less N?

*8.16 A permanent magnet with an air gap The magnetic field energy in the gap of a permanent mag-

net is available to do work. Suppose that Bm and Bg are the magnetic field in the magnet and the gap, 

Hm and Hg are the field intensities in the magnet and the gap, and Vm and Vg are the volumes of the 

magnet and gap; show that, in terms of magnitudes,

 BgHgVg ≈ BmHmVm [8.55]

 What is the significance of this result?
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*8.19 Permanent magnet with yoke and air gap Consider a permanent magnet bar that has L-shaped 
ferromagnetic (high permeability) pieces attached to its ends to direct the magnetic field to an air gap 
as depicted in Figure 8.74. The L-shaped high μr pieces for directing the magnetic field are called 
yokes. Suppose that Am, Ay, and Ag are the cross-sectional areas of the magnet, yoke, and gap as 
indicated in the figure. The lengths of the magnet, yoke, and air gap are ℓm, y, and g, respectively. 
The magnet, the two yokes, and the gap can be considered to be all connected end-to-end or in series. 
Applying Ampere’s circuital law for H we can write,

 Hmℓm + 2Hyℓy + Hgℓg = 0

Energy in gap of 

a magnet

Table 8.10 Three permanent magnet candidates

   Yesterday’s 

 (BH)max Density Relative Price 

Magnet (kJ m−3) (g cm−3) (per unit mass)

Alnico  50 7.3 1
Rare earth 200 8.2 2
Ferrite  30 4.8 0.5

8.17 A permanent magnet with an air gap

a. Show that the maximum energy stored in the air gap of a permanent magnet can be written very 
roughly as

 Egap ≈
1
8

 BrHcVm [8.56]

 where Vm is the volume of the magnet, which is much greater than that of the gap; Br is the 
remanent magnetic field; and Hc is the coercivity of the magnet.

b. Using Table 8.6, compare the (BH)max with the product (1
2  Hc) (1

2  Br)  and comment on the close-
ness of agreement.

c. Calculate the energy in the gap of a rare earth cobalt magnet that has a volume of 10 cm3. Give 
an example of typical work (e.g., raising so many apples, each 100 g, by so many meters) that 
could be done if all this energy could be converted to mechanical work.

8.18 Weight, cost, and energy of a permanent magnet with an air gap For a certain application, an 
energy of 1 kJ is required in the gap of a permanent magnet. There are three candidates, as shown 
in Table 8.10. Which material will give the lightest magnet? Which will give the cheapest magnet?

ℓy
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ℓy

ℓg
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Ag

GapBg

M
ag

n
et

Am

Yoke

Yoke

Figure 8.74 A permanent magnet with two 

pieces of yoke and an air gap.
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 Since all four components, magnet, yokes, and gap, are in series, we can assume that the magnetic 
flux Φ through each of them is the same,

 Φ = BmAm = ByAy = BgAg

a. Show that

 Hm = −
Am

ℓm
[ ℓg

μo Ag

+
2ℓy

μo μry Ay
]Bm

b. What does the equation in part (a) represent? Given that Bm and Hm in the magnet must obey 
the equation in part (a), and also the B–H characteristic of the magnet material itself, what is 
your conclusion?

c. Should the yokes be magnetically hard or soft? Justify your decision.
d. Show that if μry is very large (μry ≈ ∞),

 Hm = −
1

μo
[Amℓg

Agℓm
]Bm

e. If Vm = Amℓm and Vg = Agℓg are the volumes of the magnet and gap, respectively, show that

 ∣BgHgVg∣ = ∣BmHmVm∣

 What is your conclusion (consider the magnetic energy stored in the gap)?

f. Consider a rare earth permanent magnet, with a density of 8.2 g cm−3, that has a (BH)max of about 

200 kJ m−3. Suppose that (BH)max occurs very roughly at Bm ≈ 1
2  Br  where for this rare earth 

magnet Br ≈ 1 T. What is the volume ℓmAm and mass of the magnet that is needed to store the 

maximum energy in the gap if Bg = 1 T, ℓg = 1 cm and Ag = 4 × 4 cm2? What is the maximum 

energy in the gap? What should be the yoke and pole material?

*8.20 Magnetic recording principles In this “back of an envelope” calculation we consider the principle 

of operation of a recording head for writing on a magnetic tape. Magnetic tape is still currently used 

for large archival storage, and the problem here would also apply to longitudinal recording on hard 

disk media. The recording head has a small gap, of size g (about 1 μm or less), which is much smaller 

than the mean circumference of the head ℓ (perhaps a few millimeters) as shown in Figure 8.75. The 

coil of this head has N turns and is energized by the signal current i. The fringe field intensity Hf at 

the gap magnetizes the magnetic tape passing under the head. Hf must be greater than the coercivity 

Hc of the storage medium (tape) to be able to magnetize that region of the tape under the head. Sup-

pose that Hm = magnetic field intensity in the core of the head; Hg = magnetic field intensity in the 

gap; Hf = fringing field intensity below the gap; Bm = μrμoHm = magnetic field in the core of the 

head; Bg = μoHg = magnetic field in the gap.

N

I

g

r

ℓ GapPole Pole

Hg

Hf

Gap

Tape

Hm

Figure 8.75 The gap of a recording 

head and the fringing field for  

magnetizing the tape.
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 19 Those who are familiar with first year chemistry would recognize this as a first-order rate equation. Not all 
decays follow this type of simple exponential decay with time at a given temperature. Remember that the grains 
have a volume distribution and d is only an average. There is therefore a distribution of EA and the treatment 
quickly becomes quite complicated.

Thermally 

activated 

magnetic decay 

in granular 

medium

Field in the gap

Fringing field 

for recording on 

storage media

  The magnetic flux must be continuous through the small gap. Thus, if A is the cross-sectional 
area,

 Flux in the core = ABm = Flux in the gap = ABg  or  Bg = Bm

a. Applying Ampere’s law for H around the mean circumference, ℓ + g, show that

 Hg =
1

g + ℓ∕μr

NI

b. If we apply Ampere’s law for H around the semicircle of radius r coming out from the gap into 
the tape as shown in Figure 8.75, we get

 Hgg − Hf (πr) ≈ 0

 Show that,

 Hf ≈
μrg

πr(μrg + ℓ)
NI  [8.57]

c. The fringing field must overcome the coercivity of the storage medium. Suppose that the storage 
medium has Hc = 150 kA m−1 and we have to determine NI given the head material. Suppose 
that μr ≈ 104, g = 1 μm = 10−6 m, ℓ ≈ 5 mm = 5 × 10−3 m, and r = 1 μm = 10−6 m to record 
into a depth of 1 μm. What is the minimum NI? If the minimum signal current (after amplification) 

is 5 mA, how many turns do you need for the coil?

d. What is the magnetic field Bm in the core? Can you use a ferrite head?

8.21 Hard disk recording medium and areal bit density Consider using a magnetic recording medium 

that has the following properties. The recording medium is 25 nm thick and has CoPdCt grains in 

an oxide with a magnetocrystalline anisotropy energy Ku that is 400 kJ m−3. Assume that KuVgrain ≈ 
50kT. The write head width is 80 nm. You are required to synthesize your recording medium to have 
an areal bit density in the track that is 110 Gb in−2 or 170 bits μm−2. The volume fraction (p) of 
magnetic grains (CoCrPt) in the granular recording medium is 80 percent. What would be the bit 
length (λ), number of grains (N) in a one-bit volume and SNR due to the granularity and jitter. If 

the density of the CoPdCr is 10 g cm−3, what is the mass of one bit. What is your conclusion?

8.22 Thermal effects in information storage in granular magnetic recording media Consider a gran-

ular medium that is used in magnetic recording. If the grain size is Vgrain then the energy involved in 

rotating the magnetization of this grain (domain) is KuVgrain. Due to thermal agitation, that is thermal 

fluctuations in the medium, there is a probability that the magnetism of a grain can be flipped. The 

rate at which such a process occurs, as we saw in Section 1.8.1 depends on the potential energy bar-

rier involved in the process, which is the activation energy EA; it is a thermally activated process. For 

simplicity, we will assume that EA = KuVgrain. Suppose there are No domains in a one-bit patch at time 

t = 0 and we magnetize them all in the same direction, then at time t there will only be N number 

of domains remaining with the same magnetization. The rate of change in N is thermally activated 

and also depends on N, how many domains are remaining that need to be flipped. One possible 

simple description is19

 
dN

dt
= −Nν exp(−

EA

kT)
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 where ν is a constant, called the attempt frequency. The negative sign represents a decay in N. At 
a given temperature, the time t0.5 it takes for N to reach No∕2 is found by integrating the above equa-

tion. Show that

 t0.5 = (ln 2

ν )exp(EA

kT)
 Consider magnetic grains with Ku = 500 kJ m−3. Assume that ν is of the order of 109 s−1. The 

mean grain diameter is 7 nm. (a) Find t0.5 for this medium at 300 K and at 325 K. (b) What are 

these times if Ku is 600 kJ m−3? (c) Suppose that the medium in (b) has d = 6.5 nm. What are the 

new times? 

8.23 Superconductivity and critical current density Consider two superconducting wires, tin (Sn; Type I) 

and Nb3Sn (Type II), each 1 mm in thickness. The magnetic field on the surface of a current-carrying 

conductor is given by

 B =
μoI

2πr

a. Assuming that Sn wire loses its superconductivity when the field at the surface reaches the 

critical field (0.2 T), calculate the maximum current and hence the critical current density that 

can be passed through the Sn wire near absolute zero of temperature.

b. Calculate the maximum current and critical current density for the Nb3Sn wire using the same 

assumption as in part (a) but taking the critical field to be the upper critical field Bc2, which is 

24.5 T at 0 K. How does your calculation of Jc compare with the critical density of about 1011 

A m−2 for Nb3Sn at 0 K?

8.24 Magnetic pressure in a solenoid Consider a long solenoid with an air core. Diametrically opposite 

windings have oppositely directed currents and, due to the magnetic force, they repel each other. This 

means that the solenoid experiences a radial force Fr that is trying to open up the solenoid, i.e., stretch 

out the windings as depicted in Figure 8.65. Suppose that A is the surface area of the core (on to 

which wires are wound). If we decrease the core diameter by dx, the volume changes by dV. We have 

to do work dW against the radial magnetic forces Fr,

 dW = Fr  dx = (Fr

A )A dx = Pr  dV

 where Pr = Fr∕A is the radial pressure, called the magnetic pressure, acting on the windings of the 

solenoid. (This pressure acts to tear apart the solenoid.) Using the fact that the work done against the 

magnetic forces in changing the volume changes the magnetic energy in the core, show that

 Pr =
B2

2μo

  What is the radial pressure on a solenoid that has a field of 35 T in the core? How many atmo-

spheres is this? What is the equivalent ocean depth that gives the same pressure? What happens to 

this pressure at 100 T?

*8.25 Enterprising engineers in the high arctic building a superconducting inductor A current-carrying 

inductor has energy stored in its magnetic field that can be converted to electrical work. A group 

of enterprising engineers and scientists living in Resolute in Nunavut (Canada) have decided to build 

a toroidal inductor to store energy so that this energy can be used to supply a small community of 

10 houses each consuming on average 3 kW of energy during the night (6 months). They have  

discovered a superconductor (Type II) that has a Bc2 = 100 T and a critical current density of  

Jc = 5 × 1010 A m−2 at night temperatures (it is obviously a novel high-Tc superconductor of some 

sort). Their superconducting wire has a diameter of 5 mm and is available in any desirable length. 

All the wiring in the community is done by superconductors except where energy needs to be 

Radial magnetic 

pressure in a 

solenoid
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converted to other forms (mechanical, heat, etc.). They have decided on the following design speci-
fication for their toroid:

The mean diameter Dtoroid of the toroid, (1
2)  (Outside diameter + Inside diameter), is 10 times 

longer than the core diameter Dcore. The field inside the toroid is therefore reasonably uniform 
to within 10 percent.

The maximum operating magnetic field in the core is 35 T. Fields larger than this can result in 
mechanical fracture and failure.

Assume that Jc decreases linearly with the magnetic field and that the mechanical engineers  
in the group can take care of the forces trying to blow open the toroid by building a proper 
support structure.

 Find the size of the toroid (mean diameter and circumference), the number of turns and the length 
of the superconducting wire they need, the current in the coil, and whether this current is sufficiently 
below the critical current at that field. Is it feasible?

Neodymium

magnets

Coil

Actuator

Actuator

Right: A modern hard disk drive with three platters and six read-write heads. Left: The actuator 
that controls the read-write head arm consists of two neodymium magnets and a coil.

 Photo by S. Kasap.

Left to right, Leon Cooper, John Bardeen and John Schieffer won the Nobel 
Prize for the fundamental theory of superconductivity.

 © Keystone Pictures USA/Alamy Stock Photo.



Charles Kao and his colleagues carried out the  
early experiments on optical fibers at the Standard 
Telecommunications Laboratories Ltd (the research 
center of Standard Telephones and Cables) at  
Harlow in the United Kingdom, during the 1960s.  
He shared the Nobel Prize in 2009 in Physics with 
Willard Boyle and George Smith for “groundbreaking 
achievements concerning the transmission of light  
in fibers for optical communication”. From 1987 to  
his retirement in 1996, professor Kao was the Vice 
Chancellor of the Chinese University of Hong Kong.

 Courtesy of Richard Epworth.

Donald Keck, Bob Maurer and Peter Schultz (left to 
right) at Corning shortly after announcing the first 
low loss optical fibers made in 1970. Keck, Maurer 
and Schultz developed the outside vapor deposition 
(OVD) method for the fabrication of preforms that are 
used in drawing fibers with low losses. Their OVD was 
based on Franklin Hyde’s vapor deposition process 
earlier at Corning in 1930s. OVD is still used today  
at Corning in manufacturing low loss fibers.

 Courtesy of Corning.
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9

Optical Properties of Materials

The way electromagnetic (EM) radiation interacts with matter depends very much 
on the wavelength of the EM wave. Many familiar types of EM radiation have wave-
lengths that range over many orders of magnitude. Although radio waves and X-rays 
are both EM waves, the two interact in a distinctly different way with matter. We tend 
to think of “light” as the electromagnetic radiation that we can see, that is, wave-
lengths in the visible range, typically 400 to 700 nm. However, in many applications, 
light is also used to describe EM waves that can have somewhat shorter or longer 
wavelengths such as ultraviolet (UV) and infrared (IR) light. For many practical 
purposes, it is useful to (arbitrarily) define light as EM waves that have wavelengths 
shorter than very roughly 100 μm but longer than long-wavelength X-rays, roughly 
10 nm. Today’s light wave communications use EM waves with wavelengths of 1300 
and 1550 nm; in the infrared. Optical properties of materials are those characteristic 
properties that determine the interaction of light with matter; the best example being 
the refractive index n that determines the speed of light in a medium through v = c∕n, 
where v is the speed of light in the medium and c is the speed of light in free space. 
The present chapter examines the key optical properties of matter and how these 
depend on the material and on the characteristics of the EM wave. The refractive 
index n, for example, depends on the dielectric polarization mechanisms as well as 
the wavelength λ. The material’s n–λ behavior is called the dispersion relation and 
is one of the most important characteristics in many optical device applications.
 We know from Chapter 3 that, depending on the experiment, we can treat light 
either as an EM wave, exhibiting typical wave-like properties, or as photons, exhib-
iting particle-like behavior. In this chapter we will primarily use the wave nature of 
light, though for absorption of light, the photon interpretation is more appropriate 
as the photons interact with electrons in the material.
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9.1  LIGHT WAVES IN A HOMOGENEOUS MEDIUM

We know from well-established experiments that light exhibits typical wave-like 
properties such as interference and diffraction. We can treat light as an EM wave 
with time-varying electric and magnetic fields Ex and By, respectively, which propa-
gate through space in such a way that they are always perpendicular to each other 
and the direction of propagation z is as depicted in Figure 9.1. The simplest travel-
ing wave is a sinusoidal wave, which, for propagation along z, has the general math-
ematical form,1

 Ex = Eo cos(ωt − kz + ϕo) [9.1]

where Ex is the electric field at position z at time t; k is the propagation constant, 
or wavenumber, given by 2π∕λ, where λ is the wavelength; ω is the angular fre-
quency; Eo is the amplitude of the wave; and ϕo is a phase constant which accounts 
for the fact that at t = 0 and z = 0, Ex may or may not necessarily be zero depend-
ing on the choice of origin. The argument (ωt − kz + ϕo) is called the phase of the 
wave and denoted by ϕ. Equation 9.1 describes a monochromatic plane wave of 
infinite extent traveling in the positive z direction as depicted in Figure 9.2. In any 
plane perpendicular to the direction of propagation (along z), the phase of the wave, 
according to Equation 9.1, is constant which means that the field in this plane is 
also constant. A surface over which the phase of a wave is constant is referred to as 
a wavefront. A wavefront of a plane wave is obviously a plane perpendicular to the 
direction of propagation as shown in Figure 9.2.
 We know from electromagnetism that time-varying magnetic fields result in 
time-varying electric fields (Faraday’s law) and vice versa. A time-varying electric 
field would set up a time-varying magnetic field with the same frequency. Accord-
ing to electromagnetic principles,2 a traveling electric field Ex as represented by  
Equation 9.1 would always be accompanied by a traveling magnetic field By with 
the same wave frequency and propagation constant (ω and k) but the directions of 
the two fields would be orthogonal as in Figure 9.1. Thus, there is a similar travel-
ing wave equation for the magnetic field component By. We generally describe the 
interaction of a light wave with a nonconducting matter (conductivity, σ = 0) through 
the electric field component Ex rather than By because it is the electric field that 
displaces the electrons in molecules or ions in the crystal and thereby gives rise to 
the polarization of matter. However, the two fields are linked, as in Figure 9.1, and 
there is an intimate relationship between the two fields. The optical field refers to the 
electric field Ex.
 We can also represent a traveling wave using the exponential notation since 
cos ϕ = Re[exp( jϕ)] where Re refers to the real part. We then need to take the 

 1 This chapter uses E for the electric field which was reserved for energy in previous chapters. There should be 
no confusion with Eg that represents the energy bandgap. In addition, n is used to represent the refractive 
index rather than the electron concentration.

 2 Maxwell’s equations formulate electromagnetic phenomena and provide relationships between the electric and 
magnetic fields and their space and time derivatives. We only need to use a few selected results from Maxwell’s 
equations without delving into their derivations. The magnetic field B is also called the magnetic induction or 
magnetic flux density.

Traveling 

wave along z
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real part of any complex result at the end of calculations. Thus, we can write 
Equation 9.1 as

 Ex(z, t) = Re[Eo exp( jϕo) exp j (ωt − kz)]

or

 Ex(z, t) = Re[Ec exp j (ωt − kz)] [9.2]

where Ec = Eo exp( jϕo) is a complex number that represents the amplitude of the 
wave and includes the constant phase information ϕo.

Traveling 

wave along z

z z
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y

kDirection of propagation
Ex

By

Figure 9.1 An electromagnetic wave is a traveling wave that has time-varying electric and magnetic 

fields that are perpendicular to each other and the direction of propagation z.
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Ex = Eo sin(ωt – kz)

Figure 9.2 A plane EM wave traveling along z, has the same Ex (or By) at any point in a 

given xy plane.

All electric field vectors in a given xy plane are therefore in phase. The xy planes are of 

 infinite extent in the x and y directions.



862 C H A P T E R  9  ∙ OPTICAL PROPERTIES OF MATERIALS

 We indicate the direction of propagation with a vector k, called the wavevector, 
whose magnitude is the propagation constant k = 2π∕λ. It is clear that k is perpen-
dicular to constant phase planes as indicated in Figure 9.2. When the EM wave is 
propagating along some arbitrary direction k, as indicated in Figure 9.3, then the 
electric field E(r, t) at a point r on a plane perpendicular to k is

 E(r, t) = Eo cos(ωt − k · r + ϕo) [9.3]

because the dot product k · r is along the direction of propagation similar to kz. The 
dot product is the product of k and the projection of r onto k which is r′ in Figure 9.3, 
so k · r = kr′. Indeed, if propagation is along z, k · r becomes kz. In general, if k 
has components kx, ky, and kz along the x, y, and z directions, then from the defini-
tion of the dot product, k · r = kxx + kyy + kzz.
 The time and space evolution of a given phase ϕ, for example, the phase cor-
responding to a maximum field, according to Equation 9.1 is described by

 ϕ = ωt − kz + ϕo = constant

 During a time interval δt, this constant phase (and hence the maximum field) 
moves a distance δz. The phase velocity of this wave is therefore δz∕δt. Thus the 
phase velocity v is

 v =
dz

dt
=

ω

k
= f  λ [9.4]

where f is the frequency (ω = 2πf ).
 We are frequently interested in the phase difference Δϕ at a given time 
between two points on a wave (Figure 9.1) that are separated by a certain distance. 
If the wave is traveling along z with a wavevector k, as in Equation 9.1, then the 
phase difference between two points separated by Δz is simply k Δz since ωt is 
the same for each point. If this phase difference is 0 or multiples of 2π, then the 
two points are in phase. Thus, the phase difference Δϕ can be expressed as k Δz 
or 2π Δz∕λ.
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Figure 9.3 A traveling plane EM wave along a 

direction k.
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9.2  REFRACTIVE INDEX

When an EM wave is traveling in a dielectric medium, the oscillating electric field 
polarizes the molecules of the medium at the frequency of the wave. Intuitively, the 
EM wave propagation can be considered to be the propagation of this polarization 
in the medium. The field and the induced molecular dipoles become coupled. The 
net effect is that the polarization mechanism delays the propagation of the EM wave. 
The stronger the interaction between the field and the dipoles, the slower is the 
propagation of the wave. The relative permittivity εr measures the ease with which 
the medium becomes polarized, and hence it indicates the extent of interaction 
between the field and the induced dipoles. For an EM wave traveling in a nonmag-
netic dielectric medium of relative permittivity εr, the phase velocity v is given by

 v =
1

√εrεoμo

 [9.5]

If the frequency f is in the optical frequency range, then εr will be due to electronic 
polarization as ionic polarization will be too sluggish to respond to the field. How-
ever, at the infrared frequencies or below, the relative permittivity also includes a 
significant contribution from ionic polarization and the phase velocity is slower. For 
an EM wave traveling in free space, εr = 1 and vvacuum = 1∕√εoμo = c = 3 × 108 m s−1, 
the velocity of light in a vacuum. The ratio of the speed of light in free space to its 
speed in a medium is called the refractive index n of the medium,

 n =
c

v
= √εr [9.6]

 Suppose that in free space ko is the wavevector (ko = 2π∕λo) and λo is the wave-
length, then the wavevector k in the medium will be nko and the wavelength λ will 
be λo∕n. Indeed, we can also define the refractive index in terms of the wavevector 
k in the medium with respect to that in a vacuum ko,

 n =
k

ko

 [9.7]

 Equation 9.6 is in agreement with our intuition that light propagates more slowly 
in a denser medium which has a higher refractive index. We should note that the 
frequency f remains the same. The refractive index of a medium is not necessarily 
the same in all directions. In noncrystalline materials such as glasses and liquids, 
the material structure is the same in all directions and n does not depend on the 
direction. The refractive index is then isotropic. In crystals, however, the atomic 
arrangements and interatomic bonding are different along different directions. Crystals, 
in general, have nonisotropic, or anisotropic, properties. Depending on the crystal 
structure, the relative permittivity εr is different along different crystal directions. 
This means that, in general, the refractive index n seen by a propagating EM wave 
in a crystal will depend on the value of εr along the direction of the oscillating 
electric field (that is, along the direction of polarization). For example, suppose that 
the wave in Figure 9.1 is traveling along the z direction in a particular crystal with 
its electric field oscillating along the x direction. If the relative permittivity along 
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in a medium 

with εr

Definition 

of refractive 

index
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this x direction is εrx, then nx = √εrx. The wave therefore propagates with a phase 
velocity that is c∕nx. The variation of n with direction of propagation and the direc-
tion of the electric field depends on the particular crystal structure. With the excep-
tion of cubic crystals (such as diamond) all crystals exhibit a degree of optical 
anisotropy which leads to a number of important applications. Typically noncrystal-
line solids, such as glasses and liquids, and cubic crystals are optically isotropic; 
they possess only one refractive index for all directions.

RELATIVE PERMITTIVITY AND REFRACTIVE INDEX Relative permittivity εr, or the dielec-
tric constant, of materials is frequency dependent and further it depends on crystallographic 
direction since it is easier to polarize the medium along certain directions in the crystal. Glass 
has no crystal structure; it is amorphous. The relative permittivity is therefore isotropic but 
nonetheless frequency dependent.
 The relationship n = √εr between the refractive index n and εr must be applied at the 
same frequency for both n and εr. The relative permittivity for many materials can be vastly 
different at high and low frequencies because different polarization mechanisms operate at 
these frequencies. At low frequencies all polarization mechanisms present can contribute to 
εr, whereas at optical frequencies only the electronic polarization can respond to the oscillat-
ing field. Table 9.1 lists the relative permittivity εr (LF) at low frequencies (e.g., 60 Hz or 
1  kHz as would be measured for example using a capacitance bridge in the laboratory) for 
various materials. It then compares √εr(LF) with n.

 For diamond and silicon there is an excellent agreement between √εr(LF) and n. Both 
are covalent solids in which electronic polarization (electronic bond polarization) is the only 
polarization mechanism at low and high frequencies. Electronic polarization involves the 
displacement of light electrons with respect to positive ions of the crystal. This process can 
readily respond to the field oscillations up to optical or even ultraviolet frequencies.
 For AgCl and SiO2, √εr(LF) is larger than n because at low frequencies both of these 
solids possess a degree of ionic polarization. The bonding has a substantial degree of ionic 
character which contributes to polarization at frequencies below far-infrared wavelengths. 
(The AgCl crystal has almost all ionic bonding.) In the case of water, the εr (LF) is dominated 
by orientational or dipolar polarization which is far too sluggish to respond to high-frequency 
oscillations of the field at optical frequencies.

 EXAMPLE 9.1

Table 9.1 Low-frequency (LF) relative permittivity εr(LF) and refractive index n

Material εr (LF) √εr(LF)  n (optical) Comments

Diamond 5.7 2.39 2.41 (at 590 nm)  Electronic bond polarization  
 up to UV light

Si 11.9 3.44 3.45 (at 2.15 μm)  Electronic bond polarization 
 up to optical frequencies

AgCl 11.14 3.33 2.00 (at 1–2 μm)  Ionic polarization contributes 
 to εr(LF)

SiO2 3.84 2.00 1.46 (at 600 nm)  Ionic polarization contributes 
 to εr(LF)

Water 80 8.9 1.33 (at 600 nm)  Dipolar polarization contributes  
 to εr(LF), which is large



 9 . 3  DISPERSION: REFRACTIVE INDEX–WAVELENGTH BEHAVIOR 865

 It is instructive to consider what factors affect n. The simplest (and approximate) expres-
sion for the relative permittivity is

 εr ≈ 1 +
Nα

εo

 [9.8]

where N is the number of molecules per unit volume and α is the polarizability per molecule. 
Both atomic concentration, or density, and polarizability therefore increase n. For example, 
glasses of given type but with greater density tend to have higher n.

9.3   DISPERSION: REFRACTIVE 

INDEX–WAVELENGTH BEHAVIOR

The refractive index of materials in general depends on the frequency, or the wave-
length. This wavelength dependence follows directly from the frequency dependence 
of the relative permittivity εr. Figure 9.4 shows what happens to an atom in the 
presence of an oscillating electric field E which is due to a light wave passing 
through this location; it may also be due to an applied external field.
 In the absence of an electric field and in equilibrium, the center of mass C 
of the orbital motions of the electrons coincides with the positively charged 
nucleus at O and the net electric dipole moment is zero as indicated in Figure 9.4a. 
Suppose that the atom has Z number of electrons orbiting the nucleus and all the 
electrons are contained within a given shell. In the presence of the electric field 
E, however, the light electrons become displaced in the opposite direction to the 
field, so their center of mass C is shifted by some distance x with respect to the 
nucleus O which we take to be the origin as shown in Figure 9.4b. As the elec-
trons are “pushed” away by the applied field, the Coulombic attraction between 
the electrons and nuclear charge “pulls in” the electrons. The force on the electrons, 

OC

C

O

x

(a) A neutral atom in E = 0 (b) Induced dipole moment in a field

E = Eoe jωt
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Figure 9.4 Electronic polarization 
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due to E, trying to separate them away from the nuclear charge is ZeE. The restor-
ing force Fr, which is the Coulombic attractive force between the electrons and 
the nucleus, can be taken to be proportional to the displacement x provided that 
the latter is small. The reason is that Fr = Fr(x) can be expanded in powers of x, 
and for small x only the linear term matters. The restoring force Fr is obviously 
zero when C coincides with O (x = 0). We can write Fr = −βx where β is a 
constant and the negative sign indicates that Fr is always directed toward the 
nucleus O.
 First consider applying a dc field. In equilibrium, the net force on the negative 
charge is zero or ZeE = βx from which x is known. Therefore, the magnitude of the 
induced electronic dipole moment is given by

 pinduced = (Ze)x =
Z2e2

β
 E [9.9]

 As expected pinduced is proportional to the applied field. The electronic dipole 
moment in Equation 9.9 is valid under static conditions, i.e., when the electric field 
is a dc field. Suppose that we suddenly remove the applied electric field polarizing 
the atom. There is then only the restoring force −βx, which always acts to pull the 
electrons toward the nucleus O. The equation of motion of the negative charge cen-
ter is then (force = mass × acceleration)

 −βx = Zme

d 
2x

dt2

 By solving this differential equation we can show that the displacement at any 
time is a simple harmonic motion, that is,

 x(t) = xo cos(ωot)

where the angular frequency of oscillation ωo is

 ωo = ( β

Zme
)

1∕2

 [9.10]

 In essence, this is the oscillation frequency of the center of mass of the electron 
cloud about the nucleus and xo is the displacement before the removal of the field. 
After the removal of the field, the electronic charge cloud executes simple harmonic 
motion about the nucleus with a natural frequency ωo determined by Equation 9.10; 
ωo is also called the resonance frequency. The oscillations, of course, die out with 
time because there is an inevitable loss of energy from an oscillating charge cloud. 
An oscillating electron is like an oscillating current and loses energy by radiating 
EM waves; all accelerating charges emit radiation.
 Consider now the presence of an oscillating electric field due to an EM wave 
passing through the location of this atom as in Figure 9.4b. The applied field oscil-
lates harmonically in the +x and −x directions, that is, E = Eo exp(jωt). This field 
will drive and oscillate the electrons about the nucleus. There is again a restoring 
force Fr acting on the displaced electrons trying to bring back the electron shell to 
its equilibrium placement around the nucleus. For simplicity we will again neglect 
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energy losses. Newton’s second law for Ze electrons with mass Zme driven by E is 
given by

 Zme

d2x

dt2 = −ZeEo exp( jωt) − βx [9.11]

 The solution of this equation gives the instantaneous displacement x(t) of the 
center of mass of electrons from the nucleus (C from O),

 x = x(t) = −
eEo exp( jωt)

me(ω2
o − ω2)

 The induced electronic dipole moment is then simply given by pinduced = −(Ze)x. 
The negative sign is needed because normally x is measured from negative to 
positive charge whereas in Figure 9.4b it is measured from the nucleus. By defi-
nition, the electronic polarizability αe is the induced dipole moment per unit elec-
tric field,

 αe =
pinduced

E
=

Ze2

me(ω2
o − ω2)

 [9.12]

 Thus, the displacement x and hence electronic polarizability αe increase as ω 
increases. Both become very large when ω approaches the natural frequency ωo. 
In  practice, charge separation x and hence polarizability αe do not become infinite 
at ω = ωo because two factors impose a limit. First, at large x, the system is no lon-
ger linear and this analysis is not valid. Secondly, there is always some energy loss.
 Given that the polarizability is frequency dependent as in Equation 9.12, the 
effect on the refractive index n is easy to predict. The simplest (and a very rough) 
relationship between the relative permittivity εr and polarizability αe is

 εr = 1 +
N

εo

 αe

where N is the number of atoms per unit volume. Given that the refractive index n 
is related to εr by n2 = εr, it is clear that n must be frequency dependent, i.e.,

 n2 = 1 + (N Ze2

εome
) 1

ω2
o − ω2  [9.13]

 We can also express this in terms of the wavelength λ. If λo = 2πc∕ωo is the 
resonance wavelength, then Equation 9.13 is equivalent to

 n2 = 1 + (N Ze2

εome
)( λo

2πc)
2

 
λ2

λ2 − λ2
o

 [9.14]

 This type of relationship between n and the frequency ω, or wavelength λ, is 
called the dispersion relation. Although the above treatment is grossly simpli-
fied, it does nonetheless emphasize that n will always be wavelength dependent 
and will exhibit a substantial increase as the frequency increases toward a natural 
frequency of the polarization mechanism. In the above example, we considered 
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the electronic polarization of an isolated atom with a well-defined natural fre-
quency ωo. In the crystal, however, the atoms interact, and further we also have 
to consider the valence electrons in the bonds. The overall result is that n is a 
complicated function of the frequency or the wavelength. One possibility is to 
assume a number of resonant frequencies, that is, not just λo but a series of reso-
nant frequencies, λ1, λ2, . . . , and then sum the contributions arising from each 
with some weighing factor A1, A2, etc.,

 n2 = 1 +
A1λ

2

λ2 − λ2
1

+
A2λ

2

λ2 − λ2
2

+
A3λ

2

λ2 − λ2
3

+ … [9.15]

where A1, A2, A3 and λ1, λ2, and λ3 are constants, called Sellmeier coefficients.3 
Equation 9.15 turns out to be quite a useful semiempirical expression for calculating 
n at various wavelengths if the Sellmeier coefficients are known. Higher terms 
involving A4 and higher A coefficients can generally be neglected in representing n 
versus λ behavior over typical wavelengths of interest. For example, for diamond, 
we only need the A1 and A2 terms. The Sellmeier coefficients are listed in various 
optical data handbooks.
 There is another well-known useful n–λ dispersion relation due originally to 
Cauchy (1836), which has the short form given by

 n = A +
B

λ2 +
C

λ4  [9.16]

Table 9.2 Sellmeier and Cauchy coefficients

 Sellmeier

  A1 A2 A3 λ1(μm) λ2(μm) λ3(μm)

SiO2 (fused silica) 0.696749 0.408218 0.890815 0.0690660 0.115662 9.900559
86.5% SiO2–13.5% 0.711040 0.451885 0.704048 0.0642700 0.129408 9.425478 
 GeO2

GeO2 0.80686642 0.71815848 0.85416831 0.068972606 0.15396605 11.841931
Sapphire 1.023798 1.058264 5.280792 0.0614482 0.110700 17.92656
Diamond 0.3306 4.3356 — 0.1750 0.1060 —

 Cauchy

  Range of hf (eV) n−2 (eV2) n0 n2 (eV−2) n4 (eV−4)

Diamond  0.05–5.47 −1.07 × 10−5 2.378 8.01 × 10−3 1.04 × 10−4

Silicon 0.002–1.08 −2.04 × 10−8 3.4189 8.15 × 10−2 1.25 × 10−2

Germanium 0.002–0.75 −1.0 × 10−8 4.003  2.2 × 10−1 1.4 × 10−1

 Sellmeier coefficients combined from various sources. Cauchy coefficients from Smith, D.Y., et al., Journal of Physics, 
CM 13, 3883, 2001.

Sellmeier 

equation

Cauchy  

short-form 

dispersion 

equation

 3 This is also known as the Sellmeier–Herzberger formula.



 9 . 3  DISPERSION: REFRACTIVE INDEX–WAVELENGTH BEHAVIOR 869

where A, B, and C are material specific constants. Typically, the Cauchy equation is 
used in the visible spectrum for various optical glasses. A more general Cauchy 
dispersion relation is of the form4

 n = n−2(hf )−2 + n0 + n2(hf )2 + n4(hf )4 [9.17]

where hf is the photon energy, and n0, n−2, n2, and n4 are constants; values for dia-
mond, Si, and Ge are listed in Table 9.2. The general Cauchy equation is usually 
applicable over a wide photon energy range.

 4 D. Y. Smith et al., J. Phys. CM 13, 3883, 2001.

Cauchy 
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equation in 

photon energy

GaAs 

dispersion 

relation

GaAs DISPERSION RELATION For GaAs, from λ = 0.89 to 4.1 μm, the refractive index is 

given by the following dispersion relation,

 n2 = 7.10 +
3.78λ2

λ2 − 0.2767
 [9.18]

where λ is in microns (μm). What is the refractive index of GaAs for light with a photon 

energy of 1 eV?

SOLUTION

At hf = 1 eV,

 λ =
hc

hf
=

(6.62 × 10−34 J s) (3 × 108 m s−1)

(1 eV × 1.6 × 10−19 J eV−1)
= 1.24 μm

Thus,

 n2 = 7.10 +
3.78λ2

λ2 − 0.2767
= 7.10 +

3.78(1.24)2

(1.24)2 − 0.2767
= 11.71

so that n = 3.42

 Note that the n versus λ expression for GaAs is actually a Sellmeier-type formula because 
when λ2 ≫ λ2

1, then A1 can be simply lumped with 1 to give 1 + A1 = 7.10.

 EXAMPLE 9.2

SELLMEIER EQUATION AND DIAMOND The relevant Sellmeier coefficients for diamond are 
given in Table 9.2. Calculate its refractive index at 550 nm (green light) to three decimal places.

SOLUTION

The Sellmeier dispersion relation for diamond is

 n2 = 1 +
0.3306λ2

λ2 − (175 nm)2 +
4.3356λ2

λ2 − (106 nm)2

 = 1 +
0.3306(550 nm)2

(550 nm)2 − (175 nm)2 +
4.3356(550 nm)2

(550 nm)2 − (106 nm)2 = 5.8707

So that n = 2.423
which is about 0.1 percent different than the experimental value of 2.426.

 EXAMPLE 9.3
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9.4  GROUP VELOCITY AND GROUP INDEX

Since there are no perfect monochromatic waves in practice, we have to consider the 
way in which a group of waves differing slightly in wavelength will travel along the 
z direction as depicted in Figure 9.5. When two perfectly harmonic waves of frequen-
cies ω − δω and ω + δω and wavevectors k − δk and k + δk interfere, as shown in 
Figure 9.5, they generate a wavepacket which contains an oscillating field at the mean 
frequency ω that is amplitude modulated by a slowly varying field of frequency δω. 
The maximum amplitude moves with a wavevector δk and thus with a group velocity 
that is given by δω∕δk, that is,

 vg =
dω

dk
 [9.19]

 The group velocity therefore defines the speed with which energy or information 
is propagated since it defines the speed of the envelope of the amplitude variation. 

CAUCHY EQUATION AND DIAMOND Using the Cauchy coefficients for diamond in Table 9.2, 
calculate the refractive index at 550 nm.

SOLUTION

At λ = 550 nm, the photon energy is

 hf =
hc

λ
=

(6.62 × 10−34 J s) (3 × 108 m s−1)

550 × 10−9 m
×

1
1.6 × 10−19 J eV−1 = 2.254 eV

Using the Cauchy dispersion relation for diamond with coefficients from Table 9.2,

 n = n−2(hf )−2 + n0 + n2(hf )2 + n4(hf )4

 = (−1.07 × 10−5)(2.254)−2 + 2.378 + (8.01 × 10−3)(2.254)2 + (1.04 × 10−4)(2.254)4

 = 2.421

The difference in n from the value in Example 9.3 is 0.08 percent, and is due to the Cauchy 
coefficients quoted in Table 9.2 being applicable over a wider wavelength range at the expense 
of some accuracy.

 EXAMPLE 9.4
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Figure 9.5 Two slightly  different wavelength 

waves traveling in the same direction result in a 
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travels at the group velocity.
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The maximum electric field in Figure 9.5 advances with a velocity vg, whereas the 
phase variations in the electric field are propagating at the phase velocity v.

 In a vacuum, obviously v is simply c and independent of the wavelength or k. Thus 
for waves traveling in a vacuum, ω = ck and the group velocity is

 vg(vacuum) =
dω

dk
= c = Phase velocity [9.20]

 For a wave in a medium, k in Equation 9.19 is the propagation constant within 
the medium, that is, k = 2πn∕λ, where λ is the free space wavelength. Further, v 

depends on the wavelength by virtue of n being a function of the wavelength as in 
the case for glasses. Then,

 ω = vk = [ c

n(λ) ]k [9.21]

where n = n(λ) is a function of the wavelength. The group velocity vg in a medium, 
from differentiating Equation 9.21 in Equation 9.19, is given by5

 vg(medium) =
dω

dk
=

c

n − λ 

dn

dλ
 This can be written as

 vg(medium) =
c

Ng

 [9.22]

where

 Ng = n − λ
dn

dλ
 [9.23]

is defined as the group index of the medium. Equation 9.23 defines the group 
refractive index Ng of a medium and determines the effect of the medium on the 
group velocity via Equation 9.22.
 In general, for many materials the refractive index n and hence the group index 
Ng depend on the wavelength of light by virtue of the relative permittivity εr being 
frequency dependent. Then both the phase velocity v and the group velocity vg depend 
on the wavelength and the medium is called a dispersive medium. The refractive 
index n and the group index Ng of pure SiO2 (silica) glass are important parameters 
in optical fiber design in optical communications. Both of these parameters depend 
on the wavelength of light as shown in Figure 9.6. Around 1300 nm, Ng is at a 
minimum which means that for wavelengths close to 1300 nm, Ng is wavelength 
independent. Thus, light waves with wavelengths around 1300 nm travel with the same 
group velocity and do not experience dispersion. This phenomenon is significant in 
the propagation of light in glass fibers used in optical communications.

Group 

velocity in 

a vacuum

Group 

velocity in  

a medium

Group index

 5 The derivation of Equations 9.19 and 9.23 can be found in author’s Principles of Optoelectronics and 
Photonics, Second Edition (Pearson Education, Upper Saddle River, 2013), Chapter 1.
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GROUP AND PHASE VELOCITIES Consider a light wave traveling in a pure SiO2 (silica) 
glass medium. If the wavelength of light is 1300 nm and the refractive index at this wave-
length is 1.447, what is the phase velocity, group index (Ng), and group velocity (vg)?

SOLUTION

The phase velocity is given by

 v =
c

n
=

3 × 108 m s−1

1.447
= 2.073 × 108 m s−1

 EXAMPLE 9.6

n

500 700 900 1100 1300 1500 1700 1900
1.44

1.45

1.46

1.47

1.48

1.49

Wavelength (nm)

Ng

Figure 9.6 Refractive index n and the 

group index Ng of pure SiO2 (silica) glass 

as a function of wavelength.

GROUP VELOCITY Consider two sinusoidal waves which are close in frequency, that is, 
waves of frequencies ω − δω and ω + δω as in Figure 9.5. Their wavevectors will be k − δk 
and k + δk. The resultant wave will be

 Ex(z, t) = Eo cos[(ω − δω)t − (k − δk)z] + Eo cos[(ω + δω)t − (k + δk)z]

 By using the trigonometric identity cos A + cos B = 2 cos[1
2(A − B)] cos[1

2(A + B)]  we 
arrive at

 Ex(z, t) = 2Eo cos[(δω)t − (δk)z] cos[ωt − kz]

 As depicted in Figure 9.5, this represents a sinusoidal wave of frequency ω which is 
amplitude modulated by a very slowly varying sinusoidal of frequency δω. The system of 
waves, that is, the modulation, travels along z at a speed determined by the modulating term 
cos[(δω)t − (δk)z]. The maximum in the field occurs when [(δω)t − (δk)z] = 2mπ = constant 
(m is an integer), which travels with a velocity

 
dz

dt
=

δω

δk
  or  vg =

dω

dk

 This is the group velocity of the waves, as stated in Equation 9.19, since it determines 
the speed of propagation of the maximum electric field along z.

 EXAMPLE 9.5

Group 

velocity
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 From Figure 9.6, at λ = 1300 nm, Ng = 1.462, so

 vg =
c

Ng

=
3 × 108 m s−1

1.462
= 2.052 × 108 m s−1

 The group velocity is ∼0.7 percent smaller than the phase velocity.

REFRACTIVE AND GROUP INDEX OF Si AT 1550 nm Silicon photonic endeavors to inte-
grate various photonic functionalities such as light guiding, light modulation, detection, etc., 
into the silicon microelectronics. Calculate the refractive and group index of Si at 1550 nm, 
one of the main communication wavelengths.

SOLUTION

The 1550 nm wavelength is equivalent to a photon energy in eV of

 hf = hc∕λ = (6.626 × 10−34)(3 × 108)∕(1550 × 10−9)(1.602 × 10−19) = 0.800 eV

Using the Cauchy dispersion relation for Si with coefficients from Table 9.2,

 n = n−2(hf )−2 + n0 + n2(hf )2 + n4(hf )4

 = (−2.04 × 10−8)(0.800)−2 + 3.4189 + (8.15 × 10−2)(0.800)2 + (1.25 × 10−2)(0.800)4

 = 3.4711

We can obtain the group index through Equation 9.23. We can change this equation from 
wavelength λ dependence to photon energy hf dependence by using hf = hc∕λ. From straight-
forward calculus, the result is

 Ng = n − λ 

dn

dλ
= n + (hf )  

dn

d(hf )

Differentiating the Cauchy relation and substituting it into the above, we obtain

 Ng = −n−2(hf )−2 + n0 + 3n2(hf )2 + 5n4(hf )4

Substituting hf = 0.800 eV we find

 Ng = −(−2.04 × 10−8)(0.800)−2 + 3.4189 + 3(8.15 × 10−2)(0.800)2 + 5(1.25 × 10−2)(0.800)4

 = 3.5756

 Ng is about 3 percent smaller than n. Sometimes the empirical expression for n is not as 
easy to differentiate analytically as above, in which case we can simply find Ng by numeri-
cally differentiating n by calculating n and n + δn at two very closely spaced wavelengths λ 
and λ + δλ.

 EXAMPLE 9.7

9.5   MAGNETIC FIELD: IRRADIANCE  

AND POYNTING VECTOR

Although we have considered the electric field component Ex of the EM wave, 
we should recall that the magnetic field (magnetic induction) component By 
always accompanies Ex in an EM wave propagation. In fact, if v is the phase 
velocity of an EM wave in an isotropic dielectric medium and n is the refractive 
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index, then according to electromagnetism, at all times and anywhere in an EM 
wave,6

 Ex = vBy =
c

n
 By [9.24]

where v = (εoεrμo)
−1∕2 and n = √εr. Thus, the two fields are simply and intimately 

related for an EM wave propagating in an isotropic medium. Any process that alters 
Ex also intimately changes By in accordance with Equation 9.24.
 As the EM wave propagates in the direction of the wavevector k as shown in 
Figure 9.7, there is an energy flow in this direction. The wave brings with it elec-
tromagnetic energy. A small region of space where the electric field is Ex has an 
energy density, that is, energy per unit volume, given by 1

2εoεrE
2
x . Similarly, a region 

of space where the magnetic field is By has an energy density 1
2B

2
y∕μo. Since the two 

fields are related by Equation 9.24, the energy densities in the Ex and By fields are 
the same,

 
1
2

 εoεrE
2
x =

1
2μo

 B2
y  [9.25]

 The total energy density in the wave is therefore εoεrE
2
x. Suppose that an ideal 

“energy meter” is placed in the path of the EM wave so that the receiving area A of 
this meter is perpendicular to the direction of propagation. In a time interval Δt, a 
portion of the wave of spatial length v Δt crosses A as shown in Figure 9.7. Thus, 
a volume Av Δt of the EM wave crosses A in time Δt. The energy in this volume 
consequently becomes received. If S is the EM power flow per unit area,

 S = Energy flow per unit time per unit area

giving,

 S =
(Av Δt) (εoεrE

2
x)

A Δt
= vεoεrE

2
x = v2εoεrExBy [9.26]

 6 This is actually a statement of Faraday’s law for EM waves. In vector notation it is often expressed as ωB = k × E.
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 In an isotropic medium, the energy flow is in the direction of wave propagation. 
If we use the vectors E and B to represent the electric and magnetic fields in the 
EM wave, then the wave propagates in a direction E × B, because this direction is 
perpendicular to both E and B. The EM power flow per unit area in Equation 9.26 
can be written as

 S = v2εoεrE × B [9.27]

where S, called the Poynting vector, represents the energy flow per unit time per 
unit area in a direction determined by E × B (direction of propagation). Its magni-
tude, power flow per unit area, is called the irradiance.7

 The field Ex at the receiver location (say, z = z1) varies sinusoidally which means 
that the energy flow also varies sinusoidally. The irradiance in Equation 9.26 is the 
instantaneous irradiance. If we write the field as Ex = Eo sin(ωt) and then calculate 
the average irradiance by averaging S over one period, we would find the average 

irradiance,

 I = Saverage =
1
2

 vεoεrE2
o [9.28]

 Since v = c∕n and εr = n2 we can write Equation 9.28 as

  I = Saverage =
1

2
 cεonE2

o

  = (1.33 × 10−3)nE2
o  [9.29]

 The instantaneous irradiance can only be measured if the power meter can 
respond more quickly than the oscillations of the electric field, and since this is in 
the optical frequencies range, all practical measurements invariably yield the average 
irradiance because all detectors have a response rate much slower than the frequency 
of the wave.

9.6   SNELL’S LAW AND TOTAL INTERNAL 

REFLECTION (TIR)

We consider a traveling plane EM wave in a medium (1) of refractive index n1 
propagating toward a medium (2) with a refractive index n2. Constant phase fronts 
are joined with broken lines, and the wavevector ki is perpendicular to the wave 
fronts as shown in Figure 9.8. When the wave reaches the plane boundary between 
the two media, a transmitted wave in medium 2 and a reflected wave in medium 
1  appear. The transmitted wave is called the refracted light. The angles, θi, θt, θr 
define the directions of the incident, transmitted, and reflected waves, respectively, with 
respect to the normal to the boundary plane as shown in Figure 9.8. The wavevectors 
of the reflected and transmitted waves are denoted as kr and kt, respectively. Since 

Poynting 

vector

Average 

irradiance 

(intensity)

Average 

irradiance 

(intensity)

 7 The term intensity is widely used and interpreted by many engineers as power flow per unit area even though 
the strictly correct term is irradiance. Many optoelectronic data books simply use intensity to mean irradiance.
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both the incident and reflected waves are in the same medium, the magnitudes of kr 
and ki are the same, kr = ki.
 Simple arguments based on constructive interference can be used to show that 
there can only be one reflected wave that occurs at an angle equal to the incidence 
angle. The two waves along Ai and Bi are in phase. When these waves are reflected 
to become waves Ar and Br, then they must still be in phase, otherwise they will 
interfere destructively and destroy each other. The only way the two waves can stay 
in phase is if θr = θi. All other angles lead to the waves Ar and Br being out of phase 
and interfering destructively.
 The refracted waves At and Bt are propagating in a medium of refracted index 
n2 (< n1) that is different than n1. Hence the waves At and Bt have different velocities 
than Ai and Bi. We consider what happens to a wavefront such as AB, corresponding 
perhaps to the maximum field, as it propagates from medium 1 to 2. We recall that 
the points A and B on this front are always in phase. During the time it takes for 
the phase B on wave Bi to reach B′, phase A on wave At has progressed to A′. The 
wavefront AB thus becomes the front A′B′ in medium 2. Unless the two waves at A′ 
and B′ still have the same phase, there will be no transmitted wave. A′ and B′ points 
on the front are only in phase for one particular transmitted angle θt.
 If it takes time t for the phase at B on wave Bi to reach B′, then BB′ = v1t = 
ct∕n1. During this time t, the phase A has progressed to A′ where AA′ = v2t = ct∕n2. 
A′ and B′ belong to the same front just like A and B, so AB is perpendicular to ki 
in medium 1 and A′B′ is perpendicular to kt in medium 2. From geometrical 
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considerations, AB′ = BB′∕sin θi and AB′ = AA′∕sin θt, so

 AB′ =
v1t

sin θi

=
v2t

sin θt

or

 
sin θi

sin θt

=
v1

v2
=

n2

n1
 [9.30]

 This is Snell’s law8 which relates the angles of incidence and refraction to the 
refractive indices of the media.
 If we consider the reflected wave, the wave front AB becomes A″B′ in the 
reflected wave. In time t, phase B moves to B′ and A moves to A″. Since they must 
still be in phase to constitute the reflected wave, BB′ must be equal to AA″. Suppose 
it takes time t for the wavefront B to move to B′ (or A to A″). Then, since BB′ = 
AA″ = v1t, from geometrical considerations,

 AB′ =
v1t

sin θi

=
v1t

sin θr

so that θi = θr. The angles of incidence and reflection are the same.
 When n1 > n2, then obviously the transmitted angle is greater than the incidence 
angle as apparent in Figure 9.8. When the refraction angle θt reaches 90°, the inci-
dence angle is called the critical angle θc which is given by

 sin θc =
n2

n1
 [9.31]

 When the incidence angle θi exceeds θc, then there is no transmitted wave but 
only a reflected wave. The latter phenomenon is called total internal reflection 
(TIR). The effect of increasing the incidence angle is shown in Figure 9.9. It is the 

Snell’s law

Critical angle 

for total 

internal 

reflection 

(TIR)

 8 Willebrord van Roijen Snell (1581–1626), a Dutch physicist and mathematician, was born in Leiden and eventually 
became a professor at Leiden University. He obtained his refraction law in 1621 which was published by Réne 
Descartes in France in 1637; it is not known whether Descartes knew of Snell’s law or formulated it independently.
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TIR phenomenon that leads to the propagation of waves in a dielectric medium sur-
rounded by a medium of smaller refractive index as in optical waveguides (e.g., 
optical fibers).

OPTICAL FIBERS IN COMMUNICATIONS Figure 9.10 shows a simplified view of a modern 
optical communications system. Information is converted into a digital signal (e.g., current 
pulses) which drives a light emitter such as a semiconductor laser. The light pulses from the 
emitter are coupled into an optical fiber, which acts as a light guide. The optical fiber is a 
very thin glass fiber [made of silica (SiO2)], almost as thin as your hair, that is able to opti-
cally guide the light pulses to their destination. The photodetector at the destination converts 
the light pulses into an electric signal, which is then decoded into the original information.
 The core of the optical fiber has a higher refractive index than the surrounding region, which 
is called the cladding as shown in Figure 9.10. Optical fibers for short-distance applications (e.g., 
communications in local area networks within a large building) usually have a core region that 
has a diameter of about 100 μm, and the whole fiber would be about 150–200 μm in diameter. The 
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core and cladding refractive indices, n1 and n2, respectively, are normally only 1–3 percent dif-
ferent. The light propagates along the fiber core because light rays experience total internal 
reflections at the core–cladding interface as shown in Figure 9.10. Only those light rays that can 
exercise TIR travel along the fiber length and can reach the destination. Consider a fiber with 
n1(core) = 1.455, and n2(cladding) = 1.440. The critical angle for a ray traveling in the core is

 θc = arcsin(n2

n1) = arcsin(1.440
1.455) = 81.8°

 Those light rays that have angles θ > θc satisfy TIR and can propagate along the fiber.9 
Notice that the ray angles with respect to the fiber axis are less than 8.2°.

9.7  FRESNEL’S EQUATIONS

9.7.1 AMPLITUDE REFLECTION AND TRANSMISSION COEFFICIENTS

Although the ray picture with constant phase wave fronts is useful in understanding 
refraction and reflection, to obtain the magnitude of the reflected and refracted waves 
and their relative phases, we need to consider the electric field in the light wave. The 
electric field in the wave must be perpendicular to the direction of propagation as 
shown in Figure 9.11. We can resolve the field Ei of the incident wave into two com-
ponents, one in the plane of incidence Ei,∥ and the other perpendicular to the plane of 
incidence Ei,⊥. The plane of incidence is defined as the plane containing the incident 
and the reflected rays which in Figure 9.11 corresponds to the plane of the paper.10 
Similarly for both the reflected and transmitted waves, we will have field components 
parallel and perpendicular to the plane of incidence, i.e., Er,∥, Er,⊥ and Et,∥, Et,⊥.
 As apparent from Figure 9.11, the incident, transmitted, and reflected waves all 
have a wavevector component along the z direction; that is, they have an effective 
velocity along z. The fields Ei,⊥, Er,⊥, and Et,⊥ are all perpendicular to the z direction. 
These waves are called transverse electric field (TE) waves. On the other hand, 
waves with Ei,∥, Er,∥, and Et,∥ only have their magnetic field components perpen-
dicular to the z direction and these are called transverse magnetic field (TM) waves.
 We will describe the incident, reflected, and refracted waves by the exponential 
representation of a traveling wave, i.e.,

 Ei = Eio exp j(ωt − ki · r) [9.32]

 Er = Ero exp j(ωt − kr · r) [9.33]

 Et = Eto exp j(ωt − kt · r) [9.34]

where r is the position vector; the wavevectors ki, kr, and kt describe, respectively, 
the directions of the incident, reflected, and transmitted waves; and Eio, Ero, and Eto 

 9 The light propagation in an optical fiber is much more complicated than the simple zigzagging of light rays 
with TIRs at the core–cladding interface. The waves in the core have to satisfy not only TIR but also have to 
avoid destructive interference so that they are not destroyed as they travel along the guide.

 10 The definitions of the field components follow those of S. G. Lipson et al., Optical Physics, 3rd ed., 
Cambridge, MA, Cambridge University Press, 1995, and Grant Fowles, Introduction to Modern Optics, 2nd ed., 
New York, Dover Publications, Inc., 1975, whose clear treatments of this subject are highly recommended. The 
majority of the authors use a different convention which leads to different signs later in the equations; Fresnel’s 
equations are related to the specific electric field directions from which they are derived.
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are the respective amplitudes. Any phase changes such as ϕr and ϕt in the reflected 
and transmitted waves with respect to the phase of the incident wave are incorporated 
into the complex amplitudes Ero and Eto. Our objective is to find Ero and Eto with 
respect to Eio.
 We should note that similar equations can be stated for the magnetic field com-
ponents in the incident, reflected, and transmitted waves, but these will be perpen-
dicular to the corresponding electric fields. The electric and magnetic fields anywhere 
on the wave must be perpendicular to each other as a requirement of electromagnetic 
wave theory. This means that with E∥ in the EM wave we have a magnetic field B⊥ 
associated with it such that B⊥ = (n∕c)E∥. Similarly E⊥ will have a magnetic field 
B∥ associated with it such that B∥ = (n∕c)E⊥.
 There are two useful fundamental rules in electromagnetism that govern the 
behavior of the electric and magnetic fields at a boundary between two dielectric 
media which we can arbitrarily label as 1 and 2. These rules are called boundary 
conditions. The first states that the electric field that is tangential to the boundary 
surface Etangential must be continuous across the boundary from medium 1 to 2, i.e., 
at the boundary y = 0 in Figure 9.11,

 Etangential(1) = Etangential(2) [9.35]

 The second rule is that the tangential component of the magnetic field Btangential 
to the boundary must be likewise continuous from medium 1 to 2 provided that the 
two media are nonmagnetic (relative permeability μr = 1),

 Btangential(1) = Btangential(2) [9.36]
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 Using these boundary conditions for the fields at y = 0, and the relationship 
between the electric and magnetic fields, we can find the reflected and transmitted 
waves in terms of the incident wave. The boundary conditions can only be satisfied 
if the reflection and incidence angles are equal, θr = θi, and the angles for the trans-
mitted and incident waves obey Snell’s law, n1 sin θi = n2 sin θr.
 Applying the boundary conditions to the EM wave going from medium 1 to 2, 
the amplitudes of the reflected and transmitted waves can be readily obtained in 
terms of n1, n2, and the incidence angle θi alone.11 These relationships are called 
Fresnel’s equations. If we define n = n2∕n1, as the relative refractive index of 
medium 2 to that of 1, then the reflection and transmission coefficients for E⊥ are

 r⊥ =
Er0,⊥

Ei0,⊥

=
cos θi − (n2 − sin2 θi)

1∕2

cos θi + (n2 − sin2 θi)
1∕2  [9.37]

and

 t⊥ =
Et0,⊥

Ei0,⊥
=

2 cos θi

cos θi + (n2 − sin2 θi)
1∕2  [9.38]

 There are corresponding coefficients for the E∥ fields with corresponding reflec-

tion and transmission coefficients r∥ and t∥:

 r∥ =
Er0,∥

Ei0,∥
=

(n2 − sin2 θi)
1∕2 − n2 cos θi

(n2 − sin2 θi)
1∕2 + n2 cos θi

 [9.39]

 t∥ =
Et0,∥

Ei0,∥
=

2n cos θi

n2 cos θi + (n2 − sin2 θi)
1∕2  [9.40]

 Further, the reflection and transmission coefficients are related by

 r∥ + nt∥ = 1  and  r⊥ + 1 = t⊥ [9.41]

 The significance of these equations is that they allow the amplitudes and phases 
of the reflected and transmitted waves to be determined from the coefficients r⊥, r∥, 
t∥, and t⊥. For convenience we take Eio to be a real number so that the phase angles 
of r⊥ and t⊥ correspond to the phase changes measured with respect to the incident 
wave. For example, if r⊥ is a complex quantity, then we can write this as 

r⊥ = ∣r⊥∣ exp(−jϕ⊥)  where ∣r⊥∣ and ϕ⊥ represent the relative amplitude and phase of 
the reflected wave with respect to the incident wave for the field perpendicular to 
the plane of incidence. Of course, when r⊥ is a real quantity, then a positive number 
represents no phase shift and a negative number is a phase shift of 180° (or π). As 
with all waves, a negative sign corresponds to a 180° phase shift. Complex coeffi-
cients can only be obtained from Fresnel’s equations if the terms under the square 
roots become negative, and this can only happen when n < 1 (or n1 > n2), and also 
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 11 These equations are readily available in any electromagnetism textbook. Their derivation from the two boundary 
conditions involves extensive algebraic manipulation which we will not carry out here. The electric and magnetic 
field components on both sides of the boundary are resolved tangentially to the boundary surface and the 
boundary conditions are then applied. We then use such relations as cos θt = (1 − sin θt)

1 ∕ 2 and sin θt as 
determined by Snell’s law, etc.
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when θi > θc, the critical angle. Thus, phase changes other than 0 or 180° occur only 
when there is total internal reflection.
 Figure 9.12a shows how the magnitudes of the reflection coefficients ∣r⊥∣ and 
∣r∥∣ vary with the incidence angle θi for a light wave traveling from a more dense 
medium, n1 = 1.44, to a less dense medium, n2 = 1.00, as predicted by Fresnel’s 
equations. Figure 9.12b shows the changes in the phase of the reflected wave, ϕ⊥ 
and ϕ∥, with θi. The critical angle θc as determined from sin θc = n2∕n1 in this case 
is 44°. It is clear that for incidence close to normal (small θi), there is no phase 
change in the reflected wave. For example, putting normal incidence (θi = 0) into 
Fresnel’s equations, we find

 r∥ = r⊥ =
n1 − n2

n1 + n2
 [9.42]

 This is a positive quantity for n1 > n2 which means that the reflected wave suf-
fers no phase change. This is confirmed by ϕ⊥ and ϕ∥ in Figure 9.12b. As the 
incidence angle increases, eventually r∥ becomes zero at an angle of about 35°. We 
can find this special incidence angle, labeled as θp, by solving the Fresnel equation, 
Equation 9.39, for r∥ = 0. The field in the reflected wave is then always perpen-
dicular to the plane of incidence and hence well-defined. This special angle is called 
the polarization angle or Brewster’s angle and from Equation 9.39 is given by

 tan θp =
n2

n1
 [9.43]
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 The reflected wave is then said to be linearly polarized because it contains 
electric field oscillations that are contained within a well-defined plane which is 
perpendicular to the plane of incidence and also to the direction of propagation. 
Electric field oscillations in unpolarized light, on the other hand, can be in any one 
of an infinite number of directions that are perpendicular to the direction of propa-
gation. In linearly polarized light, however, the field oscillations are contained within 
a well-defined plane. Light emitted from many light sources such as a tungsten light 
bulb or an LED diode is unpolarized and the field is randomly oriented in a direction 
that is perpendicular to the direction of propagation.
 For incidence angles greater than θp but smaller than θc, Fresnel’s equation, 
Equation 9.39, gives a negative number for r∥ which indicates a phase shift of 180° 
as shown in ϕ∥ in Figure 9.12b. The magnitudes of both r∥ and r⊥ increase with θi 
as apparent in Figure 9.12a. At the critical angle and beyond (past 44° in Figure 9.12), 
i.e., when θi ≥ θc, the magnitudes of both r∥ and r⊥ go to unity, so the reflected wave 
has the same amplitude as the incident wave. The incident wave has suffered total 

internal reflection (TIR). When θi > θc, in the presence of TIR, the Equations 9.37 
to 9.40 are complex quantities because then sin θi > n and the terms under the square 
roots become negative. The reflection coefficients become complex quantities of the 
type r⊥ = 1 · exp(−jϕ⊥)  and r∥ = 1 · exp(−jϕ∥) with the phase angles ϕ⊥ and ϕ∥ 
being other than 0 or 180°. The reflected wave therefore suffers phase changes ϕ⊥ 
and ϕ∥ in the components E⊥ and E∥. These phase changes depend on the incidence 
angle, as apparent in Figure 9.12b, and on n1 and n2.
 Examination of Equation 9.37 for r⊥ shows that for θi > θc, we have ∣r⊥∣ = 1, 
but the phase change ϕ⊥ is given by

 tan(1
2

 ϕ⊥) =
(sin2 θi − n2)1∕2

cos θi

 [9.44]

 For the E∥ component, the phase change ϕ∥ is given by

 tan(1
2

 ϕ∥ +
1
2

 π) =
(sin2 θi − n2)1∕2

n2 cos θi

 [9.45]

 We can summarize that, in internal reflection (n1 > n2), the amplitude of the 
reflected wave from TIR is equal to the amplitude of the incident wave but its phase 
has shifted by an amount determined by Equations 9.44 and 9.45.12 The fact that ϕ∥ 
has an additional π shift which makes ϕ∥ negative for θi > θc is due to the choice 
for the direction of the reflected optical field Er,∥ in Figure 9.11. (This π shift can 
be ignored if we simply invert Er,∥.)
 The reflection coefficients in Figure 9.12 considered the case in which n1 > n2. 
When light approaches the boundary from the higher index side, that is, n1 > n2, the 
reflection is said to be internal reflection and at normal incidence there is no phase 

change. On the other hand, if light approaches the boundary from the lower index 
side, that is, n1 < n2, then it is called external reflection. Thus in external reflection 

 12 It should be apparent that the concepts and the resulting equations apply to a well-defined linearly polarized 
light wave.
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light becomes reflected by the surface of an optically denser (higher refractive index) 
medium. There is an important difference between the two. Figure 9.13 shows how 
the reflection coefficients r⊥ and r∥ depend on the incidence angle θi for external 
reflection (n1 = 1 and n2 = 1.44). At normal incidence, both coefficients are nega-
tive, which means that in external reflection at normal incidence there is a phase 

shift of 180°. Further, r∥ goes through zero at the Brewster angle θp given by Equa-
tion 9.43. At this angle of incidence, the reflected wave is polarized in the E⊥ com-
ponent only. Transmitted light in both internal reflection (when θi < θc) and external 
reflection does not experience a phase shift.
 What happens to the transmitted wave when θi > θc? According to the boundary 
conditions, there must still be an electric field in medium 2; otherwise, the boundary 
conditions cannot be satisfied. When θi > θc, the field in medium 2 is a wave that 
travels near the surface of the boundary along the z direction as depicted in Figure 9.14. 
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The wave is called an evanescent wave and advances along z with its field decreas-
ing as we move into medium 2, i.e.,
 Et,⊥(y, z, t) ∝ e−α2y exp j(ωt − kizz)  [9.46]

where kiz = ki sin θi is the wavevector of the incident wave along the z axis, and α2 
is an attenuation coefficient for the electric field penetrating into medium 2,

 α2 =
2π n2

λ [(n1

n2)
2

 sin2 θi − 1]
1∕2

 [9.47]

where λ is the free-space wavelength. According to Equation 9.46, the evanescent 
wave travels along z and has an amplitude that decays exponentially as we move 
from the boundary into medium 2 (along y) as shown in Figure 9.11b. The field of 
the evanescent wave is e−1 in medium 2 when y = 1∕α2 = δ which is called the 

penetration depth. It is not difficult to show that the evanescent wave is correctly 
predicted by Snell’s law when θi > θc. The evanescent wave propagates along the 
boundary (along z) with the same speed as the z component velocity of the incident 
and reflected waves. In Equations 9.32 to 9.34 we had assumed that the incident and 
reflected waves were plane waves, that is, of infinite extent. If we were to extend 
the plane wavefronts on the reflected wave, these would cut the boundary as shown 
in Figure 9.14. The evanescent wave traveling along z can be thought of as arising 
from these plane wavefronts at the boundary as in Figure 9.14. (The evanescent wave 
is important in light propagation in optical waveguides such as in optical fibers.) If 
the incident wave is a narrow beam of light (e.g., from a laser pointer), then the 
reflected beam would have the same cross section. There would still be an evanescent 
wave at the boundary, but it would exist only within the cross-sectional area of the 
reflected beam at the boundary.

9.7.2 INTENSITY, REFLECTANCE, AND TRANSMITTANCE

It is frequently necessary to calculate the intensity or irradiance of the reflected and 
transmitted waves when light traveling in a medium of index n1 is incident at a bound-
ary where the refractive index changes to n2. In some cases we are simply interested in 
normal incidence where θi = 0°. For example, in laser diodes light is reflected from 
the ends of an optical cavity where there is a change in the refractive index.
 Reflectance R measures the intensity of the reflected light with respect to that of 
the incident light and can be defined separately for electric field components parallel 
and perpendicular to the plane of incidence. The reflectances R⊥ and R∥ are defined by

 R⊥ =
∣Ero,⊥∣2

∣Eio,⊥∣2 = ∣r⊥∣2 and R∥ =
∣Ero,∥∣2

∣Eio,∥∣2 = ∣r∥∣2 [9.48]

 From Equations 9.37 to 9.40 with normal incidence, these are simply given by

 R = R⊥ = R∥ = (n1 − n2

n1 + n2)
2

 [9.49]

Since a glass medium has a refractive index of around 1.5, this means that typically 
4 percent of the incident radiation on an air–glass surface will be reflected back.
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incidence
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 Transmittance T relates the intensity of the transmitted wave to that of the inci-
dent wave in a similar fashion to the reflectance. We must, however, consider that the 
transmitted wave is in a different medium and further its direction with respect to the 
boundary is also different by virtue of refraction. For normal incidence, the incident 
and transmitted beams are normal and the transmittances are defined and given by

 T⊥ =
n2∣Eto,⊥∣2

n1∣Eio,⊥∣2 = (n2

n1)∣t⊥∣2  and  T∥ =
n2∣Eto,∥∣2

n1∣Eio,∥∣2 = (n2

n1)∣t∥∣2 [9.50]

or

 T = T⊥ = T∥ =
4n1n2

(n1 + n2)2  [9.51]

Further, the fraction of light reflected and fraction transmitted must add to unity. 
Thus, R + T = 1.

Transmittance 

at normal 

incidence

REFLECTION OF LIGHT FROM A LESS DENSE MEDIUM (INTERNAL REFLECTION) A ray 
of light which is traveling in a glass medium of refractive index n1 = 1.460 becomes incident 
on a less dense glass medium of refractive index n2 = 1.440. Suppose that the free-space 
wavelength (λ) of the light ray is 1300 nm.

a. What should be the minimum incidence angle for TIR?
b. What is the phase change in the reflected wave when θi = 87° and when θi = 90°?
c. What is the penetration depth of the evanescent wave into medium 2 when θi = 80° and 

when θi = 90°?

SOLUTION

a. The critical angle θc for TIR is given by sin θc = n2∕n1 = 1.440∕1.460, so θc = 80.51°.

b. Since the incidence angle θi > θc, there is a phase shift in the reflected wave. The phase 
change in Er,⊥ is given by ϕ⊥. With n1 = 1.460, n2 = 1.440, and θi = 87°,

  tan(1

2
 ϕ⊥) =

(sin2 θi − n2)1∕2

cos θi

=
[sin2(87°) − (1.440

1.460)
2

]
1∕2

cos (87°)

  = 2.989 = tan[1
2(143.0°)]

 so the phase change is 143°. For the Er,∥ component, the phase change is

 tan(1
2

 ϕ∥ +
1
2

 π) =
(sin2 θi − n2)1∕2

n2 cos θi

=
1
n2 tan(1

2
  ϕ⊥)

 so

 tan(1
2

 ϕ∥ +
1
2

 π) = (n1

n2)
2

 tan(ϕ⊥

2 ) = (1.460
1.440)

2

 tan[1
2

 (143°)]
 which gives
 ϕ∥ = 143.95° − 180° = −36.05°

 We can repeat the calculation with θi = 90° to find ϕ⊥ = 180° and ϕ∥ = 0°.

 EXAMPLE 9.9
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Note that as long as θi > θc, the magnitude of the reflection coefficients are unity. 
Only the phase changes.

c. The amplitude of the evanescent wave as it penetrates into medium 2 is

 Et,⊥(y, t) ≈ Eto,⊥ exp(−α2y)

We ignore the z dependence, exp j(ωt − kzz), as this only gives a propagating prop-
erty along z. The field strength drops to e−1 when y = 1∕α2 = δ, which is called the 
penetration depth. The attenuation constant α2 is

 α2 =
2πn2

λ [(n1

n2)
2

 sin2 θi − 1]
1∕2

 i.e.,

 α2 =
2π(1.440)

(1300 × 10−9 m)[(1.460
1.440)

2

 sin2(87°) − 1]
1∕2

= 1.104 × 106 m−1

  so the penetration depth is δ = 1∕α2 = 1∕(1.104 × 106 m) = 9.06 × 10−7 m, or 0.906 
μm. For 90°, repeating the calculation we find α2 = 1.164 × 106 m−1, so δ = 1∕α2 = 
0.859 μm. We see that the penetration is greater for smaller incidence angles. The values 

for the refractive indices and wavelength are typical of those values found in optical fiber 

communications.

REFLECTION AT NORMAL INCIDENCE: INTERNAL AND EXTERNAL REFLECTION Consider 

the reflection of light at normal incidence on a boundary between a glass medium of refractive 

index 1.5 and air of refractive index 1.

a. If light is traveling from air to glass, what is the reflection coefficient and the intensity 

of the reflected light with respect to that of the incident light?

b. If light is traveling from glass to air, what is the reflection coefficient and the intensity 

of the reflected light with respect to that of the incident light?

c. What is the polarization angle in the external reflection in part (a)? How would you 

make a polaroid device that polarizes light based on the polarization angle?

SOLUTION

a. The light travels in air and becomes partially reflected at the surface of the glass which 

corresponds to external reflection. Thus n1 = 1 and n2 = 1.5. Then,

 r∥ = r⊥ =
n1 − n2

n1 + n2
=

1 − 1.5
1 + 1.5

= −0.2

  This is negative which means that there is a 180° phase shift. The reflectance (R), 
which gives the fractional reflected power, is

 R = r2
∥ = 0.04  or  4%

b. The light travels in glass and becomes partially reflected at the glass–air interface which 
corresponds to internal reflection. Thus n1 = 1.5 and n2 = 1. Then,

 r∥ = r⊥ =
n1 − n2

n1 + n2
=

1.5 − 1
1.5 + 1

= 0.2

 EXAMPLE 9.10
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 There is no phase shift. The reflectance is again 0.04 or 4 percent. In both cases (a) and 
(b), the amount of reflected light is the same.

c. Light is traveling in air and is incident on the glass surface at the polarization angle. 
Here n1 = 1, n2 = 1.5, and tan θp = (n2∕n1) = 1.5, so θp = 56.3°.

 If we were to reflect light from a glass plate keeping the angle of incidence at 56.3°, 
then the reflected light will be polarized with an electric field component perpendicular to 
the plane of incidence. The transmitted light will have the field greater in the plane of inci-
dence; that is, it will be partially polarized. By using a stack of glass plates one can increase 
the polarization of the transmitted light. (This type of pile-of-plates polarizer was invented 
by Dominique F. J. Arago in 1812.)

ANTIREFLECTION COATINGS ON SOLAR CELLS When light is incident on the surface of 
a semiconductor, it becomes partially reflected. Partial reflection is an important consider-
ation in solar cells where transmitted light energy into the semiconductor device is converted 
to electric energy. The refractive index of Si is about 3.5 at wavelengths around 700–800 nm. 
Thus the reflectance with n1(air) = 1 and n2(Si) ≈ 3.5 is

 R = (n1 − n2

n1 + n2)
2

= (1 − 3.5
1 + 3.5)

2

= 0.309

 This means that 30 percent of the light is reflected and is not available for conversion 
to electric energy, a considerable reduction in the efficiency of the solar cell.
 However, we can coat the surface of the semiconductor device with a thin layer of a 
dielectric material such as Si3N4 (silicon nitride) that has an intermediate refractive index. 
Figure 9.15 illustrates how the thin dielectric coating reduces the reflected light intensity. In 
this case n1(air) = 1, n2(coating) ≈ 1.9, and n3(Si) = 3.5. Light is first incident on the air– 
coating surface, and some of it becomes reflected; this reflected wave is shown as A in 
Figure 9.15. Wave A has experienced a 180° phase change on reflection as this is an external 
reflection. The wave that enters and travels in the coating then becomes reflected at the 
coating–semiconductor surface. This wave, which is shown as B, also suffers a 180° phase 
change since n3 > n2. When wave B reaches A, it has suffered a total delay of traversing the 
thickness d of the coating twice. The phase difference is equivalent to kc(2d) where kc = 2π∕λc 
is the wavevector in the coating and is given by 2π∕λc where λc is the wavelength in the 
coating. Since λc = λ∕n2, where λ is the free-space wavelength, the phase difference Δϕ 
between A and B is (2πn2∕λ)(2d). To reduce the reflected light, A and B must interfere 

 EXAMPLE 9.11
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Figure 9.15 Illustration of how an 
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destructively, and this requires the phase difference to be π or odd multiples of π, mπ where 
m = 1,3,5, . . . is an odd integer. Thus

 (2πn2

λ )2d = mπ  or  d = m( λ
4n2)

Thus, the thickness of the coating must be multiples of the quarter wavelength in the coating 
and depends on the wavelength.
 To obtain a good degree of destructive interference between waves A and B, the two 
amplitudes must be comparable. It turns out that we need n2 = √n1n3. When n2 = √n1n3, 
then the reflection coefficient between the air and coating is equal to that between the coat-
ing and the semiconductor. In this case we would need √3.5 or 1.87. Thus, Si3N4 is a good 
choice as an antireflection coating material on Si solar cells.
 Taking the wavelength to be 700 nm, d = (700 nm)∕[4(1.9)] = 92.1 nm or odd mul-
tiples of d.

 A dielectric mirror consists of a stack of dielectric layers of alternating refrac-
tive indices as schematically illustrated in Figure 9.16a, where n1 is greater than 
n2. The thickness of each layer is a quarter of wavelength or λlayer∕4, where λlayer 
is the wavelength of light in that layer, or λo∕n where λo is the free space wave-
length at which the mirror is required to reflect the incident light and n is the 
refractive index of the layer. Reflected waves from the interfaces interfere con-
structively and give rise to a substantial reflected light over a band of wavelengths 
centered around λo as shown in Figure 9.16b. If there are sufficient numbers of 
layers, the reflectance can approach 100 percent at the wavelength λo. Since n1 
(high) and n2 (low) layers are used in pairs, the total number of such pairs of 
layers, or double layers, is denoted as N; as N increases, the reflectance also 
increases. The layers are coated, by vacuum deposition techniques, on a suitable 
substrate. The dielectric mirror in Figure 9.16a is also knows as a quarter-wave 

Figure 9.16 (a) Schematic illustration of the principle of the dielectric mirror with many low and high refractive index  

layers. Reflected waves A, B, C, D, and so on all interfere constructively if the layer thicknesses d1 and d2 are a quarter of  

a wavelength within the layer, that is d1 = λ∕n1 and d2 = λ∕n2, where λ is the free space wavelength. The dielectric mirror is  

assumed to be coated on a substrate with an index n3. (b) The reflectance of a dielectric mirror that has N = 10, n1∕n2 = 

1.95∕1.46, where n1 = n(Si3N4) = 1.95 and n2 = n(SiO2) = 1.46 on a silicon wafer substrate.
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dielectric stack. Figure 9.16b shows the typical reflectance versus wavelength 
behavior of a particular dielectric stack that has 10 pairs of layers. The mirror has 
been designed to reflect at 1.55 μm.
 Consider the reflection coefficient r12 for light in layer 1 being reflected at the 
1–2 boundary is r12 = (n1 − n2)∕(n1 + n2) and is a positive number, indicating no 
phase change. The reflection coefficient for light in layer 2 being reflected at the 
2–1 boundary is r21 = (n2 − n1)∕(n2 + n1), which is −r12 or negative, indicating a 
π phase change. Thus the reflection coefficient alternates in sign through the mirror. 
Consider two arbitrary waves, B and C, which are reflected at two consecutive inter-
faces. The two waves are therefore already out of phase by π due to reflections at 
the different boundaries. Further, wave B travels an additional distance that is twice 
(λ2∕4) (the thickness of layer d2) before reaching wave B and therefore experiences 
a phase change equivalent to 2(λ2∕4) or λ2∕2, that is π. The phase difference between 

B and C is then π + π or 2π. Thus waves B and C are in phase and interfere con-

structively. We can similarly show that waves C and D also interfere constructively 
and so on, so that all reflected waves from the consecutive boundaries interfere 
constructively. After several layers (depending on the n1∕n2 ratio), the transmitted 
intensity will be very small and the reflected light intensity will be close to 100 percent 
as indicated in Figure 9.16b. Dielectric mirrors are widely used in photonics, for 
example, in solid state lasers such as the vertical cavity surface emitting laser diode. 
Since the dielectric mirror has a periodic variation in the refractive index (the period 
being d1 + d2), similar to a diffraction grating, it is sometimes referred to as a Bragg 
reflector. It is left as an exercise to show that if we interchange the high and low 
layers, we obtain the same result. As apparent from Figure 9.16b, there is a wave-
length range Δλ in which the reflectance is maximum. This range (Δλ) is called 
reflectance bandwidth; or the stop-band for the transmitted light.

9.8   COMPLEX REFRACTIVE INDEX 
AND LIGHT ABSORPTION

Generally when light propagates through a material, it becomes attenuated in the 
direction of propagation as illustrated in Figure 9.17. We distinguish between 
absorption and scattering both of which give rise to a loss of intensity in the 

k

z

Ex Medium
Figure 9.17 Attenuation of light in the direction of 

propagation.
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regular direction of propagation. In absorption, the loss in the power in the prop-
agating EM wave is due to the conversion of light energy to other forms of energy, 
e.g., lattice vibrations (heat) during the polarization of the molecules of the medium, 
local vibrations of impurity ions, and excitation of electrons from the valence band 
to the conduction band. On the other hand, scattering is a process by which the 
energy from a propagating EM wave is redirected as secondary EM waves in vari-
ous directions away from the original direction of propagation; this is discussed in 
Section 9.11.
 It is instructive to consider what happens when a monochromatic light wave 
such as

 E = Eo exp j(ωt − kz) [9.52]

is propagating in a dielectric medium. The electric field E in Equation 9.52 is either 
parallel to x or y since propagation is along z. As the wave travels through the 
medium, the molecules become polarized. This polarization effect is represented by 
the relative permittivity εr of the medium. If there were no losses in the polarization 
process, then the relative permittivity εr would be a real number and the correspond-
ing refractive index n = √εr would also be a real number. However, we know that 
there are always some losses in all polarization processes. For example, when the 
ions of an ionic crystal are displaced from their equilibrium positions by an alternat-
ing electric field and made to oscillate, some of the energy from the electric field 
is coupled and converted to lattice vibrations (intuitively, “sound” and heat). These 
losses are generally accounted for by describing the whole medium in terms of a 
complex relative permittivity (or dielectric constant) εr, that is,

 εr = ε′r − jε″r [9.53]

where the real part ε′r determines the polarization of the medium with losses ignored 
and the imaginary part ε″r describes the losses in the medium. For a lossless medium, 
obviously εr = ε′r. The loss ε″r depends on the frequency of the wave and usually 
peaks at certain natural (resonant) frequencies. If the medium has a finite conductiv-
ity (e.g., due to a small number of conduction electrons), then there will be a Joule 
loss due to the electric field in the wave driving these conduction electrons. This 
type of light attenuation is called free carrier absorption. In such cases we can 
describe the medium as having a complex relative permittivity as in Equation 9.53 
but with the imaginary (loss) part ε″r determined by the real part of the ac conductiv-
ity σac of the medium at the frequency of the wave. We know from Chapter 2 that 
the conductivity itself depends on the frequency of the field, and the real part of σac, 
written as Re(σac), represents the Joule loss. In a medium with Joule loss only, ε″r is 
then related to Re(σac) by13

 ε″r =
Re(σac)

εoω
 [9.54]

Lossless 

propagation

Complex 

dielectric 

constant

Conduction 

loss and 

imaginary 

relative 

permittivity

 13 The exact derivation involves solving Maxwell’s wave equation in a medium in which there are free charge 
carriers, beyond the scope of this book. However, Equation 9.54 is intuitively almost obvious from Equation 7.30 
in Chapter 7 and Figure 7.14. GP represents the real part of the admittance in Figure 7.14, so it must be A 
Re(σac) ∕d, and equating this to Equation 7.30 leads directly to Equation 9.54. Remember that in the present case 
we are representing conduction losses (finite σ) within the imaginary part ε″r.
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where σac is the ac conductivity of the medium, and Re(σac) is its real part, and 
depends on the frequency.
 An EM wave that is traveling in a medium and experiencing attenuation due to 
absorption can be generally described by a complex propagation constant k, that is,

 k = k′ − jk″ [9.55]

where k′ and k″ are the real and imaginary parts. If we put Equation 9.55 into Equa-
tion 9.52, we will find the following,

 E = Eo exp(−k″z) exp j(ωt − k′z) [9.56]

 The amplitude decays exponentially while the wave propagates along z. The real 
k′ part of the complex propagation constant (wavevector) describes the propagation 
characteristics, e.g., phase velocity v = ω∕k′. The imaginary k″ part describes the 
rate of attenuation along z. The intensity I at any point along z is

 I ∝ ∣E∣2 ∝ exp(−2k″z)

so the rate of change in the intensity with distance is

 
dI

dz
= −2k″I  [9.57]

where the negative sign represents attenuation.
 Suppose that ko is the propagation constant in a vacuum. This is a real quantity 
as a plane wave suffers no loss in free space. The complex refractive index N with 
real part n and imaginary part K is defined as the ratio of the complex propagation 
constant in a medium to propagation constant in free space,

 N = n − jK =
k

ko

= ( 1
ko

)[k′ − jk″]  [9.58a]

i.e.,

 n =
k′
ko

  and  K =
k″
ko

 [9.58b]

 The real part n is simply and generally called the refractive index and K is 
called the extinction coefficient. In the absence of attenuation,

 k″ = 0  k = k′  and  N = n =
k

ko

=
k′
ko

 We know that in the absence of loss, the relationship between the refractive 
index n and the relative permittivity εr is n = √εr. This relationship is also valid in 
the presence of loss except that we must use complex refractive index and complex 
relative permittivity, that is,

 N = n − jK = √εr = √ε′r − jε″r  [9.59]

 By squaring both sides we can relate n and K directly to ε′r and ε″r. The final 
result is
 n2 − K2 = ε′r  and  2n K = ε″r [9.60]
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 Optical properties of materials are typically reported either by showing the fre-
quency dependences of n and K or ε′r and ε″r. Clearly we can use Equation 9.60 to 
obtain one set of properties from the other. Figure 9.18 shows the real (n) and 
imaginary (K) parts of the complex refractive index of amorphous silicon (noncrys-
talline form of Si) as a function of photon energy (hf ). For photon energies below 
the bandgap energy, K is negligible and n is close to 3.5. Both n and K change 
strongly as the photon energy increases far beyond the bandgap energy.
 If we know the frequency dependence of the real part ε′r of the relative permit-
tivity of a material, we can also determine the frequency dependence of the imagi-
nary part ε″r, and vice versa. This may seem remarkable, but it is true provided that 
we know the frequency dependence of either the real or imaginary part over as wide 
a range of frequencies as possible (ideally from dc to infinity) and the material is 

linear, i.e., it has a relative permittivity that is independent of the applied field; the 
polarization response must be linearly proportional to the applied field.14 The rela-
tionships that relate the real and imaginary parts of the relative permittivity are called 
Kramers–Kronig relations. If ε′r(ω) and ε″r(ω) represent the frequency dependences 
of the real and imaginary parts, respectively, then one can be determined from the 
other as depicted schematically in Figure 9.19.
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Figure 9.18 Optical properties of an amorphous silicon 

film in terms of real (n) and imaginary (K) parts of the 

complex refractive index.

 14 In addition, the material system should be passive—contain no sources of energy.

Figure 9.19 Kramers–Kronig relations allow  

frequency dependences of the real and imaginary 

parts of the relative permittivity to be related to 

each other. The material must be a linear system.
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 The optical properties n and K can be determined by measuring the reflectance 
from the surface of a material as a function of polarization and the angle of incidence 
(based on Fresnel’s equations).
 It is instructive to mention that the reflection and transmission coefficients that 
we derived in Section 9.7 were based on using a real refractive index, that is, neglect-
ing losses. We can still use the reflection and transmission coefficients if we simply 
use the complex refractive index N instead of n. For example, consider a light wave 
traveling in free space incident on a material at normal incidence (θi = 90°). The 
reflection coefficient is now

 r = −
N − 1
N + 1

= −
n − jK − 1
n − jK + 1

 [9.61]

 The reflectance is then

 R = ∣ n − jK − 1
n − jK + 1 ∣ 2

=
(n − 1)2 + K2

(n + 1)2 + K2  [9.62]

which reduce to the usual forms when the extinction coefficient K = 0.

Reflectance

COMPLEX REFRACTIVE INDEX Spectroscopic ellipsometry measurements on a silicon 
crystal at a wavelength of 826.6 nm show that the real and imaginary parts of the complex 
relative permittivity are 13.488 and 0.038, respectively. Find the complex refractive index, 
the reflectance and the absorption coefficient α at this wavelength, and the phase velocity.

SOLUTION

We know that ε′r = 13.488 and ε″r = 0.038. Thus, from Equation 9.60, we have

 n2 − K 2 = 13.488  and  2nK = 0.038

 We can take K from the second equation and substitute for it in the first equation,

 n2 − (0.038
2n )

2

= 13.488

This is a quadratic equation in n2 that can be easily solved on a calculator to find n = 3.67. 
Once we know n, we can find K = 0.038∕2n = 0.00517. If we simply take the square root 
of the real part of εr, we would still find n = 3.67, because the extinction coefficient K is 
small. The reflectance of the Si crystal is

 R =
(n − 1)2 + K2

(n + 1)2 + K2 =
(3.67 − 1)2 + 0.005172

(3.67 + 1)2 + 0.005172 = 0.327

which is the same as simply using (n − 1)2∕(n + 1)2 = 0.327, because K is small.
 The absorption coefficient α describes the loss in the light intensity I via I = Io exp(−αz). 
By virtue of Equation 9.57,

 α = 2k″ = 2ko  K = 2( 2π

826.6 × 10−9)(0.00517) = 7.9 × 104 m−1

Almost all of this absorption is due to band-to-band absorption (photogeneration of electron–
hole pairs).

 EXAMPLE 9.12

Reflection 

coefficient
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 The phase velocity is given by

 v =
c

n
=

3 × 108 m s−1

3.67
= 8.17 × 107 m s−1

COMPLEX REFRACTIVE INDEX OF InP An InP crystal has a refractive index (real part) n 
of 3.549 at a wavelength of 620 nm (photon energy of 2 eV). The reflectance of the air–InP 
crystal surface at this wavelength is 0.317. Calculate the extinction coefficient K and the 
absorption coefficient α of InP at this wavelength.

SOLUTION

The reflectance R is given by

 R =
(n − 1)2 + K2

(n + 1)2 + K2  or  0.317 =
(3.549 − 1)2 + K2

(3.549 + 1)2 + K2

which on solving gives K = 0.302.
 The absorption coefficient is

 α = 2ko  K = 2( 2π

620 × 10−9)(0.302) = 6.1 × 106 m−1

 EXAMPLE 9.13

FREE CARRIER ABSORPTION COEFFICIENT AND CONDUCTIVITY From Chapter 2 we 
know that the electrical conductivity at an angular frequency ω is given by

 σac =
σo

1 + jωτ

where σo is the dc conductivity and τ is the mean free scattering time for the free carriers 
(electrons in an n-type semiconductor). Consider a semiconductor sample with a finite con-
ductivity and relate the absorption coefficient α to the dc conductivity σo and show that the 
α is proportional to 1∕ω2. An n-type Ge has a resistivity of 1 × 10−3 Ω m and the mean free 
scattering time τ of electrons (determined from the drift mobility) is 0.25 ps. Calculate the 
imaginary part ε″r of the relative permittivity at a wavelength of 10 μm where the refractive 
index is 4.0. Find the absorption coefficient α due to free carrier absorption.

SOLUTION

Consider the conduction losses suffered by a propagating EM wave which experiences an 
imaginary permittivity given by Equation 9.54. We need the real part of σac. We can write 
the ac conductivity as

 σac =
σo

1 + (ωτ)2 − j 

σoτω

1 + (ωτ)2

and then use the real part in Equation 9.54 to find

 ε″r =
σo

εoω[1 + (ωτ)2]

For ω > 1∕τ the above equation becomes,

 ε″r =
σo

εoω(ωτ)2  [9.63]

 EXAMPLE 9.14
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The relationship between the imaginary part ε″r of the relative permittivity and the extinction 
coefficient K is given by Equation 9.60

 2nK = ε″r

where n is the refractive index (the real part of N). Since the absorption coefficient from 
Example 9.13 is

 α = 2k″ = 2ko K = 2(2π

λ )(εr″

2n)
we have,

 α = (ω

c )ε″r

n
 [9.64]

Substituting for ε″r from Equation 9.63 gives,

 α =
σo

cnεo(ωτ)2
 [9.65]

This is the well-known (highly simplified) classical free carrier absorption equation. For 
the n-type Ge sample, the frequency ω is

 ω =
2πc

λ
= [2π(3 × 108 m s−1)

(10 × 10−6 m) ] = 1.88 × 1014 rad s−1

Equation 9.63 gives,

 ε″r =
σo

εoω(ωτ)2
=

(1 × 10−3 Ω m)−1

(8.85 × 10−12 F m−1) (1.88 × 1014 rad s−1)3(2.5 × 10−13 s)2

i.e., ε″r  = 2.72 × 10−4

 The absorption coefficient α due to free carriers is given by

α =
σo

cnεo(ωτ)2
=

(1 × 10−3 Ω m)−1

(3 × 108 m s−1) (4.0)(8.85 × 10−12 F m−1) [ (1.88 × 1014 rad s−1) (2.5 × 10−13 s) ]2

i.e., α = 42.6 m−1

Ge is used as an optical window in various infrared application in the wavelength range 
approximately 2–16 μm. It is clear that the conductivity of Ge should be as low as possible 
to reduce free carrier absorption. The mean scattering time τ used above for electrons is 
inferred from the electron drift mobility equation μe = eτ∕m*e  by taking μe = 3900 cm2 V−1 s−1 
and m*e  ≈ 0.12me (Table 5.1 in Chapter 5). Notice that ω > 1∕τ.

Absorption 

and 

imaginary 

relative 

permittivity

Absorption 

and 

conductivity

COMPLEX REFRACTIVE INDEX AND RESONANCE ABSORPTION Equation 9.12 is a 
simple expression for the electronic polarizability αe due to an oscillating field. It is based 
on the Lorentz model in which there is a restoring force acting against polarization of the 
atom or the molecule. ωo is a resonant frequency, or a natural frequency, associated with this 
type of electronic polarization. The same type of expression will also apply to ionic polariza-

tion, except that the resonant frequency ωo will be lower, and the mass me has to be changed to 
an effective mass of the ions.15 In practice there will be some loss mechanism that absorbs 
energy from the oscillating field and dissipates it. For example, in ionic polarization, this 

 EXAMPLE 9.15

 15 Both electronic and ionic polarizabilities have similar expressions. The ionic polarizability in an oscillating field 
was derived in Chapter 7, and Equation 7.90 looks almost exactly like Equation 9.66.
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would involve energy transfer from light to lattice vibrations. In mechanics it is well known 
that the loss forces (frictional forces) are always proportional to the velocity dx∕dt. If we 
include the energy loss in ac polarization, Equation 9.11 would have an additional term −γ 
dx∕dt on the right-hand side. If we then follow the same steps to obtain αe, we would find

 αe =
Ze2

me(ω2
o − ω2 + jγω)

 [9.66]

which is a complex number with real and imaginary parts (αe = α′e − jα″e).
 Since αe is a complex quantity, so is εr, and hence the refractive index. Consider the 
simplest relationship between the relative permittivity εr and polarizability αe,

 εr = 1 +
N

εo

 αe [9.67]

where N is the number of atoms per unit volume (or ion pairs per unit volume for ionic 
polarization). Thus, the relative permittivity is a complex quantity, that is εr = ε′r − jε″r. We 
can substitute from Equation 9.66 into 9.67, and also use the fact that when ω = 0, εr = εrdc, 
to obtain a simple expression for εr,

 εr = 1 +
εrdc − 1

1 − ( ω

ωo
)

2

+ j 
γω

ω2
o

  [9.68]

 The relationship between the complex refractive index N and the complex relative 
permittivity εr is

 N = n − jK = εr
1∕2 = (ε′r − jε″r )1∕2 [9.69]

 Suppose for simplicity we consider ionic polarization, and we set εrdc = 9 and γ = 0.1ωo 
(reasonable values for ionic polarization). We can calculate εr from Equation 9.68 for any 
choice of ω∕ωo (or for ω by taking ωo = 1), and then calculate N, that is n and K. (Our 
calculator or the math program must be able to handle complex numbers.) Figure 9.20a shows 
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the dependence of n and K on the frequency ω∕ωo for the simple Lorentz oscillator model 
in Equation 9.68. Notice how n and the extinction coefficient K peak close to ω = ωo.
 The reflectance from Equation 9.62 is plotted in Figure 9.20b as R versus ω∕ωo. It is 
apparent that R reaches its maximum value at a frequency slightly above ω = ωo, and then 
remains high until ω reaches nearly 3ωo; the reflectance is substantial while absorption is 

strong. It may seem strange that the crystal is both highly reflecting and highly absorbing. 
The light that is incident is strongly reflected, and the light that is inside the crystal becomes 
strongly absorbed. This phenomenon is known as infrared reflectance, and occurs over a band 
of frequencies, called the Reststrahlen band; in the present case from ωo to roughly 3ωo.

9.9  LATTICE ABSORPTION

In optical absorption, some of the energy from the propagating EM wave is converted 
to other forms of energy, for example, to heat by the generation of lattice vibrations. 
There are a number of absorption processes that dissipate the energy from the wave. 
One important mechanism is called lattice absorption (Reststrahlen absorption) 
and involves the vibrations of the lattice atoms as illustrated in Figure 9.21. The 
crystal in this example consists of ions, and as an EM wave propagates it displaces 
the oppositely charged ions in opposite directions and forces them to vibrate at the 
frequency of the wave. In other words, the medium experiences ionic polarization. 
It is the displacements of these ions that give rise to ionic polarization and its con-
tribution to the relative permittivity εr. As the ions and hence the lattice is made to 
vibrate by the passing EM wave, as shown in Figure 9.21, some energy is coupled 
into the natural lattice vibrations of the solid. This energy peaks when the frequency 
of the wave is close to the natural lattice vibration frequencies. Typically these fre-
quencies are in the infrared region. Most of the energy is then absorbed from the 
EM wave and converted to lattice vibrational energy (heat). We associate this absorp-
tion with the resonance peak or relaxation peak of ionic polarization loss (imaginary 
part of the relative permittivity ε″r ).
 Figure 9.22 shows the infrared resonance absorption peaks in the extinction 
coefficient K versus wavelength characteristics of a CdTe crystal, which has substantial 
ionic bonding. The absorption peak in Figure 9.22 is usually called a Reststrahlen 
band because absorption occurs over a band of frequencies (even though the band 

z

k
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Ions at equilibrium positions in the crystal

Forced oscillations by the EM wave

Figure 9.21 Lattice absorption through a 

crystal. The field in the EM wave oscillates 

the ions which consequently generate 

“mechanical” waves in the crystal; energy 

is thereby transferred from the wave to  

lattice vibrations.
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may be narrow), and in some cases may even have identifiable features. Indeed, if 
we were to plot the reflectance (R) versus wavelength, it would be similar to that 
shown in Figure 9.20b, and the band would be identified with the high reflectance 
region.
 Although Figure 9.21 depicts an ionic solid to visualize absorption due to lattice 
waves, energy from a passing EM wave can also be absorbed by various ionic impu-
rities in a medium as these charges can couple to the electric field and oscillate. 
Bonding between an oscillating ion and the neighboring atoms causes the mechani-
cal oscillations of the ion to be coupled to neighboring atoms. This leads to a gen-
eration of lattice waves which takes away energy from the EM wave.
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Figure 9.22 Lattice or Reststrahlen absorption in 

CdTe in terms of the extinction coefficient versus 

wavelength. For reference, n versus λ is also shown.

 Data extracted from Palik, E.D., Handbook of Optical 
Constants of Solids. San Diego, CA: Academic Press,  
1985, p. 415.

RESTSTRAHLEN ABSORPTION Figure 9.22 shows the infrared extinction coefficient K of 
GaAs and CdTe. Consider CdTe. Calculate the absorption coefficient α and the reflectance 
R of CdTe at the Reststrahlen peak, and also at 50 μm and at 100 μm. What is your conclusion?

SOLUTION

At the resonant peak, λ ≈ 72 μm, K ≈ 6, and n ≈ 5, so the corresponding free-space wave-
vector is

 ko =
2π

λ
=

2π

72 × 10−6 m
= 8.7 × 104 m−1

 The absorption coefficient α, by definition, is 2k″ in Equation 9.57, so

 α = 2k″ = 2ko K = 2(8.7 × 104 m−1)(6) = 1.0 × 106 m−1

which corresponds to an absorption depth 1∕α of about 1 μm. The reflectance is

 R =
(n − 1)2 + K2

(n + 1)2 + K2
=

(5 − 1)2 + 62

(5 + 1)2 + 62
= 0.72  or  72%

 EXAMPLE 9.16
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 Repeating the above calculations at λ = 50 μm, we get α = 8.3 × 102 m−1, and R = 0.11 
or 11 percent. There is a sharp increase in the reflectance from 11 to 72 percent as we 
approach the resonant peak. At λ = 100 μm, α = 6.3 × 103 m−1 and R = 0.31 or 31 percent, 
which is again smaller than the peak reflectance. R is maximum around the Reststrahlen peak.

9.10  BAND-TO-BAND ABSORPTION

The photon absorption process for photogeneration, that is, the creation of electron–
hole pairs (EHPs), requires the photon energy to be at least equal to the bandgap 
energy Eg of the semiconductor material to excite an electron from the valence band 
(VB) to the conduction band (CB). The upper cut-off wavelength (or the threshold 
wavelength) λg for photogenerative absorption is therefore determined by the band-
gap energy Eg of the semiconductor, so h(c∕λg) = Eg or

 λg(μm) =
1.24

Eg(eV)
 [9.70]

 For example, for Si, Eg = 1.12 eV and λg is 1.11 μm whereas for Ge, Eg = 
0.66 eV and the corresponding λg = 1.87 μm. It is clear that Si photodiodes cannot 
be used for optical communications at 1.3 and 1.55 μm, whereas Ge photodiodes are 
commercially available for use at these wavelengths. Table 9.3 lists some typical 
bandgap energies and the corresponding cut-off wavelengths of various photodiode 
semiconductor materials.
 Incident photons with wavelengths shorter than λg become absorbed as they 
travel in the semiconductor, and the light intensity, which is proportional to the 
number of photons, decays exponentially with distance into the semiconductor. The 
light intensity I at a distance x from the semiconductor surface is given by

 I(x) = Io exp(−αx) [9.71]

where Io is the intensity of the incident radiation and α is the absorption coefficient 
that depends on the photon energy or wavelength λ. The absorption coefficient α  
is a material property. Most of the photon absorption (63%) occurs over a distance 
1∕α, and 1∕α is called the penetration depth δ. Figure 9.23 shows the α versus λ 

Cut-off 

wavelength 

and bandgap

Absorption 

coefficient

Table 9.3  Bandgap energy Eg at 300 K, cut-off wavelength λg, and type  

of bandgap (D = direct and I = indirect) for some photodetector 

materials

Semiconductor Eg (eV) λg (μm) Type

InP 1.35 0.91 D
GaAs0.88Sb0.12 1.15 1.08 D
Si 1.12 1.11 I
In0.7Ga0.3As0.64P0.36 0.89 1.4 D
In0.53Ga0.47As 0.75 1.65 D
Ge 0.66 1.87 I
InAs 0.35 3.5 D
InSb 0.18 7 D
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characteristics of various semiconductors where it is apparent that the behavior of α 
with the wavelength λ depends on the semiconductor material.
 Absorption in semiconductors can be understood in terms of the behavior of the 
electron energy (E) with the electron momentum (ħk) in the crystal, called the crystal 

momentum. If k is the wavevector of the electron’s wavefunction in the crystal, then 
the momentum of the electron within the crystal is ħk. E versus ħk behaviors for elec-
trons in the conduction and valence bands of direct and indirect bandgap semiconduc-
tors are shown in Figure 9.24a and b, respectively. In direct bandgap semiconductors 
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such as III–V semiconductors (e.g., GaAs, InAs, InP, GaP) and in many of their 
alloys (e.g., InGaAs, GaAsSb) the photon absorption process is a direct process 
which requires no assistance from lattice vibrations. The photon is absorbed and the 
electron is excited directly from the valence band to the conduction band without a 
change in its k-vector, or its crystal momentum ħk, inasmuch as the photon momen-
tum is very small. The change in the electron momentum from the valence to the 
conduction band is
 ħkCB − ħkVB = Photon momentum ≈ 0

 This process corresponds to a vertical transition on the electron energy (E) ver-
sus electron momentum (ħk) diagram as shown in Figure 9.24a. The absorption 
coefficient of these semiconductors rises sharply with decreasing wavelength from 
λg as apparent for GaAs and InP in Figure 9.23.
 In indirect bandgap semiconductors such as Si and Ge, the photon absorption 
for photon energies near Eg requires the absorption and emission of lattice vibrations, 
that is, phonons,16 during the absorption process as shown in Figure 9.24. If K is the 
wavevector of a lattice wave (lattice vibrations travel in the crystal), then ħK repre-
sents the momentum associated with such a lattice vibration; that is, ħK is a phonon 
momentum. When an electron in the valence band is excited to the conduction band, 
there is a change in its momentum in the crystal, and this change in the momentum 
cannot be supplied by the momentum of the incident photon which is very small. 
Thus, the momentum difference must be balanced by a phonon momentum,

 ħkCB − ħkVB = Phonon momentum = ħK

 The absorption process is said to be indirect as it depends on lattice vibrations 
which in turn depend on the temperature. Since the interaction of a photon with a 
valence electron needs a third body, a lattice vibration, the probability of photon 
absorption is not as high as in a direct transition. Furthermore, the cut-off wavelength 
is not as sharp as for direct bandgap semiconductors. During the absorption process, 
a phonon may be absorbed or emitted. If fpn is the frequency of the lattice vibrations, 
then the phonon energy is hfpn. The photon energy is hf where f is the photon fre-
quency. Conservation of energy requires that

 hf = Eg ± hfpn

 Thus, the onset of absorption does not exactly coincide with Eg, but typically it 
is very close to Eg inasmuch as hfpn is small (< 0.1 eV). The absorption coefficient 
initially rises slowly with decreasing wavelength from about λg as apparent in  
Figure 9.23 for Si and Ge.

 16 As much as an electromagnetic radiation is quantized in terms of photons, lattice vibrations in the crystal are 
quantized in terms of phonons. A phonon is a quantum of lattice vibration. If K is the wavevector of a vibrational 
wave in a crystal lattice and ω is its angular frequency, then the momentum of the wave is ħK and its energy  
is ħω.

FUNDAMENTAL ABSORPTION A GaAs infrared LED emits at about 860 nm. A Si photo-
detector is to be used to detect this radiation. What should be the thickness of the Si crystal 
that absorbs most of this radiation?

 EXAMPLE 9.17
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SOLUTION

According to Figure 9.23, at λ ≈ 0.8 μm, Si has α ≈ 6 × 104 m−1, so the absorption depth

 δ =
1
α

=
1

6 × 104 m−1 = 1.7 × 10−5 m  or  17 μm

 If the crystal thickness is δ, then 63 percent of the radiation will be absorbed. If the 
thickness is 2δ, then the fraction of absorbed radiation, from Equation 9.71, will be

 Fraction of absorbed radiation = 1 − exp[−α(2δ)] = 0.86  or  86%

9.11  LIGHT SCATTERING IN MATERIALS

Scattering of an EM wave implies that a portion of the energy in a light beam is 
directed away from the original direction of propagation as illustrated for a small 
dielectric particle scattering a light beam in Figure 9.25. There are various types of 
scattering processes.
 Consider what happens when a propagating wave encounters a molecule, or a 
small dielectric particle (or region), which is smaller than the wavelength. The elec-
tric field in the wave polarizes the particle by displacing the lighter electrons with 
respect to the heavier positive nuclei. The electrons in the molecule couple and 
oscillate with the electric field in the wave (ac electronic polarization). The oscilla-
tion of charge “up” and “down,” or the oscillation of the induced dipole, radiates 
EM waves all around the molecule as depicted in Figure 9.25. We should remember 
that an oscillating charge is like an alternating current which always radiates EM 
waves (like an antenna). The net effect is that the incident wave becomes partially 
reradiated in different directions and hence loses intensity in its original direction of 
propagation. We may think of the process as the particle absorbing some of the 
energy via electronic polarization and reradiating it in different directions. It may be 
thought that the scattered waves constitute a spherical wave emanating from the 
scattering molecule, but this is not generally the case as the reemitted radiation 
depends on the shape and polarizability of the molecule in different directions. We 
assumed a small particle so that at any time the field has no spatial variation through 
the particle, whose polarization then oscillates with the electric field oscillation. 

Scattered waves

Through wave

A dielectric particle smaller than the wavelength

Incident wave

Figure 9.25 Rayleigh scattering involves the 

polarization of a small dielectric particle or a 

region that is much smaller than the light  

wavelength.

The field forces dipole oscillations in the  

particle (by polarizing it), which leads to the 

emission of EM waves in “many” directions so 

that a portion of the light energy is directed 

away from the incident beam.
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Whenever the size of the scattering region, whether an inhomogeneity or a small 
particle or a molecule, is much smaller than the wavelength λ of the incident wave, 
the scattering process is generally termed Rayleigh scattering. In this type of scat-
tering, typically the particle size is smaller than one-tenth of the wavelength.
 Rayleigh scattering of waves in a medium arises whenever there are small inho-
mogeneous regions in which the refractive index is different than the medium (which 
has some average refractive index). This means a local change in the relative permit-
tivity and polarizability. The result is that the small inhomogeneous region acts like 
a small dielectric particle and scatters the propagating wave in different directions. 
In the case of optical fibers, dielectric inhomogeneities arise from fluctuations in the 
relative permittivity that is part of the intrinsic glass structure. As the fiber is drawn 
by freezing a liquid-like flow, random thermodynamic fluctuations in the composi-
tion and structure that occur in the liquid state become frozen into the solid structure. 
Consequently, the glass fiber has small fluctuations in the relative permittivity which 
leads to Rayleigh scattering. Nothing can be done to eliminate Rayleigh scattering 
in glasses as it is part of their intrinsic structure.
 It is apparent that the scattering process involves electronic polarization of the 
molecule or the dielectric particle. We know that this process couples most of the 
energy at ultraviolet frequencies where the dielectric loss due to electronic polariza-
tion is maximum and the loss is due to EM wave radiation. Therefore, as the fre-
quency of light increases, the scattering becomes more severe. In other words, 
scattering decreases with increasing wavelength. For example, blue light which has 
a shorter wavelength than red light is scattered more strongly by air molecules. When 
we look at the sun directly, it appears yellow because the blue light has been scat-
tered in the direct light more than the red light. When we look at the sky in any 
direction but the sun, our eyes receive scattered light which appears blue; hence the 
sky is blue. At sunrise and sunset, the rays from the sun have to traverse the longest 
distance through the atmosphere and have the most blue light scattered which gives 
the sun its red color at these times.

9.12  ATTENUATION IN OPTICAL FIBERS

As light propagates through an optical fiber, it becomes attenuated by a number 
of processes that depend on the wavelength of light. Figure 9.26 shows the atten-
uation coefficient, as dB per km, of a typical silica-glass-based optical fiber as a 
function of wavelength. The sharp increase in the attenuation at wavelengths 
beyond 1.6 μm in the infrared region is due to energy absorption by “lattice vibra-
tions” of the constituent ions of the glass material. Fundamentally, energy absorp-
tion in this region corresponds to the stretching of the Si–O bonds in ionic 
polarization induced by the EM wave. Absorption increases with wavelength as 
we approach the resonance wavelength of the Si–O bond which is around 9 μm. 
In the case of Ge–O glasses, this is further away, around 11 μm. There is another 
intrinsic material absorption in the region below 500 nm, not shown in Figure 9.26, 
which is due to photons exciting electrons from the valence band to the conduction 
band of the glass.
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 There is a marked attenuation peak centered at 1.4 μm, and a barely discernible 
minor peak at about 1.24 μm. These attenuation regions arise from the presence of 
hydroxyl ions as impurities in the glass structure inasmuch as it is difficult to remove 
all traces of hydroxyl (water) products during fiber production. Further, hydrogen atoms 
can easily diffuse into the glass structure at high temperatures during production which 
leads to the formation of hydrogen bonds in the silica structure and OH ions. Energy 
is absorbed mainly by the stretching vibrations of the OH bonds within the silica struc-
ture which has a fundamental resonance in the infrared region (beyond 2.7 μm) but 
overtones or harmonics at lower wavelengths (or higher frequencies). The first overtone 
at around 1.4 μm is the most significant as can be seen in Figure 9.26. The second 
overtone is around 1 μm, and in high-quality fibers this is negligible. A combination 
of the first overtone of the OH vibration and the fundamental vibrational frequency of 
SiO2 gives rise to a minor loss peak at around 1.24 μm. There are two important win-
dows in the attenuation versus wavelength behavior where the attenuation exhibits 
minima. The window at around 1.3 μm is the region between two neighboring OH− 
absorption peaks. This window is widely used in optical communications at 1310 nm. 
The window at around 1.55 μm is between the first harmonic absorption of OH− and 
the infrared lattice absorption tail and represents the lowest attenuation. Current tech-
nological drive is to use this window for long-haul communications. It can be seen that 
it is important to keep the hydroxyl content in the fiber within tolerable levels.
 There is a background attenuation process that decreases with wavelength and 
is due to the Rayleigh scattering of light by the local variations in the refractive 
index. Glass has a noncrystalline or an amorphous structure which means that there 
is no long-range order to the arrangement of the atoms but only a short-range order, 
typically a few bond lengths. The glass structure is as if the structure of the melt 
has been suddenly frozen. We can only define the number of bonds a given atom in 
the structure will have. Random variations in the bond angle from atom to atom lead 
to a disordered structure. There is therefore a random local variation in the density 
over a few bond lengths which leads to fluctuations in the refractive index over few 
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atomic lengths. These random fluctuations in the refractive index give rise to light 
scattering and hence light attenuation along the fiber. It should be apparent that since 
a degree of structural randomness is an intrinsic property of the glass structure, this 
scattering process is unavoidable and represents the lowest attenuation possible 
through a glass medium. As one may surmise, attenuation by scattering in a medium 
is minimum for light propagating through a “perfect” crystal. In this case the only 
scattering mechanisms will be due to thermodynamic defects (vacancies) and the 
random thermal vibrations of the lattice atoms.
 As mentioned above, the Rayleigh scattering process decreases with wavelength 
and, according to Lord Rayleigh, it is inversely proportional to λ4. The expression 
for the attenuation αR in a single component glass due to Rayleigh scattering is 
approximately given by

 αR ≈
8π3

3λ4 (n2 − 1)2βT kTf  [9.72]

where λ is the free-space wavelength, n is the refractive index at the wavelength of 
interest, βT is the isothermal compressibility (at Tf) of the glass, k is the Boltzmann 
constant, and Tf is a quantity called the fictive temperature (roughly the softening 

temperature of glass) where the liquid structure during the cooling of the fiber is 
frozen to become the glass structure. Fiber is drawn at high temperatures, and as the 
fiber cools eventually the temperature drops sufficiently for the atomic motions to 
be so sluggish that the structure becomes essentially “frozen-in” and remains like 
this even at room temperature. Thus Tf marks the temperature below which the liq-
uid structure is frozen, and hence the density fluctuations are also frozen into the 
glass structure. It is apparent that Rayleigh scattering represents the lowest attenua-
tion one can achieve using a glass structure. By proper design, the attenuation win-
dow at 1.5 μm may be lowered to approach the Rayleigh scattering limit.

Rayleigh 

scattering  

in silica

RAYLEIGH SCATTERING LIMIT What is the attenuation due to Rayleigh scattering at around 

the λ = 1.55 μm window given that pure silica (SiO2) has the following properties: Tf = 1730 °C 
(softening temperature), βT = 7 × 10−11 m2 N−1 (at high temperatures), n = 1.4446 at 1.5 μm?

SOLUTION

We simply calculate the Rayleigh scattering attenuation using

 αR ≈
8π3

3λ4  (n2 − 1)2βTkTf

so

  αR ≈
8π3

3(1.55 × 10−6)4  (1.44462 − 1)2(7 × 10−11) (1.38 × 10−23) (1730 + 273)

  = 3.27 × 10−5 m−1  or  3.27 × 10−2 km−1

 Attenuation in dB per km is then

 αdB = 4.34αR = (4.34)(3.27 × 10−2 km−1) = 0.142 dB km−1

 This represents the lowest possible attenuation for a silica glass fiber at 1.55 μm.

 EXAMPLE 9.18
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OPTICAL FIBER ATTENUATION As light travels along an optical fiber, it becomes attenu-
ated essentially following the optical fiber attenuation shown in Figure 9.26. Consider an 
optical fiber link as in Figure 9.10 in which optical pulses are sent along the fiber to a des-
tination. Suppose that the input optical power into a fiber of length L is Pin and the output 
optical power at the end is Pout and intensity anywhere in the fiber at a distance z from the 
input is P. The optical power attenuation coefficient α is defined as the fractional decrease 

in the optical power per unit distance, i.e.,

 α = −
1
P

 
dP

dz

 We can integrate this over the length L of the fiber to relate α to Pout and Pin by

 α =
1
L

 ln( Pin

Pout)
 If we know α then we can always find Pout from Pin through,

 Pout = Pinexp(−αL)

 The units for the attenuation coefficient α in exponential decays is usually Nepers per 
meter, Np m−1. However, in general, optical power attenuation in fibers is expressed in terms 
of decibels per unit length of fiber, typically as dB km−1. The attenuation of the signal in 
decibels per unit length is defined in terms of the logarithm to base 10 by

 αdB =
1
L

 10 log( Pin

Pout)
 Figure 9.26 essentially represents this αdB. Substituting for Pin∕Pout from above we obtain

 αdB =
10

ln(10)
 α = 4.34α

 Suppose that we launch 1 mW of optical power into an optical fiber operating at 1550 nm 
from a laser diode. Suppose that the photodetector at the output in Figure 9.10 requires a 
minimum power of 100 nW to provide a clear signal (above noise). From Figure 9.26, the 
attenuation αdB is roughly 0.2 dB km−1. Thus, the maximum length of fiber L allowed is

 L =
1

αdB
 10 log( Pin

Pout) =
1

0.2
 10 log(10−3

10−7) = 200 km

 There will be additional losses, such as fiber bending losses which arise from the bend-
ing of the fiber or splice losses (two fibers fused together to make a connection between the 
two). These losses will reduce this length to below this limit.

9.13  LUMINESCENCE, PHOSPHORS, AND WHITE LEDS

We know from our general experience that certain substances, known as phosphors, 

can absorb light and then reemit light even after the excitation light source has been 
turned off; this is an example of luminescence. In general, luminescence is the 
emission of light by a material, called a phosphor, due to the absorption and conver-
sion of energy into electromagnetic radiation as illustrated in Figure 9.27a and b. 

 EXAMPLE 9.19

Definition of 

attenuation 

coefficient

Attenuation 

coefficient

Exponential 

power decay

Conversion  

to decibels

Attenuation 

coefficient in 

dB/length
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The luminescent radiation emitted by the phosphor material is considered to be quite 
separate from the thermal radiation emitted by virtue of its temperature. Lumines-
cence is light emitted by a nonthermal source when it is excited, in contrast to the 
emission of radiation from a heated object such as the tungsten filament of a light 
bulb; the latter is called incandescence. Typically the emission of light occurs from 
certain dopants, impurities, or even defects, called luminescent or luminescence 
centers, purposefully introduced into a host matrix, which may be a crystal or glass 
as shown in Figure 9.27c. The luminescent center is also called an activator. There 
are many examples of phosphors. For example, in ruby, the Cr3+ ions are the lumi-
nescent centers in the sapphire (Al2O3) crystal host. Cr3+ ions can absorb UV or 
violet light and then emit red light. This phosphor system is written as Al2O3:Cr3+. 
The excitation and emission involves only the Cr3+ ion. In other cases, the activator 
excitation may also involve the host as discussed later.
 Luminescence is normally categorized according to the source of excitation 
energy. Photoluminescence involves excitation by photons (light) as in Figure 9.27a. 
X-ray luminescence involves incident X-rays exciting a phosphor to emit light. 
Cathodoluminescence, as shown in Figure 9.27b, is light emission when the excita-
tion is the bombardment of the phosphor with energetic electrons as in TV cathode 
ray tubes. Electroluminescence is light emission due to the passage of an electric 
current. Electroluminescence in semiconductive materials appears as a result of an 
excited electron transiting down to the ground energy level, which would correspond 
to the recombination of an electron and a hole; the excited electron is the conduction 
band (CB), and its ground state corresponds to a hole in the valence band (VB). The 
direct electron–hole recombination mechanism generally occurs very quickly. For 
example, typical minority carrier lifetimes are in the range of nanoseconds, so light 
emission from a semiconductor stops within nanoseconds after the removal of the 
excitation. Such quick luminescence processes occurring over a nanosecond time 
scale or shorter are normally identified as fluorescence. The emission of light from 
a fluorescent tube is actually a fluorescence process. The tube contains a gas mixture 
of argon and mercury. The Ar and Hg gas atoms become excited by the electrical 
discharge process and emit light mainly in the ultraviolet region. This UV light is 
absorbed by the fluorescent coating on the inside of the tube. The excited activators 
in the phosphor coating then emit radiation in the visible region. A number of phos-
phors are used to obtain “white” light from the tube.

Activators or
luminescent centers
(e.g., Cr3+)

Host matrix (e.g., Al2O3)

Phosphor

Emitted light

Heat

Phosphor

Incident
electrons

Emitted light
Phosphor

Incident
light Heat

(a) Photoluminescence (b) Cathodoluminescence (c) A typical phosphor = host + activators

Figure 9.27 Photoluminescence, cathodoluminescence, and a typical phosphor.
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 There are also phosphors from which light emission may continue for millisec-
onds to hours after the cessation of excitation. These slow luminescence processes 
are normally referred to as phosphorescence (also known as afterglow).
 Many phosphors are based on activators doped into a host matrix; for example, 
Eu3+ (europium ion) in a Y2O3 (yttrium oxide) matrix is a widely used modern 
phosphor. When excited by UV radiation, it provides an efficient luminescence emis-
sion in the red (around 613 nm). It is used as the red-emitting phosphor in color TV 
tubes and in modern tricolor fluorescent lamps. In very general terms, we can rep-
resent the energy of an activator in a host matrix by the highly simplified energy 
diagram in Figure 9.28. The ground state of the activator is E1. Upon excitation by 
an incident radiation of suitable energy hfex the activator becomes excited to E2. 
From this energy level, it decays, or relaxes, down relatively quickly (on a time scale 
of the order of picoseconds) to an energy level E′2 by emitting phonons or lattice 
vibrations. This type of decay is called radiationless or nonradiative decay. From 
E′2, the activator decays down to E′1 by emitting a photon (spontaneous emission), 
which is the emitted luminescent radiation. The emitted photon energy is hfem, which 
is less than the excitation photon energy hfex. The return from E′1 to the ground state 
E1 involves phonon emissions. Further, for some activators, E′1 is either very close 
to E1, or it is E1. The energy levels such as E2, E′2, E′1, etc., are not well-defined 
single levels but involve finely spaced multilevels. The higher levels may form mul-
tilevel narrow energy “bands.” In this example, the activator absorbed the incident 
radiation and was directly excited, which is known as activator excitation. The Cr3+ 
ions in Al2O3:Cr3+ can be excited directly by blue light and would then emit in the 
red. There are many phosphors in which the excitation involves the host. In host 

excitation, the host matrix absorbs the incident radiation and transfers the energy to 
the activator, which then becomes excited to E2 in Figure 9.28, and so on. In X-ray 
phosphors, for example, the X-rays are absorbed by the host, which subsequently 
transfers the energy to the activators. It is apparent from Figure 9.28 that the emitted 
radiation (hfem) has a longer wavelength than the exciting radiation (hfex), that is, 
hfem < hfex. The downshift in the light frequency from absorbed to emitted radiation 

E′2

E′1

Luminescent emission, hfem

Nonradiative decay

Energy of luminescent center in host

E2

hfex

Excitation

E1

Nonradiative decay

Figure 9.28 Photoluminescence: light absorption, 

 excitation, nonradiative decay and light emission, and 

return to the ground state E1.

The energy levels have been displaced horizontally 

for clarity.
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is called the Stoke’s shift. It should be emphasized that the energy levels of the acti-
vator (as shown in Figure 9.28) also depend on the host, because the internal electric 
fields within the host crystal act on the activator and shift these levels up and down. 
The emission characteristics depend firstly on the activator, and secondly on the host.
 There are a number of host excitation mechanisms. In one possible process, 
which involves a semiconductor host, as depicted in Figure 9.29, an incident photon 
initially excites a valence band (VB) electron to the conduction band (CB). The 
electron then thermalizes, i.e., loses the excess energy as it collides with lattice 
vibrations, and falls close to Ec, and wanders around in the crystal. In one process, 
a in Figure 9.29, the electron can be captured into an excited state D of a lumines-
cent center or an activator. The electron then falls down in energy to the ground 
state A of the activator releasing a photon, which is the luminescent emission. The 
electron at the ground state then recombines with a hole in the VB. Thus the acti-
vator acts as a radiative recombination center. In some cases D and A may be 
separate centers representing donor and acceptor-like centers, hence the labels  
D and A. In other cases, the radiative recombination center may simply be a single 
energy level in the bandgap, which is shown as R in Figure 9.29. The electron can 
emit a photon as it is captured into R, shown as process b in Figure 9.29, or emit 
the photon after it is captured by R, as it recombines with a hole, shown as process 
c in Figure 9.29. Processes a and b occur in various ZnS-based phosphors. For 
example, in ZnS:Cu+ phosphors, the activator is Cu+, which has an energy level at 
A in Figure 9.29. The luminescent emission is enhanced by using a coactivator, 
such as Al in ZnS:Cu+. Al acts as a shallow donor D, and the luminescence is due 
to process a in Figure 9.29.
 There may also be traps in the semiconductor because of various crystal 
defects, or there may be added impurities. The electron can become captured by 

Ev

(a)

Recombination

(b) (c) (d)

Thermalization

Trapping
Et

hf < Eg

Ec

CB

Eg

hf > Eg

VB

Luminescent
center or
activator

D R

A R

Figure 9.29 Optical absorption generates an EHP.

Both carriers thermalize. There are a number of recombination processes via a dopant that can 

result in a luminescent emission.
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a trap at a localized energy level Et in the bandgap, but close to Ec. These electron 
traps temporarily capture an electron from the conduction band and thereby immo-
bilize it. The time the electron spends trapped at Et depends on the energy depth 
of the trap from the conduction band, Ec − Et. After a while a strong lattice 
vibration returns the electron back into the conduction band (by thermal excita-
tion). The time interval between photogeneration and recombination can be rela-
tively long if the electron remains captured at Et for a considerable length of time. 
In fact, the electron may become trapped and detrapped many times before it 
finally recombines, so the emission of light can persist for a relatively long time 
after the cessation of excitation (e.g., milliseconds or longer) as indicated by 
process d in Figure 9.29.
 It is also possible to excite electrons into the CB by bombarding the material 
with a high-energy electron beam, which leads to cathodoluminescence. Color 
CRT displays are typically coated uniformly with three sets of phosphor dots 
which exhibit cathodoluminescence in the blue, red, and green wavelengths. In 
electroluminescence, an electric current, either ac or dc, is used to inject elec-
trons into the CB which then recombine with holes and emit light. For example, 
passing a current through certain semiconducting phosphors such as ZnS doped 
with Mn causes light emission by electroluminescence. The emission of light 
from a light emitting diode (LED) is an example of injection electrolumines-

cence in which the applied voltage causes charge carrier injection and recombi-
nation in a device (diode) that has a junction between a p-type and an n-type 
semiconductor.
 Zinc sulfide with various activators has been one of the traditional phosphors. 
The ZnS:Ag+ in which Ag+ is the activator, is still used as a blue emitting phosphor, 
though in some cases Cd is substituted for some of the Zn. ZnS:Cu+ emits in the 
green, which is also a useful phosphor. Most modern phosphors, on the other hand, 
have been based on using rare earth activators in various hosts. For example, 
Y2O3:Eu3+ absorbs UV radiation and emits in the red. Y3Al5O12:Ce3+ absorbs blue 
light and emits yellow light. Some of the most popular activators are Eu3+ for red, 
Eu2+ for blue, and Tb3+ for green. Table 9.4 summarizes a number of phosphors 
commonly used in various applications.

Table 9.4 Selected phosphor examples

   Useful Example 

Phosphor Activator Emission Excitation Comment or Application

Y2O3:Eu3+ Eu3+ Red UV Fluorescent lamp, color TV
BaMgAl10O17:Eu2+ Eu2+ Blue UV Fluorescent lamp
CeMgAl11O19:Tb3+ Tb3+ Green UV Fluorescent lamp
Y3Al5O12:Ce3+ Ce3+ Yellow Blue, violet White LED
Sr2SiO4:Eu3+ Eu3+ Yellow Violet White LED (experimental)
ZnS:Ag+ Ag+ Blue Electron beam Color TV blue phosphor
Zn0.68Cd0.32S:Ag+ Ag+ Green Electron beam Color TV green phosphor
ZnS:Cu+ Cu+ Green Electron beam Color TV green phosphor
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 Recent inexpensive white LEDs that have appeared on the market seem to emit 
white light by emitting a mixture of blue and yellow light which are registered visu-
ally by the eye as appearing white. (Yellow consists of red and green mixed together, 
so mixing blue and yellow generates “white.”) The production of white LEDs became 
possible due to development of bright blue-emitting LEDs based on gallium-indium-
nitride (GaInN). The white LED uses a semiconductor chip emitting at a short wave-
length (blue, violet, or ultraviolet) and a phosphor to convert some of the blue light 
to yellow light as depicted in Figure 9.30a. The phosphor absorbs light from the 
diode and undergoes luminescent emission at a longer wavelength. Obviously, the 
quality and spectral characteristics of the combined emission vary with different 
designs; Figure 9.30b shows example spectra involved in the blue and yellow emis-
sions and the overall “white” emission from a white LED. Typical phosphors have 
been based on yttrium aluminum garnets (Y3Al5O12, YAG) as the host material. This 
host is doped with one of the rare earth elements for the activator. Cerium is a com-
mon dopant element in YAG phosphors; that is, the phosphor is Y3Al5O12:Ce3+, 
which is able to efficiently absorb the blue and emit the yellow. White LEDs are 
now replacing most incandescent sources for general lighting.

9.14  POLARIZATION

A propagating EM wave has its electric and magnetic fields at right angles to the 
direction of propagation. If we place a z axis along the direction of propagation, then 
the electric field can be in any direction in the plane perpendicular to the z axis. The 
term polarization of an EM wave describes the behavior of the electric field vector 
in the EM wave as it propagates through a medium. If the oscillations of the electric 
field at all times are contained within a well-defined line, then the EM wave is said 
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Figure 9.30 (a) A typical “white” LED structure. (b) The spectral distribution of light emitted by a white LED. 

Blue luminescence is emitted by the GainN chip and “yellow” phosphorescence or luminescence is produced 

by a phosphor. The combined spectrum looks “white.”
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to be linearly polarized as shown in Figure 9.31a. The field vibrations and the direc-
tion of propagation (z) define a plane of polarization (plane of vibration), so linear 
polarization implies a wave that is plane-polarized. By contrast, if a beam of light 
has waves with the E field in each in a random direction but perpendicular to z, then 
this light beam is unpolarized. A light beam can be linearly polarized by passing the 
beam through a polarizer, such as a polaroid sheet, a device that only passes electric 
field oscillations lying on a well-defined plane parallel to its transmission axis.
 Suppose that we arbitrarily place the x and y axes and describe the electric field 
in terms of its components Ex and Ey along x and y (we are justified to do this because 
Ex and Ey are perpendicular to z). To find the electric field in the wave at any space 
and time location, we add Ex and Ey vectorially. Both Ex and Ey can individually be 
described by a wave equation which must have the same angular frequency ω and 
wavenumber k. However, we must include a phase difference ϕ between the two:

 Ex = Exo cos(ωt − kz) [9.73]

and
 Ey = Eyo cos(ωt − kz + ϕ) [9.74]

where ϕ is the phase difference between Ey and Ex; ϕ can arise if one of the com-
ponents is delayed (retarded).
 The linearly polarized wave in Figure 9.31a has the E oscillations at −45° to 
the x axis as shown in Figure 9.31b. We can generate this field by choosing Exo = Eyo 
and ϕ = ±180°(±π) in Equations 9.73 and 9.74. Put differently, Ex and Ey have the 
same magnitude, but they are out of phase by 180°. If ux and uy are the unit vectors 
along x and y, using ϕ = π in Equation 9.74, the field in the wave is

 E = uxEx + uyEy = uxExo cos(ωt − kz) − uyEyo cos(ωt − kz)

or
 E = Eo cos(ωt − kz) [9.75]
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Figure 9.31 (a) A linearly polarized wave has its electric field oscillations defined along a line perpendicular to 

the direction of propagation z. The field vector E and z define a plane of polarization. (b) The E-field oscillations 

are contained in the plane of polarization. (c) A linearly polarized light at any instant can be represented by 

the superposition of two fields Ex and Ey with the right magnitude and phase.
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where
 Eo = uxExo − uyΕyo [9.76]

Equations 9.75 and 9.76 state that the vector Eo is at −45° to the x axis and propagates 
along the z direction.
 There are many choices for the behavior of the electric field besides the simple 
linear polarization in Figure 9.31. For example, if the magnitude of the field vector 
E remains constant but its tip at a given location on z traces out a circle by rotating 
in a clockwise sense with time, as observed by the receiver of the wave, then the 
wave is said to be right circularly polarized17 as in Figure 9.32. If the rotation of 
the tip of E is counterclockwise, the wave is said to be left circularly polarized. 
From Equations 9.73 and 9.74, it should be apparent that a right circularly polarized 
wave has Exo = Eyo = A (an amplitude) and ϕ = π∕2. This means that,

 Ex = A cos(ωt − kz) [9.77]

and
 Ey = −A sin(ωt − kz) [9.78]

 It is relatively straightforward to show that Equations 9.77 and 9.78 represent a 
circle that is
 E2

x + E2
y = A2 [9.79]

as shown in Figure 9.32.
 When the phase difference ϕ is other than 0, ±π, or ±π∕2, the resultant wave 
is elliptically polarized and the tip of the vector in Figure 9.32 traces out an ellipse.

9.15  OPTICAL ANISOTROPY

An important characteristic of crystals is that many of their properties depend on the 
crystal direction; that is, crystals are generally anisotropic. The dielectric constant εr 
depends on electronic polarization which involves the displacement of electrons with 
respect to positive atomic nuclei. Electronic polarization depends on the crystal direc-
tion inasmuch as it is easier to displace electrons along certain crystal directions. This 

means that the refractive index n of a crystal depends on the direction of the electric 

 17 There is a difference in this definition in optics and engineering. The definition here follows that in optics 
which is more prevalent in optoelectronics.
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field in the propagating light beam. Consequently, the velocity of light in a crystal 
depends on the direction of propagation and on the state of its polarization, i.e., the 
direction of the electric field. Most noncrystalline materials, such as glasses and liq-
uids, and all cubic crystals are optically isotropic, that is, the refractive index is the 
same in all directions. For all classes of crystals excluding cubic structures, the refrac-
tive index depends on the propagation direction and the state of polarization. The result 
of optical anisotropy is that, except along certain special directions, any unpolarized 
light ray entering such a crystal breaks into two different rays with different polariza-
tions and phase velocities. When we view an image through a calcite crystal, an opti-
cally anisotropic crystal, we see two images, each constituted by light of different 
polarization passing through the crystal, whereas there is only one image through an 
optically isotropic crystal as depicted in Figure 9.33. Optically anisotropic crystals are 
called birefringent because an incident light beam may be doubly refracted.
 Experiments and theories on “most anisotropic crystals,” i.e., those with the 
highest degree of anisotropy, show that we can describe light propagation in terms 
of three refractive indices, called principal refractive indices n1, n2, and n3, along 
three mutually orthogonal directions in the crystal, say x, y, and z, called principal 

axes. These indices correspond to the polarization state of the EM wave along these 
axes. In addition, anisotropic crystals may possess one or two optic axes. An optic 

axis is a special direction in the crystal along which the velocity of propagation does 
not depend on the state of polarization. The propagation velocity along the optic axis 
is the same whatever the polarization of the EM wave.
 Crystals that have three distinct principal indices also have two optic axes and 
are called biaxial crystals. On the other hand, uniaxial crystals have two of their 
principal indices the same (n1 = n2) and have only one optic axis. Table 9.5 sum-
marizes crystal classifications according to optical anisotropy. Uniaxial crystals, such 
as quartz, that have n3 > n1, are called positive, and those such as calcite that have 
n3 < n1 are called negative uniaxial crystals.

9.15.1 UNIAXIAL CRYSTALS AND FRESNEL’S OPTICAL INDICATRIX

For our discussions of optical anisotropy, we will consider uniaxial crystals such as 
calcite and quartz. All experiments and theories lead to the following basic principles.18

 18 These statements can be proved by solving Maxwell’s equations in an anisotropic medium.

Figure 9.33 A line viewed through 

a cubic sodium chloride (halite) 

 crystal (optically isotropic) and a 

 calcite crystal (optically anisotropic).

  Photo by S. Kasap.
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 Any EM wave entering an anisotropic crystal splits into two orthogonal linearly 
polarized waves that travel with different phase velocities; that is, they experience 
different refractive indices. These two orthogonally polarized waves in uniaxial crys-
tals are called ordinary (o) and extraordinary (e) waves. The o-wave has the same 
phase velocity in all directions and behaves like an ordinary wave in which the field 
is perpendicular to the phase propagation direction. The e-wave has a phase velocity 
that depends on its direction of propagation and its state of polarization, and further 
the electric field in the e-wave is not necessarily perpendicular to the phase propaga-
tion direction. These two waves propagate with the same velocity only along a spe-
cial direction called the optic axis. The o-wave is always perpendicularly polarized 
to the optic axis and obeys the usual Snell’s law.
 The two images observed through the calcite crystal in Figure 9.33 are due to 
o-waves and e-waves being refracted differently, so when they emerge from the 
crystal they have been separated. Each ray constitutes an image, but the field direc-
tions are orthogonal. The fact that this is so is easily demonstrated by using two 
polaroid analyzers with their transmission axes at right angles as in Figure 9.34. If 
we were to view an object along the optic axis of the crystal, we would not see two 
images because the two rays would experience the same refractive index.
 As mentioned, we can represent the optical properties of a crystal in terms of 
three refractive indices along three orthogonal axes, the principal axes of the crystal, 
shown as x, y, and z in Figure 9.35a. These are special axes along which the polariza-
tion vector and the electric field are parallel. (Put differently, the electric displacement19 

 19 Electric displacement D at any point is defined by D = εoE + P where E is the electric field and P is the 
polarization at that point.

Table 9.5  Principal refractive indices of some optically isotropic 

and anisotropic crystals (near 589 nm, yellow Na-D line)

Optically Isotropic n = no

Glass (crown) 1.510
Diamond 2.417
Fluorite (CaF2) 1.434

Uniaxial—Positive no ne

Ice 1.309 1.3105
Quartz 1.5442 1.5533
Rutile (TiO2) 2.616 2.903

Uniaxial—Negative no ne

Calcite (CaCO3) 1.658 1.486
Tourmaline 1.669 1.638
Lithium niobate (LiNBO3) 2.29 2.20

Biaxial n1 n2  n3

Mica (muscovite) 1.5601 1.5936 1.5977
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D and the electric field E vectors are parallel.) The refractive indices along these x, 
y, and z axes are the principal indices n1, n2, and n3, respectively, for electric field 
oscillations along these directions (not to be confused with the wave propagation 
direction). For example, for a wave with a polarization parallel to the x axes, the 
refractive index is n1.
 The refractive index associated with a particular EM wave in a crystal can 
be  determined by using Fresnel’s refractive index ellipsoid, called the optical 

 indicatrix,20 which is a refractive index surface placed in the center of the prin-
cipal axes, as shown in Figure 9.35a, where the x, y, and z axis intercepts are n1, 
n2, and n3. If all three indices were the same, n1 = n2 = n3 = no, we would have 
a spherical surface and all electric field polarization directions would experience 
the same refractive index no. Such a spherical surface would represent an optically 

Figure 9.34 Two polaroid analyzers 

are placed with their transmission 

axes, along the long edges, at right 

angles to each other.

The ordinary ray, undeflected, goes 

through the left polarizer, whereas 

the extraordinary wave, deflected, 

goes through the right polarizer. The 

two waves therefore have orthogonal 

polarizations.

 Photo by S. Kasap.

 20 There are various names in the literature with various subtle nuances: the Fresnel ellipsoid, optical indicatrix, 
index ellipsoid, reciprocal ellipsoid, Poinsot ellipsoid, ellipsoid of wave normals.
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isotropic crystal. For positive uniaxial crystals such as quartz, n1 = n2 < n3, which 
is the ellipsoid example shown in Figure 9.35a.
 Suppose that we wish to find the refractive indices experienced by a wave traveling 
with an arbitrary wavevector k, which represents the direction of phase propagation. 
This phase propagation direction is shown as OP in Figure 9.35b and is at an angle θ 
to the z axis. We place a plane perpendicular to OP and passing through the center O 
of the indicatrix. This plane intersects the ellipsoid surface in a curve ABA′B′ which is 
an ellipse. The major (BOB′) and minor (AOA′) axes of this ellipse determine the field 
oscillation directions and the refractive indices associated with this wave. Put differently, 
the original wave is now represented by two orthogonally polarized EM waves.
 The line AOA′, the minor axis, corresponds to the polarization of the ordinary wave, 
and its semiaxis AA′ is the refractive index no = n2 of this o-wave. The electric displace-
ment and the electric field are in the same direction and parallel to AOA′. If we were 
to change the direction of OP, we would always find the same minor axis, i.e., no is 
either n1 or n2 whatever the orientation of OP (try orientating OP to be along y and 
along x). This means that the o-wave always experiences the same refractive index in 
all directions. (The o-wave behaves just like an ordinary wave, hence the name.)
 The line BOB′ in Figure 9.35b, the major axis, corresponds to the electric displace-
ment field (D) oscillations in the extraordinary wave, and its semiaxis OB is the refrac-
tive index ne(θ) of this e-wave. This refractive index is smaller than n3 but greater than 
n2 (= no). The e-wave therefore travels more slowly than the o-wave in this particular 
direction and in this crystal. If we change the direction of OP, we find that the length 
of the major axis changes with the OP direction. Thus, ne(θ) depends on the wave direc-
tion θ. As apparent, ne = no when OP is along the z axis, that is, when the wave is 
traveling along z as in Figure 9.36a. This direction is the optic axis, and all waves trav-
eling along the optic axis have the same phase velocity whatever their polarization. When 
the e-wave is traveling along the y axis, or along the x axis, ne(θ) = n3 = ne and the 
e-wave has its slowest phase velocity as shown in Figure 9.36b. Along any OP direction 
that is at an angle θ to the optic axis, the e-wave has a refractive index ne(θ) given by

 
1

ne(θ)2 =
cos2 θ

n2
o

+
sin2 θ

n2
e

 [9.80]
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Figure 9.36 Eo = Eo-wave and Ee = Ee-wave. (a) Wave propagation along the optic axis. (b) Wave propagation normal 

to the optic axis.
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Clearly, for θ = 0°, ne(0°) = no and for θ = 90°, ne(90°) = ne.
 The major axis BOB′ in Figure 9.35b determines the e-wave polarization by 
defining the direction of the displacement vector D and not E. Although D is per-
pendicular to k, this is not true for E. The electric field Ee-wave of the e-wave is 
orthogonal to that of the o-wave, and it is in the plane determined by k and the optic 
axis. Ee-wave is orthogonal to k only when the e-wave propagates along one of the 
principal axes. In birefringent crystals it is usual to take the ray direction as the 
direction of energy flow, that is the direction of the Poynting vector (S). The Ee-wave 
is then orthogonal to the ray direction. For the o-wave, the wavefront propagation 
direction k is the same as the energy flow direction S. For the e-wave, however, the 
wavefront propagation direction k is not the same as the energy flow direction S.

9.15.2 BIREFRINGENCE OF CALCITE

Consider a calcite crystal (CaCO3) which is a negative uniaxial crystal and also well 
known for its double refraction. When the surfaces of a calcite crystal have been 
cleaved, that is, cut along certain crystal planes, the crystal attains a shape that is 
called a cleaved form and the crystal faces are rhombohedrons (parallelogram with 
78.08° and 101.92°). A cleaved form of the crystal is called a calcite rhomb. A plane 
of the calcite rhomb that contains the optical axis and is normal to a pair of opposite 
crystal surfaces is called a principal section.
 Consider what happens when an unpolarized or natural light enters a calcite 
crystal at normal incidence and thus also normal to a principal section to this surface, 
but at an angle to the optic axis as shown in Figure 9.37. The ray breaks into ordi-
nary (o) and extraordinary (e) waves with mutually orthogonal polarizations. The waves 
propagate in the plane of the principal section as this plane also contains the incident 
light. The o-wave has its field oscillations perpendicular to the optic axis. It obeys 
Snell’s law which means that it enters the crystal undeflected. Thus the direction of 
E-field oscillations must come out of the paper so that it is normal to the optic axis 

Figure 9.37 An EM wave that is off the optic axis of a calcite crystal splits into two waves called ordinary and  

extraordinary waves.

These waves have orthogonal polarizations and travel with different velocities. The o-wave has a polarization that is 

always perpendicular to the optical axis.
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and also to the direction of propagation. The field E⊥ in the o-ray is shown as dots, 
oscillating into and out of the paper.
 The e-wave has a polarization orthogonal to the o-wave and in the principal 
section. The e-wave polarization is in the plane of the paper, indicated as E∥, in 
Figure 9.37. It travels with a different velocity and diverges from the o-wave. Clearly, 
the e-wave does not obey the usual Snell’s law inasmuch as the angle of refraction 
is not zero. We can determine the e-ray direction by noting that the e-wave propa-
gates sideways as in Figure 9.37b at right angles to E∥.

9.15.3 DICHROISM

In addition to the variation in the refractive index, some anisotropic crystals also exhibit 
dichroism, a phenomenon in which the optical absorption in a substance depends on 
the direction of propagation and the state of polarization of the light beam. A dichroic 
crystal is an optically anisotropic crystal in which either the e-wave or the o-wave is 
heavily attenuated (absorbed). This means that a light wave of arbitrary polarization 
entering a dichroic crystal emerges with a well-defined polarization because the other 
orthogonal polarization would have been attenuated. Generally dichroism depends on 
the wavelength of light. For example, in a tourmaline (aluminum borosilicate) crystal, 
the o-wave is much more heavily absorbed with respect to the e-wave.

9.16  BIREFRINGENT RETARDING PLATES

Consider a positive uniaxial crystal such as a quartz (ne > no) plate that has the optic 
axis (taken along z) parallel to the plate faces as in Figure 9.38. Suppose that a 
linearly polarized wave is normally incident on a plate face. If the field E is paral-
lel to the optic axis (shown as E∥), then this wave will travel through the crystal as 
an e-wave with a velocity c∕ne slower than the o-wave since ne > no. Thus, the optic 
axis is the “slow axis” for waves polarized parallel to it. If E is at right angles to 
the optic axis (shown as E⊥), then this wave will travel with a velocity c∕no, which 
will be the fastest velocity in the crystal. Thus the axis perpendicular to the optic 
axis (say x) will be the “fast axis” for polarization along this direction. When a light 
ray enters a crystal at normal incidence to the optic axis and plate surface, then the 
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E// ne = n3

noE⊥

x = Fast  axis

z = Slow axis

Optic axis

E//

E⊥

Figure 9.38 A retarder plate.

The optic axis is parallel to the plate face. The  

o- and e-waves travel in the same direction but at 

different speeds.



 9 .1 6  BIREFRINGENT RETARDING PLATES 921

o- and e-waves travel along the same direction as shown in Figure 9.38. We can of 
course resolve a linear polarization at an angle α to z into E⊥ and E∥. The o-wave 
corresponds to the propagation of E⊥ and the e-wave to the propagation of E∥ in the 
crystal. When the light comes out at the opposite face, these two components E⊥ 
and E∥ would have been phase shifted by ϕ. Depending on the initial angle α of E 
and the length of the crystal, which determines the total phase shift ϕ through the 
plate, the emerging beam can have its initial linear polarization rotated, or changed 
into an elliptically or circularly polarized light as summarized in Figure 9.39.
 If L is the thickness of the plate, then the o-wave experiences a phase change 
given by ko-wave L through the plate where ko-wave is the wavevector of the o-wave; 
ko-wave = (2π∕λ)no, where λ is the free-space wavelength. Similarly, the e-wave 
experiences a phase change (2π∕λ)neL through the plate. Thus, the phase  difference 
ϕ between the orthogonal components E⊥ and E∥ of the emerging beam is

 ϕ =
2π

λ
 (ne − no)L [9.81]

The phase difference ϕ expressed in terms of full wavelengths is called the retardation 

of the plate. For example, a phase difference ϕ of 180° is a half-wavelength retardation.
 The polarization of the exiting-beam depends on the crystal-type, (ne − no), and 
the plate thickness L. We know that depending on the phase difference ϕ between 
the orthogonal components of the field, the EM wave can be linearly, circularly, or 
elliptically polarized.
 A half-wave plate retarder has a thickness L such that the phase difference ϕ 
is π or 180°, corresponding to a half wavelength (λ∕2) of retardation. The result is 
that E∥ is delayed by 180° with respect to E⊥. If we add the emerging E⊥ and E∥ 
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with this phase shift ϕ, E would be at an angle −α to the optic axis and still linearly 
polarized. E has been rotated counterclockwise through 2α.
 A quarter-wave plate retarder has a thickness L such that the phase difference 
ϕ is π∕2 or 90°, corresponding to a quarter wavelength 1

4 λ. If we add the emerging 
E⊥ and E∥ with this phase shift ϕ, the emerging light will be elliptically polarized 
if 0 < α < 45° and circularly polarized if α = 45°.

QUARTZ HALF-WAVE PLATE What should be the thickness of a half-wave quartz plate for 
a wavelength λ ≈ 707 nm given the extraordinary and ordinary refractive indices are no = 1.541 
and ne = 1.549?

SOLUTION

Half-wavelength retardation is a phase difference of π, so from Equation 9.81

 ϕ =
2π

λ
 (ne − no)L = π

giving

 L =
1
2  
λ

(ne − no)
=

1
2(707 × 10−9 m)
(1.549 − 1.541)

= 44.2 μm

This is roughly the thickness of a sheet of paper.

9.17   OPTICAL ACTIVITY AND CIRCULAR 
BIREFRINGENCE

When a linearly polarized light wave is passed through a quartz crystal along its 
optic axis, it is observed that the emerging wave has its E-vector (plane of polar-
ization) rotated, which is illustrated in Figure 9.40. This rotation increases con-
tinuously with the distance traveled through the crystal (about 21.7° per mm of 
quartz). The rotation of the plane of polarization by a substance is called optical 
activity. In very simple intuitive terms, optical activity occurs in materials in 
which the electron motions induced by the external electromagnetic field follows 
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Figure 9.40 An optically active material such as quartz rotates the plane of polarization of the 

incident wave: The optical field E rotated to E′.
If we reflect the wave back into the material, E′rotates back to E.
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spiraling or helical paths (orbits).21 Electrons flowing in helical paths resemble 
a  current flowing in a coil and thus possess a magnetic moment. The optical 
field in light therefore induces oscillating magnetic moments which can be either 
parallel or antiparallel to the induced oscillating electric dipoles. Wavelets 
 emitted  from these oscillating induced magnetic and electric dipoles interfere to 
constitute a forward wave that has its optical field rotated either clockwise or 
counterclockwise.
 If θ is the angle of rotation, then θ is proportional to the distance L propagated 
in the optically active medium as depicted in Figure 9.40. For an observer receiving 
the wave through quartz, the rotation of the plane of polarization may be clockwise 
(to the right) or counterclockwise (to the left) which are called dextrorotatory and 
levorotatory forms of optical activity. The structure of quartz is such that atomic 
arrangements spiral around the optic axis either in clockwise or counterclockwise 
sense. Quartz thus occurs in two distinct crystalline forms, right-handed and left-
handed, which exhibit dextrorotatory and levorotatory types of optical activity, 
respectively. Although we used quartz as an example, there are many substances 
that are optically active, including various biological substances and even some 
liquid solutions (e.g., corn syrup) that contain various organic molecules with a 
rotatory power.
 The specific rotatory power (θ∕L) is defined as the extent of rotation per unit 
distance traveled in the optically active substance. Specific rotatory power depends 
on the wavelength. For example, for quartz this is 49° per mm at 400 nm but  
17° per mm at 650 nm.
 Optical activity can be understood in terms of left and right circularly polarized 
waves traveling at different velocities in the crystal, i.e., experiencing different refrac-
tive indices. Due to the helical twisting of the molecular or atomic arrangements in 
the crystal, the velocity of a circularly polarized wave depends on whether the opti-
cal field rotates clockwise or counterclockwise. A vertically polarized light with a 
field E at the input can be thought of as two right- and left-handed circularly polar-
ized waves ER and EL that are symmetrical with respect to the y axis, i.e., at any 
instant α = β, as shown in Figure 9.41. If they travel at the same velocity through 
the crystal, then they remain symmetrical with respect to the vertical (α = β remains 
the same) and the resultant is still a vertically polarized light. If, however, these 
travel at different velocities through a medium, then at the output E′L and E′R are no 
longer symmetrical with respect to the vertical, α′ ≠ β′, and their resultant is a vector 
E′ at an angle θ to the y axis.
 Suppose that nR and nL are the refractive indices experienced by the right- and 
left-handed circularly polarized light, respectively. After traversing the crystal length 
L, the phase difference between the two optical fields E′R and E′L at the output leads 
to a new optical field E′ that is E rotated by θ, given by

 θ =
π

λ
 (nL − nR)L [9.82]

 21 The explanation of optical activity involves examining both induced magnetic and electric dipole moments 
which will not be described here in detail.

Optical 

activity
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where λ is the free-space wavelength. For a left-handed quartz crystal, and for 589 nm 
light propagation along the optic axis, nR = 1.54427 and nL = 1.54420, which means 
θ is about 21.4° per mm of crystal.
 In a circularly birefringent medium, the right- and left-handed circularly polar-
ized waves propagate with different velocities and experience different refractive 
indices nR and nL. Since optically active materials naturally rotate the optical field, 
it is not unreasonable to expect that a circularly polarized light with its optical field 
rotating in the same sense as the optical activity will find it easier to travel through 
the medium. Thus, an optically active medium possesses different refractive indices 
for right- and left-handed circularly polarized light and exhibits circular birefrin-
gence. It should be mentioned that if the direction of the light wave is reversed in 
Figure 9.40, the ray simply retraces itself and E′ becomes E.

9.18  LIQUID CRYSTAL DISPLAYS (LCDs)

Liquid crystal displays (LCDs) are widely used in many flat panel televisions and 
computer displays. LCDs contain liquid crystals that change the polarization of a 
passing beam of light. Liquid crystals (LCs) are materials that possess rod-like 
molecules as shown in 9.42a. These molecules, called mesogens, have strong 
dipoles, which means that the whole LC structure can be easily polarized. What 
distinguishes LCs is that they have properties that are between those of a liquid 
phase and those of a crystalline solid phase; e.g., they can flow like a liquid but, 
at the same time, have crystalline domains that lead to anisotropic optical properties. 
A distinct characteristic of the liquid crystal state is the tendency of the mesogens 
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Figure 9.41 Vertically polarized wave at the input can be thought of as two right- and left-
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to point along a common axis called the director. This is a preferred common axis in 
the liquid crystal along which the mesogens try to align themselves, which results in 
an orientationally ordered state as depicted in Figure 9.42b. This behavior is very dif-
ferent than the way in which molecules behave in a normal liquid phase, where there 
is no intrinsic order. The orientational order in the liquid crystal state lies between that 
of a normal crystalline solid, i.e., fully ordered periodic structure and that of a normal 
liquid, i.e., nearly fully disordered; and hence is given the name mesogenic state.

 The degree of alignment of mesogens along the director, that is, the degree of 

anisotropy, depends on the temperature because thermally induced random motions 
of the mesogens act against dipole alignment. The degree of alignment will be a 
maximum at low temperatures and decreases with increasing temperature, until at 
some critical temperature the random thermal motions destroy the order. The liquid 
crystals are known to have a number of phases. We will consider the nematic phase, 

which is characterized by mesogens that have no positional order, but tend to point 
along the same direction, i.e., along the director. The physical properties of the 
nematic phase depend sensitively on the degree of alignment, and can be highly 
anisotropic for well-aligned materials. A distinct advantage is that an applied field 
can control the molecular orientation and hence the optical properties. The molecules 
in these nematic-phase materials have rod-like shapes with lengths typically in the 
20–30 nm range as depicted in Figure 9.42a.
 Liquid crystal display (LCD) is a display that uses a liquid crystal medium whose 
optical properties can be controlled by an applied field. The LCD behaves as a light 
modulator or a light valve. The display has a thin film of liquid crystal, e.g., a few 
microns in thickness, placed between two semitransparent electrically conducting elec-
trodes to form a cell. Most LCDs are based on the twisted nematic field effect.22 In 
a twisted nematic liquid crystal cell, as shown in Figure  9.43a, the two electrodes 

Figure 9.42 Schematic 

 illustration of orientational dis-

order in a liquid with rod-like 

mesogens. (a) No order, and 

rods are randomly oriented. 

(b) There is a tendency for 

the rods to align with the 

 director, the vertical axis, 

in this example.
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(b) Nematic phase with a degree

of orientational disorder

(a) Random orientations

Rod-like mesogens

 22 Although a number of researchers have reported interesting observations on the optical properties of liquid 
crystals, the pioneering work on the twisted nematic LCD has been attributed to Martin Schadt and Wolfgang 
Helfrich (at Hoffman-LaRoche, Switzerland) in 1970–1971 and James Ferguson (USA) in 1971.
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have surfaces that have been treated, i.e., have an orientational layer, to act as directors 
for the molecules and the directors are at right angles to each other. Molecules next 
to the surfaces are forced to align along these surface directors and hence the molecules 
homogenously twist through 90° from one electrode to the other. The twisted nematic 
liquid crystal has its molecules arranged in a helical structure, and is able to “twist,” 
or rotate the electric field in light that passes through it. Two polarizers A and B have 
been placed at the entrance and the exit ends of the cell respectively. Thus, polarized 
light enters the cell and has its polarization rotated by 90° as it passes through the cell, 
and arrives at the exit polarizer. Since this light has its polarization aligned with the 
optical axis of the exit polarizer (B), it passes through the polarizer. Therefore, without 
an applied field, the light is transmitted through the LCD, which appears bright.
 Consider what happens when an electric field Ea is applied by connecting an ac 
voltage (typically a few volts) to the two electrodes on the opposite the faces of the cell 
as shown in Figure 9.43b. The applied field now disturbs the alignment of the molecules 
in the nematic liquid crystal. The field Ea acts as an externally imposed director and 
the molecules align with the field, which results in the twisted molecular arrangement 
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Transmitted light
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Figure 9.43 Transmission based LCD. (a) In the absence of a field, the liquid crystal has the twisted nematic phase and the 

light passing through it has its polarization rotated by 90°. The light is transmitted through both polarizers. The viewer sees 

a bright image. (b) When a voltage, and hence a field Ea, is applied, the molecules in the liquid crystal align with the field Ea 

and are unable to rotate the polarization of the light passing through it; light therefore cannot pass through the exit polarizer. 

The light is extinguished, and the viewer sees dark image.
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being destroyed. Stated differently, the helix structure in Figure 9.43a becomes unwound 
and results in the structure shown in Figure 9.43b. The polarization of the light entering 
the cell is unaffected and therefore the light cannot pass through the exit polarizer (B). 
The LCD cell therefore appears dark. In fact, the light transmission can be completely 
extinguished by applying a sufficiently large field. If a mirror is placed behind the 
second polarizer, the display operates under reflection instead of transmission.
 How can we reverse the switching behavior, that is, switch the LCD from dark 
(without an applied voltage) to bright (with applied voltage)? This can be easily 
achieved by using parallel polarizers, that is A and B in Figure 9.43a have the same 
polarization direction. In this case, there would be no transmitted light in Figure 
9.43a and transmitted light in b. By varying the applied voltage between the thresh-
old for reorientation and the saturation field for unwinding the twisted nematic struc-
ture, we can obtain grey scale modulation. The transparent electrodes are typically 
indium-tin-oxide, and can be patterned by lithographic techniques into various desir-
able shapes. More than 50 percent of TV screens use the LCD technology.
 The electric field in Figure 9.43b has been applied by connecting an ac voltage 
to the LCD electrodes. LCDs are always operated with an ac voltage; typical operat-
ing frequencies for LCDs are ∼1 kHz. The reversal of the field does not change the 
principle of operation because molecules always try to align parallel to the field, 
which is along either +z or −z. In both cases, the field E in the light beam is not 
rotated and the light through the LCD is extinguished at the second polarizer (B). 
The amount of transmission through an LCD depends on the rms value of the ac 
voltage. Manufacturers typically provide the transmittance versus rms voltage char-
acteristics of their LCDs. The rotation angle Φ of the linearly polarized light through 
the liquid crystal medium depends on the rms voltage Vrms across an LCD cell, which 
is shown in Figure 9.44. The normalized transmittance T′ = T(Vrms)∕Tmax is also 
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shown as a function of Vrms. Tmax is the maximum transmittance under bright trans-
mission conditions so that T(Vrms)∕Tmax = 100 percent with no or very small Vrms.
 It is clear from Figure 9.44 that the rms voltage Vrms must reach a certain thresh-
old value before any effect is seen. We need to apply a certain threshold voltage to start 
untwisting the alignment of the mesogens. The rms voltage V90 corresponding to 90 per-
cent normalized transmission T′ is generally defined as the threshold voltage. The 
voltage at which T′ has dropped to 10 percent defines the saturation voltage, V10. LCD 
response times for turning on (alignment with the applied field) and off (alignment with 
the surface directors) depend on the properties of the LC, the thickness of the cell, and 
temperature. At room temperature, these turn on and off times are typically in the mil-
lisecond time range with the turn off time usually being longer than the on time. It is 
faster to align the molecules with the applied field, than the time it takes for them to 
naturally align with the surface directors when the applied field is turned off.
 The whole LCD operation is based on three important effects. First is the optical 
activity exhibited by the twisted nematic LC structure in which the twisted mesogens 
rotate the electric field. The second is the ability to rotate or align the mesogens in the 
LC by a sufficiently large applied field imposed by an external voltage source connected 
to the LCD cell. The third is the use of two polarizers (A and B in Figure 9.43a) in 
converting the rotation of the electric field of the light beam within the medium to an 
intensity variation that appears after the second polarizer (B).

9.19  ELECTRO-OPTIC EFFECTS

Electro-optic effects refer to changes in the refractive index of a material induced by 
the application of an external electric field, which therefore “modulates” the optical 
properties. We can apply such an external field by placing electrodes on opposite 
faces of a crystal and connecting these electrodes to a battery. The presence of such 
a field distorts the electron motions in the atoms or molecules of the substance or 
distorts the crystal structure resulting in changes in the optical properties. For exam-
ple, an applied external field can cause an optically isotropic crystal such as GaAs 
to become birefringent. In this case, the field induces principal axes and an optic 
axis. Typically changes in the refractive index are small. The frequency of the applied 
field has to be such that the field appears static over the time scale it takes for the medium 
to change its properties, that is, respond, as well as for any light to cross the substance. 
The electro-optic effects are classified according to first- and second-order effects.
 If we were to take the refractive index n to be a function of the applied electric 
field E, that is, n = n(E), we can of course expand this as a Taylor series in E. The 
new refractive index n′ is

 n′ = n + a1E + a2E
2 + ⋯ [9.83]

where the coefficients a1 and a2 are called the linear electro-optic effect and second-
order electro-optic effect coefficients. Although we would expect even higher terms 
in the expansion in Equation 9.83, these are generally very small and their effects 
negligible within the highest practical fields. The change in n due to the first E term 

Field induced 

refractive 

index
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is called the Pockels effect. The change in n due to the second E2 term is called the 

Kerr effect,23 and the coefficient a2 is generally written as λK where K is called the 
Kerr coefficient. Thus, the two effects are

 Δn = a1E [9.84]

and

 Δn = a2E
2 = (λK)E2 [9.85]

 All materials exhibit the Kerr effect. It may be thought that we will always find 
some (nonzero) value for a1 for all materials, but this is not true and only certain 
crystalline materials exhibit the Pockels effect. If we apply a field E in one direction 
and then reverse the field and apply −E, then according to Equation 9.84, Δn should 
change sign. If the refractive index increases for E, it must decrease for −E. Revers-
ing the field should not lead to an identical effect (the same Δn). The structure has 
to respond differently to E and −E. There must therefore be some asymmetry in the 
structure to distinguish between E and −E. In a noncrystalline material, Δn for E 
would be the same as Δn for −E as all directions are equivalent in terms of dielec-
tric properties. Thus a1 = 0 for all noncrystalline materials (such as glasses and 
liquids). Similarly, if the crystal structure has a center of symmetry, then reversing 
the field direction has an identical effect and a1 is again zero. Only crystals that are 
noncentrosymmetric24 exhibit the Pockels effect. For example, a NaCl crystal 
(centrosymmetric) exhibits no Pockels effect, but a GaAs crystal (noncentrosym-
metric) does.
 The Pockels effect expressed in Equation 9.84 is an oversimplification because 
in reality we have to consider the effect of an applied field along a particular crys-
tal direction on the refractive index for light with a given propagation direction and 
polarization. For example, suppose that x, y, and z are the principal axes of a crystal 
with refractive indices n1, n2, and n3 along these directions. For an optically isotropic 
crystal, these would be the same whereas for a uniaxial crystal such as LiNbO3 
n1 = n2 ≠ n3 as depicted in the xy cross section in Figure 9.45a. Suppose that we 
suitably apply a voltage across a crystal and thereby apply an external dc field Ea. 
In the Pockels effect, the field will modify the optical indicatrix. The exact effect 
depends on the crystal structure. For example, a crystal like GaAs, optically isotro-
pic with a spherical indicatrix, becomes birefringent with two different refractive 
indices. In the case of LiNbO3 (lithium niobate), which is an optoelectronically 
important uniaxial crystal, a field Ea along the y direction changes the principal 
refractive indices n1 and n2 (both equal to no) to n′1 and n′2 as illustrated in Figure 9.45b. 
Moreover, in some crystals such as KDP (KH2PO4, potassium dihydrogen 
phosphate), the field Ea along z rotates the principal axes by 45° about z and changes 
the principal indices. Rotation of principal axes in LiNbO3 is small and can be 
neglected.

Pockels effect

Kerr effect

 23 John Kerr (1824–1907) was a Scottish physicist who was a faculty member at Free Church Training College for 
Teachers, Glasgow (1857–1901) where he set up an optics laboratory and demonstrated the Kerr effect (1875).

 24 A crystal is a center of symmetry about a point O, if any atom (or point) with a position vector r from O also 
appears when we invert r, that is, take −r.
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 As an example, consider a wave propagating along the z direction (optic axis) in 
a LiNbO3 crystal. This wave will experience the same refractive index (n1 = n2 = no) 
whatever the polarization as in Figure 9.45a. However, in the presence of an applied 
field Ea parallel to the principal y axis as in Figure 9.45b, the light propagates as 
two orthogonally polarized waves (parallel to x and y) experiencing different refrac-
tive indices n′1 and n′2. The applied field thus induces a birefringence for light travel-
ing along the z axis. Before the field Ea is applied, the refractive indices n1 and n2 
are both equal to no. The Pockels effect then gives the new refractive indices n′1 and 
n′2 in the presence of Ea as

 n′1 ≈ n1 +
1
2

 n3
1 r22 Ea   and   n′2 ≈ n2 −

1
2

 n3
2 r22 Ea [9.86]

where r22 is a constant, called a Pockels coefficient, that depends on the crystal 
structure and the material. The reason for the seemingly unusual subscript notation 
is that there are more than one constant and these are elements of a tensor that 
represents the optical response of the crystal to an applied field along a particular 
direction with respect to the principal axes (the exact theory is more mathematical 
than intuitive). We therefore have to use the correct Pockels coefficients for the 
refractive index changes for a given crystal and a given field direction.25 If the field 
were along z, the Pockels coefficient in Equation 9.86 would be r13. Table 9.6 shows 
some typical values for Pockels coefficients of various crystals.
 It is clear that the control of the refractive index by an external applied field 
(and hence a voltage) is a distinct advantage that enables the phase change through 
a Pockels crystal to be controlled or modulated; such a phase modulator is called 
a Pockels cell. In the longitudinal Pockels cell phase modulator the applied field is 
in the direction of light propagation, whereas in the transverse phase modulator the 
applied field is transverse to the direction of light propagation.
 Consider the transverse phase modulator in Figure 9.46. In this example, the 
applied electric field Ea = V∕d is applied parallel to the y direction, normal to the 
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 = no
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Figure 9.45 (a) Cross section of the optical 

indicatrix with no applied field, n1 = n2 = no. 

(b) Applied field along y in LiNbO2 modifies 

the indicatrix and changes n1 and n2 to n′1 
and n′2.

Pockels effect

 25 The reader should not be too concerned with the subscripts but simply interpret them as identifying the right 
Pockels coefficient value for the particular electro-optic problem at hand.
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direction of light propagation along z. Suppose that the incident beam is linearly 
polarized (shown as E) say at 45° to the y axes. We can represent the incident light 
in terms of polarizations (Ex and Ey) along the x and y axes. These components Ex 
and Ey experience refractive indices n′1 and n′2, respectively. Thus, when Ex traverses 
the distance L, its phase changes by ϕ1,

 ϕ1 =
2π n′1

λ
 L =  

2π L

λ (no +
1
2

 n3
o r22 

V

d)
 When the component Ey traverses the distance L, its phase changes by ϕ2, given 
by a similar expression except that r22 changes sign. Thus the phase change Δϕ 
between the two field components is

 Δϕ = ϕ1 − ϕ2 =
2π

λ
 n3

o r22 

L

d
V  [9.87]

 The applied voltage thus inserts an adjustable phase difference Δϕ between the 
two field components. The polarization state of the output wave can therefore be 
controlled by the applied voltage and the Pockels cell is a polarization modulator. 
We can change the medium from a quarter-wave to a half-wave plate by simply 
adjusting V. The voltage V = Vλ∕2, the half-wave voltage, corresponds to Δϕ = π 
and generates a half-wave plate.

Table 9.6 Pockels (r) and Kerr (K) coefficients in various materials

   Pockels Coefficients 

Material Crystal Indices × 10−12 m∕V Comment

LiNbO3 Uniaxial no = 2.272 r13 = 8.6; r33 = 30.8 λ ≈ 500 nm
  ne = 2.187 r22 = 3.4; r51 = 28
KDP Uniaxial no = 1.512 r41 = 8.8; r63 = 10.5 λ ≈ 546 nm
  ne = 1.470
GaAs Isotropic no = 3.6 r41 = 1.5 λ ≈ 546 nm

z

x
d

V
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light
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Δϕ

Ex

Ea

Ey

Ex

Input

light

Figure 9.46 Transverse Pockels cell phase modulator. A linearly polarized input light into 

an electro-optic crystal emerges as a circularly polarized light.

Transverse 

Pockels effect
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DEFINING TERMS

different velocities and experience different refractive 
indices nR and nL.

Circularly polarized light is light where the magni-
tude of the field vector E remains constant but its tip at 
a given location on the direction of propagation traces 
out a circle by rotating either in a clockwise sense, 
right circularly polarized, with time, as observed by 
the receiver of the wave, or in a counterclockwise 
sense, left circularly polarized.

Complex propagation constant (k′ − jk″) describes 
the propagation characteristics of an electromagnetic 
wave that is experiencing attenuation as it travels in a 
lossy medium. If k = k′ − jk″ is the complex propagation 
constant, then the electric field component of a plane 
wave traveling in a lossy medium can be described by

E = Εo exp(−k″z) exp j(ωt − k′z)

The amplitude decays exponentially while the wave 
propagates along z. The real k′ part of the complex prop-
agation constant (wavevector) describes the propagation 
characteristics, that is, the phase velocity v = ω∕k′. The 
imaginary k″ part describes the rate of attenuation 
along z.

Complex refractive index N with real part n and 
imaginary part K is defined as the ratio of the complex 
propagation constant k in a medium to propagation 
constant ko in free space,

N = n − j K =
k

ko

= ( 1
ko

)(k′ − jk″)

The real part n is simply called the refractive index, 
and K is called the extinction coefficient.

Critical angle (θc) is the angle of incidence that re-
sults in a refracted wave at 90° when the incident wave 
is traveling in a medium of lower refractive index and 
is incident at a boundary with a material with a higher 
refractive index.

Dielectric mirror is made from alternating high and 
low refractive index quarter-wave-thick multilayers 
such that constructive interference of partially reflected 
waves gives rise to a high degree of wavelength-selective 
reflectance.

Absorption is the loss in the power of electromag-
netic radiation that is traveling in a medium. The loss is 
due to the conversion of light energy to other forms of 
energy, such as lattice vibrations (heat) during the po-
larization of the molecules of the medium, local vibra-
tions of impurity ions, excitation of electrons from the 
valence band to the conduction band, and so on.

Activator is a luminescent center in a host crystal or 
glass in which it is excited, by some external excitation 
such as UV light; following excitation, the activator 
emits radiation to return to its ground state, or become 
de-excited.

Anisotropy (optical) refers to the fact that the refrac-
tive index n of a crystal depends on the direction of 
propagation of light and on the state of its polarization, 
that is, the direction of the electric field.

Antireflection coating is a thin dielectric layer coated 
on an optical device or component to reduce the reflec-
tion of light and increase the transmitted light intensity.

Attenuation is the decrease in the optical power (or 
irradiance) of a traveling wave in the direction of prop-
agation due to absorption and scattering.

Attenuation coefficient α represents the spatial rate 
of attenuation of an EM wave along the direction of 
propagation. If Po is the optical power at some location 
O, and if it is P at a distance L from O along the direction 
of propagation, then P = Po exp(−αL).

Birefringent crystals such as calcite are optically 
anisotropic which leads to an incident light beam be-
coming separated into ordinary and extraordinary waves 
with orthogonal polarizations; incident light becomes 
doubly refracted because these two waves experience 
different refractive indices no and ne.

Brewster’s angle or polarization angle (θp) is the an-
gle of incidence that results in the reflected wave having 
no electric field in the plane of incidence (plane de-
fined by the incident ray and the normal to the surface). 
The electric field oscillations in the reflected wave are 
in the plane perpendicular to the plane of incidence.

Circularly birefringent medium is a medium in which 
right and left circularly polarized waves propagate with 
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if the power meter can respond more quickly than the 
oscillations of the electric field, and since this is in the 
optical frequencies range, all practical measurements 
invariably yield the average irradiance.

Kerr effect is a second-order effect in which the 
change in the refractive index n depends on the square 
of the electric field, that is, Δn = a2E

2, where a2 is a 
material dependent constant.

Kramers–Kronig relations relate the real and imagi-
nary parts of the relative permittivity. If we know the 
complete frequency dependence of the real part ε′r(ω), 
using the Kramer–Kronig relation, we can find the fre-
quency dependence of the imaginary part εr″(ω).

Luminescence is the emission of light by a material, 
called a phosphor, due to the absorption and conversion 
of energy into electromagnetic radiation. Typically the 
emission of light occurs from certain dopant impurities 
or even defects, called luminescent or luminescence 

centers or activators purposefully introduced into a 
host matrix, which may be a crystal or glass, which can 
accept the activators. Photoluminescence involves ex-
citation by photons (light). Cathodoluminescence is 
light emission when the excitation is the bombardment 
of the phosphor with energetic electrons as in TV cath-
ode ray tubes. Electroluminescence is light emission 
due to the passage of an electric current as in the LED.

Optic axis is an axis in the crystal structure along 
which there is no double refraction for light propagation 
along this axis.

Optical activity is the rotation of the plane of polar-
ization of plane polarized light by a substance such as 
quartz.

Optical indicatrix (Fresnel’s ellipsoid) is a refractive 
index surface placed in the center of the principal axes 
x, y, and z of a crystal; the axis intercepts are n1, n2, and 
n3. We can represent the optical properties of a crystal 
in terms of three refractive indices along three orthog-
onal axes, the principal axes of the crystal, x, y, and z.

Phase of a traveling wave is the quantity (kx − ωt) 
which determines the amplitude of the wave at position 

x and at time t given the propagation constant k(= 2π∕λ) 
and angular frequency ω. In three dimensions it is the 
quantity (k · r − ωt) where k is the wavevector and r is 
the position vector.

Dispersion relation is a relationship between the re-
fractive index n and the wavelength λ of the EM wave, 
n = n(λ); the wavelength usually refers to the free-
space wavelength. The relationship between the angu-
lar frequency ω and the propagation constant k, the 
ω–k curve, is also called the dispersion relation.

Dispersive medium has a refractive index n that de-
pends on the wavelength; that is, n is not a constant.

Electro-optic effects refer to changes in the refractive 
index of a material induced by the application of an 
external electric field, which therefore “modulates” the 
optical properties; the applied field is not the electric 
field of any light wave, but a separate external field.

Extinction coefficient is the imaginary part of the 
complex refractive index N.

Fluorescence is luminescence that occurs over very 
short time scales, usually less than 10−8 seconds (or 
10 ns). In fluorescence, the onset and decay of lumi-
nescent emission, due to the onset and cessation of ex-
citation of the phosphor, is very short, appearing to be 
almost instantaneous.

Fresnel’s equations describe the amplitude and phase 
relationships between the incident, reflected, and 
transmitted waves at a dielectric–dielectric interface in 
terms of the refractive indices of the two media and the 
angle of incidence.

Group index (Ng) represents the factor by which the 
group velocity of a group of waves in a dielectric me-
dium is reduced with respect to propagation in free 
space, Ng = c∕vg where vg is the group velocity.

Group velocity (vg) is the velocity at which energy, or 
information, is transported by a group of waves; vg is 
determined by dω∕dk whereas phase velocity is deter-
mined by ω∕k.

Instantaneous irradiance is the instantaneous flow 
of energy per unit time per unit area and is given by the 
instantaneous value of the Poynting vector S.

Irradiance (average) is the average flow of energy 
per unit time per unit area where averaging is typically 
carried out by the light detector (over many oscillation 
periods). Average irradiance can also be defined math-
ematically by the average value of the Poynting vector 
S. The instantaneous irradiance can only be measured 
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Reflection coefficient is the ratio of the amplitude of 
the reflected EM wave to that of the incident wave. It 
can be positive, negative, or a complex number which 
then represents a phase change.

Refraction is a change in the direction of a wave when 
it enters a medium with a different refractive index. A 
wave that is incident at a boundary between two media 
with different refractive indices experiences refraction 
and changes direction in passing from one to the other 
medium.

Refractive index n of an optical medium is the ratio 
of the velocity of light in a vacuum to its velocity in the 
medium n = c∕v.

Retarding plates are optical devices that change the 

state of polarization of an incident light beam. For ex-

ample, when a linearly polarized light enters a quarter-

wave plate, it emerges from the device either as 

circularly or elliptically polarized light, depending on 

the angle of the incident electric field with respect to 

the optic axis of the retarder plate.

Scattering is a process by which the energy from a 

propagating EM wave is redirected as secondary EM 

waves in various directions away from the original di-

rection of propagation. There are a number of scattering 

processes. In Rayleigh scattering, fluctuations in the 

refractive index, inhomogeneities, etc., lead to the scat-

tering of light that decreases with the wavelength as λ4.

Snell’s law is a law that relates the angles of incidence 
and refraction when an EM wave traveling in one me-
dium becomes refracted as it enters an adjacent me-
dium. If light is traveling in a medium with index n1 is 
incident on a medium of index n2, and if the angles of 
incidence and refraction (transmission) are θi and θt, 
then according to Snell’s law,

sin θi

sin θt

=
n2

n1

Specific rotatory power is defined as the amount of 
rotation of the optical field in a linearly polarized 
light per unit distance traveled in the optically active 
substance.

Stoke’s shift in luminescence is the shift down in the 
frequency of the emitted radiation with respect to that 
of the exciting radiation.

Phase velocity is the rate at which a given phase on a 
traveling wave advances. It represents the velocity of a 
given phase rather than the velocity at which informa-
tion is carried by the wave. Two consecutive peaks of a 
wave are separated by a wavelength λ, and it takes a time 
period 1∕f for one peak to reach the next (or the time 

separation of two consecutive peaks at one location); 

then the phase velocity is defined as v = λ f.

Phosphor is a substance made of an activator and a 
host matrix (crystal or glass) that exhibits luminescence 
upon suitable excitation.

Phosphorescence is a slow luminescence process in 
which luminescent emission occurs well after the ces-
sation of excitation, even after minutes or hours.

Pockels effect is a linear change in the refractive in-
dex n of a crystal due to an application of an external 
electric field E, other than the field of the light wave, 
that is, Δn = a1E, where a1 is a constant that depends 
on the crystal structure.

Polarization of an EM wave describes the behavior of 
the electric field vector in the EM wave as it propagates 
through a medium. If the oscillations of the electric 
field at all times are contained within a well-defined 
line, then the EM wave is said to be linearly polarized. 
The field vibrations and the direction of propagation, 
e.g., z direction, define a plane of polarization (plane 
of vibration), so linear polarization implies a wave that 
is plane-polarized.

Poynting vector (S) represents the energy flow per 
unit time per unit area in a direction determined by 
E × B (direction of propagation), S = v 2εoεr E × B. 
Its magnitude, power flow per unit area, is called the 
irradiance.

Principal axes of the crystal, normally labeled, x, y, 
and z, are special axes along which the polarization 
vector and the electric field are parallel. Put differently, 
the electric displacement D and the electric field E vec-
tors are parallel. The refractive indices along these x, y, 
and z axes are the principal indices n1, n2, and n3, re-
spectively, for electric field oscillations along these 
directions (not to be confused with the wave propagation 
direction).

Reflectance is the fraction of power in the reflected 
electromagnetic wave with respect to the incident power.
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Wavefront is a surface where all the points have the 
same phase. A wavefront on a plane wave is an infinite 
plane perpendicular to the direction of propagation.

Wavenumber or propagation constant is defined as 
2π∕λ where λ is the wavelength. It is the phase shift in 
the wave over a distance of unit length.

Wavepacket is a group of waves with slightly differ-
ent frequencies traveling together and forming a 
“group.” This wavepacket travels with a group velocity 
vg that depends on the slope of ω versus k characteris-
tics of the wavepacket, i.e., vg = dω∕dk.

Wavevector is a vector denoted as k that describes the 
direction of propagation of a wave and has the magni-
tude of the wavenumber, k = 2π∕λ.

Total internal reflection (TIR) is the total reflection 
of a wave traveling in a medium when it is incident at a 
boundary with another medium of lower refractive in-
dex. The angle of incidence must be greater than the 
critical angle θc which depends on the refractive indi-
ces sin θc > n2∕n1.

Transmission coefficient is the ratio of the amplitude 
of the transmitted wave to that of the incident wave 
when the incident wave traveling in a medium meets a 
boundary with a different medium (different refractive 
index).

Transmittance is the fraction of transmitted intensity 
when a wave traveling in a medium is incident at a 
boundary with a different medium (different refractive 
index).

QUESTIONS AND PROBLEMS

9.1 Refractive index and relative permittivity Using n = √εr, calculate the refractive index n of the mate-
rials in the table given their low-frequency relative permittivities εr (LF). What is your conclusion?

 Material

 a-Se Ge NaCl MgO

εr(LF) 6.4 16.2 5.90 9.83
n(∼1–5 μm) 2.45  4.0 1.54 1.71

 Material

 Diamond Silicon Germanium

Bandgap, Eg(eV) 5 1.1 0.66
n 2.4 3.46 4.0

9.2 Refractive index and bandgap Diamond, silicon, and germanium all have the same diamond unit 
cell. All three are covalently bonded solids. Their refractive indices (n) and energy bandgaps (Eg) are 
shown in the table. (a) Plot n versus Eg and (b) plot n4 versus 1∕Eg. What is your conclusion? Accord-
ing to Moss’s rule, very roughly,

 n4Eg ≈ K = Constant

 What is the value of K?

Moss’s rule
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*9.3 Temperature coefficient of refractive index Suppose that we could write the relationship between 
the refractive index n (at frequencies much less than ultraviolet light) and the bandgap Eg of a semi-
conductor as suggested by Hervé and Vandamme,

 n2 = 1 + ( A

Eg + B)
2

 where Eg is in eV, A = 13.6 eV, and B = 3.4 eV. (B depends on the incident photon energy.) Tem-
perature dependence in n results from dEg∕dT and dB∕dT. Show that the temperature coefficient of 
refractive index (TCRI) is given by,26

 TCRI =
1
n

· dn

dT
= −

(n2 − 1)3∕2

13.6n2 [dEg

dT
+ B′]

 where B′ is dB∕dT. Given that B′ = 2.5 × 10−5 eV K−1, calculate TCRI for two semiconductors: Si with 
n ≈ 3.5 and dEg∕dT ≈ −3 × 10−4 eV K−1, and AlAs with n ≈ 3.2 and dEg∕dT ≈ −4 × 10−4 eV K−1.

9.4 Sellmeier dispersion equation Using the Sellmeier equation and the coefficients in Table 9.2, cal-
culate the refractive index of fused silica (SiO2) and germania (GeO2) at 1550 nm. Which is larger, 
and why?

9.5 Dispersion (n versus λ) in GaAs By using the dispersion relation for GaAs, calculate the refractive 
index n and the group index Ng of GaAs at a wavelength of 1300 nm.

9.6 Group index Show that Equation 9.23 for the group index can be written as

 Ng = n − λ 

dn

dλ
= n + f 

dn

df

 Using the Cauchy dispersion relation in Equation 9.17 to derive an expression for the group index 
Ng, find the group index for a Ge crystal at a wavelength of 5 μm.

9.7 Group index Suppose that λ is the free space wavelength and n is the refractive index of the medium 

at λ. Then, λ∕n is the wavelength in the medium. Consider ω = 2πc∕λ and k = 2πn∕λ. By finding 
expressions for dω and dk in terms of dn and dλ derive Equation 9.23 for the group index Ng.

9.8 Cauchy dispersion equation Using the Cauchy coefficients and the general Cauchy equation, cal-
culate the refractive index of a silicon crystal at 200 μm and at 2 μm, over two orders of magnitude 
wavelength change. What is your conclusion? Would you expect a significant change in n for ħω > Eg?

9.9 Cauchy dispersion relation for zinc selenide ZnSe is a II–VI semiconductor and a very useful 
optical material used in various applications such as optical windows (especially high-power laser 
windows), lenses, prisms, etc. It transmits over 0.50–19 μm. n in the 1–11 μm range described by a 
Cauchy expression of the form

 n = 2.4365 +
0.0485

λ2 +
0.0061

λ4 − 0.0003λ2

 in which λ is in μm. What is ZnSe’s refractive index n and group index Ng at 5 μm?

*9.10 Dispersion (n versus λ) Consider an atom in the presence of an oscillating electric field as in 
Figure 9.4. The applied field oscillates harmonically in the +x and −x directions and is given by 
E = Eo exp(jωt). The energy losses can be represented by a frictional force whose magnitude is 
proportional to the velocity dx∕dt. If γ is the proportionality constant per electron and per unit elec-
tron mass, then Newton’s second law for Z electrons in the polarized atom is

 Zme

d 
2x

dt2 = −ZeEo exp(  jωt) − Zmeω
2
o x − Zmeγ 

dx

dt

Hervé–

Vandamme 

relationship

 26 P. J. L. Hervé and L. K. J. Vandamme, J. Appl. Phys., 77, 5476, 1995 and references therein.

Group index and 

frequency

ZnSe dispersion 

relation
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 where ωo = (β∕Zme)
1∕2 is the natural frequency of the system composed of Z electrons and a +Ze 

nucleus and β is a force constant for the restoring Coulombic force between the electrons and the 

nucleus. Show that the electronic polarizability αe is

 αe =
pinduced

E
=

Ze2

me(ω2
o − ω2 + jγω)

 What does a complex polarizability represent? Since αe is a complex quantity, so is εr and hence the 
refractive index. By writing the complex refractive index N = √εr  where εr is related to αe by the 
Clausius–Mossotti equation, show that

 
N 

2 − 1
N 

2 + 2
=

NZe2

3εome(ω2
o − ω2 + jγω)

 where N is the number of atoms per unit volume. What are your conclusions?

9.11 Dispersion and diamond Consider applying the simple electronic polarizability and Clausius– 
Mossotti equations to diamond. Neglecting losses,

 αe =
Ze2

me(ω2
o − ω2)

 and

 
εr − 1
εr + 2

=
NZe2

3εome(ω2
o − ω2)

 For diamond we can take Z = 4 (valence electrons only as these are the most responsive), N = 1.8 × 
1029 atoms m−3, εrdc = 5.7. Find ωo and then find the refractive index at λ = 0.5 μm and 5 μm.

9.12 Electric and magnetic fields in light The intensity (irradiance) of the red laser beam from a  
He–Ne laser in air has been measured to be about 1 mW cm−2. What are the magnitudes of the 
electric and magnetic fields? What are the magnitudes if this 1 mW cm−2 beam were in a glass 
medium with a refractive index n = 1.45 and still had the same intensity?

9.13 Reflection of light from a less dense medium (internal reflection) A ray of light which is travel-
ing in a glass medium of refractive index n1 = 1.460 becomes incident on a less dense glass medium 
of refractive index n2 = 1.435. The free-space wavelength (λ) of the light beam is 1 μm.
a. What is the minimum incidence angle for TIR?
b. What is the phase change in the reflected wave when θi = 85° and when θi = 90°?
c. What is the penetration depth of the evanescent wave into medium 2 when θi = 85° and when 

θi = 90°? What is your conclusion?

9.14 Internal and external reflection at normal incidence Consider the reflection of light at normal 
incidence on a boundary between a GaAs crystal medium of refractive index 3.6 and air of refractive 
index 1.
a. If light is traveling from air to GaAs, what is the reflection coefficient and the intensity of the 

reflected light in terms of the incident light?
b. If light is traveling from GaAs to air, what is the reflection coefficient and the intensity of the 

reflected light in terms of the incident light?

9.15 Antireflection coating

a. Consider three dielectric media with flat and parallel boundaries with refractive indices n1, n2, 
and n3. Show that for normal incidence the reflection coefficient between layers 1 and 2 is the 
same as that between layers 2 and 3 if n2 = √n1n3. What is the significance of this?

b. Consider a Si photodiode that is designed for operation at 900 nm. Given a choice of two pos-
sible antireflection coatings, SiO2 with a refractive index of 1.5 and TiO2 with a refractive index 
of 2.3, which would you use and what would be the thickness of the antireflection coating you 
chose? The refractive index of Si is 3.5.

Electronic 

polarizability

Complex 

refractive index

Dispersion in 

diamond
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9.16 Dielectric mirrors Consider the dielectric mirror in Figure 9.16. Consider the interference of waves 
B and D. Show that for constructive interference of B and D, we need

 n1d1 + n2d2 =
mλ
2

 where m is an integer. We can view the dielectric mirror as a periodic structure in which the repeat 
unit, the so-called unit cell, is a double layer consisting of 1 and 2 next to each other, written as n1n2. 
Clearly, d1 + d2 is the periodicity. If we move the unit cell by an integer multiple times (d1 + d2), 
we generate the whole dielectric mirror. The whole stack structure is called a one dimensional 

 photonic crystal. What is the interference condition that gives a reflected wave from a unit cell? 
Does it matter if we interchange the n1 and n2 layers?

9.17 Dielectric mirrors Consider the dielectric mirror in Figure 9.16. Suppose that it has been designed 
with quarter wavelength thickness. By a proper summation of all reflected wave amplitudes, e.g., 
A + B + C + D +…, we can calculate the reflectance of such a dielectric mirror,

 RN = [n2N
1 − (n0∕n3)n2N

2

n2N
1 + (n0∕n3)n2N

2
]

2

 where N is the number of pairs of layers (or repeat units n1n2), n0 is the refractive index of the ambi-
ent (n0 = 1 for air) and n3 is the refractive index of the substrate. The bandwidth (or the stop-band) 
Δλ when 2N is large (for near 100 percent reflectance) is given by

 
Δλ
λo

≈ (4∕π)arcsin(n1 − n2

n1 + n2)
 Consider a dielectric mirror that has quarter wave layers consisting of Ta2O5 with n1 = 2.0908 and SiO2 with 

n2 = 1.4525 both at 850 nm, the central wavelength at which the mirror reflects light. Suppose the substrate 
is Pyrex glass with an index ns = 1.510 and the outside medium is air with n0 = 1. Calculate the maximum 
reflectance of the mirror when the number N of double layers is 4 and 8. Now, consider the N = 8 mirror. 
What would happen if you use TiO2 with n1 = 2.5086, instead of Ta2O5? What is the bandwidth and what 
happens to the reflectance if you interchange the high and low index layers? Suppose we use a Si wafer as 
the substrate with n = 3.650, what happens to the maximum reflectance? For the N = 8 case, calculate the 
bandwidth for the two different dielectric mirrors with Ta2O5 and TiO2. What is your conclusion?

9.18 Optical fibers in communications Optical fibers for long-haul applications usually have a core region 
that has a diameter of about 10 μm, and the whole fiber would be about 125 μm in diameter. The 
core and cladding refractive indices, n1 and n2, respectively, are normally only 0.3–0.5 percent different. 
Consider a fiber with n1(core) = 1.4510, and n2(cladding) = 1.4477, both at 1550 nm. What is the 
maximum angle that a light ray can make with the fiber axis if it is still to propagate along the fiber?

9.19 Optical fibers in communications Consider a short-haul optical fiber that has n1(core) = 1.455 
and n2 (cladding) = 1.440 at 870 nm. Assume the core–cladding interface behaves like the flat inter-
face between two infinite media as in Figure 9.11. Consider a ray that is propagating that has an angle 
of incidence 85° at the core–cladding interface. Can this ray undergo total internal reflection? What 
would be its penetration depth into the cladding?

9.20 Complex refractive index Spectroscopic ellipsometry measurements on a silicon crystal at a wave-
length of 620 nm show that the real and imaginary parts of the complex relative permittivity are 
15.2254 and 0.172, respectively. Find the complex refractive index. What is the reflectance and 
absorption coefficient at this wavelength? What is the phase velocity?

9.21 Complex refractive index Spectroscopic ellipsometry measurements on a germanium crystal at a 
photon energy of 1.5 eV show that the real and imaginary parts of the complex relative permittivity 
are 21.56 and 2.772, respectively. Find the complex refractive index. What is the reflectance and 
absorption coefficient at this wavelength? How do your calculations match with the experimental 
values of n = 4.653 and K = 0.298, R = 0.419 and α = 4.53 × 106 m−1?

9.22 Free carrier absorption in n-type Ge Find the free carrier optical absorption coefficient of an 
n-type Ge that has a resistivity of 0.4 Ω cm at wavelengths of 2 and 20 μm (see Table 5.1).
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9.23 Free carrier absorption in intrinsic Ge Find the free carrier absorption coefficient of an intrinsic 
Ge at a wavelength of 10 μm, using the properties listed in Table 5.1. Recall that the conductivity 
σ = σelectron + σhole = enμe + epμh and both species of free carriers will contribute to the free carrier 
absorption so that the total absorption coefficient is the sum of electron and hole contributions, 
that is αelectron + αhole where each term is of the form in Equation 9.65 with its own dc conductivity 
contribution. What is your conclusion?

9.24 Free carrier absorption in intrinsic Si The integration of various photonic components into the 
silicon technology is an important technological field. Find the free carrier absorption coefficient of 
intrinsic Si crystal at a wavelength of 1.55 μm, using the properties listed in Tables 5.1 and 9.2.

9.25 Free carrier absorption in n-type GaAs Experiments carried out at a wavelength of 100 μm on three 
GaAs n-type samples labeled A, B, and C with electron concentrations ne = 3.38 × 1015 cm−3 (A), 
ne = 2.75 × 1016 cm−3 (B), ne = 5.84 × 1017 cm−3 (C), respectively, give the corresponding results on 
n and K: n = 3.28, K = 0.012 for A, n = 2.79, K = 0.105 for B, n = 1.46, K = 7.59 for C. Generate 
a log–log plot of ε″r versus ne and nα versus ne. What do the best lines tell you and what is your conclu-
sion from these plots? Find the electron scattering time τe from these measurements by assuming that 
it is the same in all the samples; and compare τe with that in the undoped sample. (Use Table 5.1.)

9.26 Reststrahlen absorption in CdTe Figure 9.22 shows the infrared extinction coefficient K of CdTe. 
Calculate the absorption coefficient α and the reflectance R of CdTe at 60 μm and 80 μm.

9.27 Reststrahlen absorption in GaAs Optical measurements on GaAs show that K peaks at λ = 37.1 μm 
where K ≈ 11.6 and n ≈ 6.63. Calculate the absorption coefficient α and the reflectance R at this 
wavelength.

9.28 Restrahlen absorption and GaAs We know from Chapter 7 that ionic polarization has a complex 
relative permittivity, which can be written as

 εr = ε′r − jε″r = εrH +
εrH − εrL

( ω

ωT
)

2

− 1 + j 

γ

ωT
( ω

ωT
)

 where εrL and εrH are the relative permittivity at low (L) and high (H) frequencies, well below and 
above the infrared (or Restrahlen) peak, γ is a loss coefficient characterizing the rate of energy 
transfer from the EM wave to lattice vibrations (phonons), and ωT is a transverse optical lattice 
vibration frequency that is related to the nature of bonding between the ions in the crystal. For 
GaAs, εrL = 13.0, εrH = 11.0, ωT = 5.05 × 1013 rad s−1, and γ = 0.045 × 1013 rad s−1. Plot n and 
K versus wavelength from 30 to 50 μm. Also plot K on a log-axis. What is your observation? Find 
n and K at λ = 45.45 μm and compare with the experimental values n = 4.13 and K = 0.0163.

9.29 Fundamental absorption Consider the semiconductors in Figure 9.23, and those semiconductors 
listed in Table 9.3.
a. Which semiconductors can be candidates for a photodetector that can detect light in optical 

communications at 1550 nm?
b. For amorphous Si (a-Si), one definition of an optical gap is the photon energy that results in an 

optical absorption coefficient α of 104 cm−1. What is the optical gap of a-Si in Figure 9.23?
c. Consider a solar cell from crystalline Si. What is the absorption depth of light at 1000 nm, and 

at 500 nm?

9.30 Optical fiber attenuation Consider an optical fiber operating at 1310 nm. Suppose that we launch 
1 mW of optical power into this fiber from a laser diode. Calculate the optical power output if the 
fiber length is 150 km. What is the output power at 1550 nm operation? What is the fiber length at 
1550 nm operation that results in an output power that is the same as that at 1310 nm operation. 
What is your conclusion?

9.31 Measurement of optical fiber attenuation The power output from a particular fiber is measured 
to be 13 nW. Then, 10 km of fiber is cut-out and the power output is measured again and found to 
be 43 nW. What is the attenuation of the fiber?

Ionic 

polarization
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9.32 Quartz half-wave plate What are the possible thicknesses of a half-wave quartz plate for a wave-
length λ ≈ 1.01 μm given the extraordinary and ordinary refractive indices are no = 1.534 and ne = 
1.543, respectively?

9.33 Pockels cell modulator What should be the aspect ratio d∕L for the transverse LiNiO3 phase mod-

ulator in Figure 9.46 that will operate at a free-space wavelength of 1.3 μm and will provide a phase 
shift Δϕ of π (half wavelength) between the two field components propagating through the crystal 
for an applied voltage of 20 V? The Pockels coefficient r22 is 3.2 × 10−12 m∕V and no = 2.2.

Various dielectric mirrors, which are quarter wave 
dielectric stacks on Pyrex or Zerodur substrates.

 Courtesy of Newport Corporation.

Electro-optic phase modulator using LiNbO3. The 
socket is the RF modulation input.

 Courtesy of Thorlabs.

LUXEON Rebel ES white emitting 
LED.

 Courtesy of Lumileds.

The Audi A4 uses LEDs for nearly all its lighting, including headlights and tail lights.
 Left © Teddy Leung/Shutterstock RF; right © Grzegorz Czapski/Shutterstock RF.
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a p p e n d i x

A
Bragg’s Diffraction Law  

and X-ray Diffraction
Bragg’s Diffraction Condition

X-rays are electromagnetic (EM) waves with wavelengths typically in the range from 0.01 nm 
to a few nanometers. This wavelength region is comparable with typical interplanar spacings 
in crystals. When an X-ray beam impinges on a crystal, the waves in the beam interact with 
the planes of atoms in the crystal and, as a result, the waves become scattered and the X-ray 
beam becomes diffracted. An analogy with radio waves may help. Radio waves with wave-
lengths in the range 1–10 m (short waves and VHF waves) easily interact with objects of 
comparable size. It is well known that these radio waves become scattered by objects of 
comparable size such as trees, houses, and buildings. However, long-wave radio waves with 
wavelengths in kilometers do not become scattered by these objects because the object sizes 
now are much smaller than the wavelength.
 When X-rays strike a crystal, the EM waves penetrate the crystal structure. Each plane 
of atoms in the crystal reflects a portion of the waves. The reflected waves from different 
planes then interfere with each other and give rise to a diffracted beam, which is at a well-
defined angle 2θ to the incident beam as depicted in Figure A.1. Some of the incident beam 
goes through the crystal undiffracted and some of the beam becomes diffracted. Further, the 
diffracted rays exist only in certain directions. These diffraction directions correspond to 
well-defined diffraction angles 2θ, as defined in Figure A.1. The diffraction angle 2θ, the 
wavelength of the X-rays λ, and the interplanar separation d of the diffraction planes within 
the crystal are related through the Bragg diffraction condition, that is,

 2d sin θ = nλ  n = 1, 2, 3, . . . [A.1] Bragg’s law

X-rays Through beam

Diffracted beam

2θ
Crystal

θ

Planes of atoms

Crystal surface
does not

affect diffraction

Figure A.1 A schematic illustration of 

X-ray diffraction by a crystal.

X-rays penetrate the crystal and then 

become diffracted by a series of atomic 

planes.
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 Consider X-rays penetrating a crystal structure and becoming reflected by a given set of 
atomic planes as shown in Figure A.2. We can consider an X-ray beam to be many parallel 
waves that are in phase. These waves penetrate the crystal structure and become reflected at 
successive atomic planes. The interplanar separation of these planes is d. Waves reflected 
from adjacent atomic planes interfere constructively to constitute a diffracted beam only when 
the path difference between the rays is an integer multiple of the wavelength—a requirement 
of constructive interference. This will only be the case for certain directions of reflection. 
For simplicity, we will consider two waves A and B in an X-ray beam being reflected from 
two consecutive atomic planes in the crystal. The angle between the X-rays and the atomic 
planes is θ as defined in Figure A.2. Initially, the waves A and B are in phase. Wave A is 
reflected from the first plane, whereas wave B is reflected from the second plane. When wave 
A is reflected at O, wave B is at P. Wave B becomes reflected from O′ on the second plane 

and then moves along reflected B′. Wave B has to travel a further distance, PO′Q, equivalent 

to 2d sin θ before reaching wave A. The path difference between the two reflected waves A′ 

and B′ is PO′Q or 2d sin θ. For constructive interference, this must be nλ where n is an 
integer. Otherwise, the reflected waves will interfere destructively and cancel each other out. 
Thus, the condition for the existence of a diffracted beam is that the path difference between 
A′ and B′ should be a multiple of the wavelength λ; which is Equation A.1. The diffraction 
condition in Equation A.1 is referred to as Bragg’s law. The angle θ is called the Bragg 

angle, whereas 2θ is called the diffraction angle. The index n is called the order of diffrac-
tion. The incidence angle θ is the angle between the incident X-ray and the atomic planes 
within the crystal and not the angle at the actual crystal surface. The crystal surface, whatever 
shape, does not affect the diffraction process because X-rays penetrate the crystal and then 
become diffracted by a series of parallel atomic planes. The Bragg diffraction condition has 
much wider applications than just crystallography; for example, it is of central importance to 
the operation of modern semiconductor lasers.

X-ray Diffraction and Study of Crystal Structures

When an X-ray beam is incident on a single crystal, the scattered beam from a given set of 
planes in the crystal is at an angle 2θ that satisfies the Bragg law. In three dimensions, all 

Incident X-ray beam

d sin θ d sin θ

A

B

d

d

Atomic planes

Crystal

O

A′

B′

O′

Diffracted beam

P Q

EM waves

θθ

Figure A.2 Diffraction involves  

X-ray waves being reflected by  

various atomic planes in the crystal.

These waves interfere constructively 

to form a diffracted beam only for 

certain diffraction angles that satisfy 

the Bragg condition.
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directions from the crystal that are at an angle 2θ to the incident beam define a cone as shown 
in Figure A.3a with its apex at the crystal. This is called a diffraction cone. There are many 
such diffraction cones, each corresponding to a different set of diffraction planes with a 
distinct set of Miller indices (hkl). Although all lines lying on a diffraction cone satisfy the 
Bragg condition, the exact direction of the diffracted beam depends on the exact orientation 
(or tilt) of the diffracting planes to the incident ray. When a monochromatic X-ray beam is 
incident on a single crystal, as illustrated in Figure A.3a, the diffracted beam is along one 
particular direction on the diffraction cone for that set of diffraction planes (hkl) with a par-
ticular orientation to the incident beam.
 The Laue technique of studying crystal structures involves irradiating a single crystal 
with a white X-ray beam that has a wide range of wavelengths. A photographic plate is used 

(a) All 2θ directions around the incident
beam define a di
raction cone. The
di
racted beam lies on the cone, but
its exact direction depends on the
exact orientation of the di
raction
planes to the incident beam.

(b) Laue technique. A single crystal is
irradiated with a beam of white X-rays.
Di
racted X-rays give a spot di
raction
pattern on a photographic plate.

(c) Powdered crystal technique. A sample of
powdered crystal is irradiated with a
monochromatic (single wavelength) X-ray
beam. Di
racted X-rays give di
raction
rings on a photographic plate.

Incident X-ray beam

with wavelength λ

2θ

Single crystal

Photographic film

Single crystal

Photographic film

Powdered crystal

Diffracted

beam

All X-ray

wavelengths

Monochromatic X-ray

beam

Figure A.3
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to capture the diffraction pattern as shown in Figure A.3b. Effectively, we are scanning the 
wavelength λ and picking up diffractions from various (hkl) planes each time the Bragg 
condition is satisfied. Thus, whenever λ and d for a particular set of (hkl) planes satisfy the 
Bragg condition, there is a diffraction. The diffraction pattern is a spot pattern where each 
spot is the result of diffraction from a given set of (hkl) planes oriented in a particular way 
to the incident beam. By using a range of wavelengths, we ensure that the required wavelength 
is available for obtaining diffraction for a given set of planes. The relative positions of the 
spots are used to determine the crystal structure.
 One of the simplest methods for studying crystal structures is the powder technique, 
which involves irradiating a powdered crystal, or a polycrystalline sample, with a collimated 
X-ray beam of known wavelength (monochromatic) as shown in Figure A.3c. Powdering the 
crystal enables a given set of (hkl) planes to receive the X-rays at many different angles θ 
and at many different orientations, or tilts. Put differently, it allows the angle θ to be scanned 
for differently oriented crystals. Since all possible crystal orientations are present by virtue 
powdering, the diffracted rays form diffraction cones and the diffraction pattern developed 
on a photographic plate has diffraction rings as shown in Figure A.3c.
 Each diffraction ring in the powder technique in Figure A.3c represents diffraction from 
a given set of (hkl) planes. Whenever the angle θ satisfies the Bragg law for a given set of 
atomic planes, with Miller indices (hkl) and with an interplanar separation dhkl, there is a 
diffracted beam. An X-ray detector placed at an angle 2θ with respect to the through-beam 
will register a peak in the detected X-ray intensity, as shown in Figure A.4a. The instrument 
that allows this type of X-ray diffraction study is called a diffractometer. The variation of 
the detected intensity with the diffraction angle 2θ represents the diffraction pattern of the 
crystal. The particular diffraction pattern depicted in Figure A.4b is for aluminum, an FCC 
crystal. Different crystals exhibit different diffraction patterns.
 In the case of cubic crystals, the interplanar spacing d is related to the Miller indices of 
a plane (hkl). The separation dhkl between adjacent (hkl) planes is given by

 dhkl =
a

√h2 + k2 + l2
 [A.2]

where a is the lattice parameter (side of the cubic unit cell). When we substitute for d = dhkl 
in the Bragg condition in Equation A.1, square both sides, and rearrange the equation, we find

 (sin θ)2 =
n2

 λ2

4a2  (h2 + k2 + l2)  [A.3]

 This is essentially Bragg’s law for cubic crystals. The diffraction angle increases with 
(h2 + k2 + l2). Higher-order Miller indices, those with greater values of (h2 + k2 + l2), give 
rise to wider diffraction angles. For example, the diffraction angle for (111) is smaller than 
that for (200) because (h2 + k2 + l2) is 3 for (111) and 4 for (200). Furthermore, with λ and 
a values that are typically involved in X-ray diffraction, second- and higher-order diffraction 
peaks, n = 2, 3, . . . , can be ruled out.
 In the case of the simple cubic crystal, all possible (hkl) planes give rise to diffraction 
peaks with diffraction angles satisfying the Bragg law or Equation A.3. The latter equation 
therefore defines a diffraction pattern for the simple cubic crystal structure because it generates 
all the possible values of 2θ for all the planes in the cubic crystal. In the case of FCC and BCC 
crystals, however, not all (hkl) planes give rise to diffraction peaks predicted by Equation A.3. 
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Examination of the diffraction pattern in Figure A.4b for an FCC crystal shows that only those 
planes with Miller indices that are either all odd or all even integers give rise to diffraction 
peaks. There are no diffractions from those planes with mixed odd and even integers.
 The Bragg law for the cubic crystals in Equation A.3 is a necessary diffraction condition 
but not sufficient because diffraction involves the interaction of EM waves with the electrons 
in the crystal. To determine whether there will be a diffraction peak from a set of planes in 
a crystal, we also have to consider the distributions of the atoms and their electrons in the 
crystal. In FCC and BCC structures, diffractions from certain planes are missing because the 
atoms on these planes give rise to out-of-phase reflections.

Collimator

X-ray beam Unscattered X-rays

X-ray detector

2θ

Path of the detector

Intensity of
X-rays at detector

Crystal

0 10 20 30 40 50 60 70 80 90 100 110 120

Diffraction angle, 2θ°

λ = 0.1542 nm

(111)

(200)

(220) (311)

(222) (400) (331)(420)

FCC

Diffracted X-rays

(a) A schematic illustration of a di�ractometer for X-ray di�raction studies of crystals.

(b) A schematic diagram illustrating the intensity of X-rays as detected in (a) versus the

di�raction angle, 2θ, for an FCC crystal (e.g., Al).

Source of
monochromatic

X-rays

Figure A.4 A schematic diagram of a diffractometer and the diffraction pattern obtained from an FCC  

crystal.
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a p p e n d i x

B
Major Symbols and Abbreviations

A area; cross-sectional area; amplification
a lattice parameter; acceleration; amplitude of vibrations; half-channel thick-

ness in a JFET (Ch. 6)
a (subscript) acceptor, e.g., Na = acceptor concentration (m−3)
ac alternating current
ao Bohr radius (0.0529 nm)
AV, AP voltage amplification, power amplification
APF atomic packing factor

B, B magnetic field vector (T), magnetic field
B frequency bandwidth
Bc critical magnetic field
Bm maximum magnetic field
Bo, Be Richardson–Dushman constant, effective Richardson–Dushman constant
BC base collector
BCC body-centered cubic
BE base emitter
BJT bipolar junction transistor

C capacitance; composition; the Nordheim coefficient (Ω m)

c speed of light (2.9979 × 108 m s−1); specific heat capacity (J K−1 kg−1)
Cdep depletion layer capacitance
Cm molar heat capacity (J K−1 mol−1)
Cdiff diffusion (storage) capacitance of a forward-biased pn junction
cs specific heat capacity (J K−1 kg−1)
Cv,cv heat capacity per unit volume (J K−1 m−3)
CB conduction band; common base
CE common emitter
CMOS complementary MOS
CN coordination number
CVD chemical vapor deposition

D diffusion coefficient (m2 s−1); thickness; electric displacement (C m−2)
d density (kg m−3); distance; separation of the atomic planes in a crystal; 

separation of capacitor plates; piezoelectric coefficient; mean grain size 
(Ch. 2)
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d (subscript) donor, e.g., Nd = donor concentration (m−3)
dc direct current
dij piezoelectric coefficients

E energy; electric field (V m−1) (Ch. 9)
EA activation energy (eV atom−1 or J mole−1)
Ea, Ed acceptor and donor energy levels
Ec, Ev conduction band edge, valence band edge
Eex exchange interaction energy
EF, EFO Fermi energy, Fermi energy at 0 K
Eg bandgap energy
Emag magnetic energy
E electric field (V m−1) (except Ch. 9)
Ebr dielectric strength or breakdown field (V m−1)
Eloc local electric field
e electronic charge (1.602 × 10−19 C)
e (subscript) electron, e.g., μe = electron drift mobility; electronic
eff (subscript) effective, e.g., μeff = effective drift mobility
EHP electron–hole pair
EM electromagnetic
EMF (emf) electromagnetic force (V)

F force (N); function
f frequency; function
f(E ) Fermi–Dirac function
FCC face-centered cubic
FET field effect transistor

G rate of generation
Gph rate of photogeneration
Gp parallel conductance (Ω−1)
g(E ) density of states
g conductance; transconductance (A∕V); piezoelectric voltage coefficient 

(Ch. 7)

gd incremental or dynamic conductance (A∕V)

gm mutual transconductance (A∕V)

H, H magnetic field intensity (strength), magnetizing field (A m−1)
h Planck’s constant (6.6261 × 10−34 J s)
ħ Planck’s constant divided by 2π (ħ = 1.0546 × 10−34 J s)
h (subscript) hole, e.g., μh = hole drift mobility
hFE, hfe dc current gain, small-signal (ac) current gain in the common emitter  

configuration
HCP hexagonal close-packed
HF high frequency

I electric current (A); moment of inertia (kg m2) (Ch. 1)
I light intensity (W m−2)
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I, i (subscript) quantity related to ionic polarization
Ibr breakdown current
IB, IC, IE base, collector, and emitter currents in a BJT
i instantaneous current (A); small-signal (ac) current, i = δI

i (subscript) intrinsic, e.g., ni = intrinsic concentration
ib, ic, ie small signal base, collector, and emitter currents (δIB, δIC, δIE) in a BJT
IC integrated circuit

J current density (A m−2)
J total angular momentum vector
j imaginary constant: √−1
Jc critical current density (A m−2)
Jp pyroelectric current density
JFET junction FET

K spring constant (Ch. 1); phonon wavevector (m−1); bulk modulus (Pa); 
extinction coefficient (Ch. 9)

KU unaxial magnetocrystalline energy
k Boltzmann constant (k = R∕NA = 1.3807 × 10−23 J K−1); wavenumber  

(k = 2π∕λ), propagation constant, wavevector (m−1); electromechanical 

coupling factor (Ch. 7)

KE kinetic energy

L total orbital angular momentum

L length; inductance

L Langevin function

ℓ length; mean free path; orbital angular momentum quantum number

Lch channel length in an FET

Le, Lh electron and hole diffusion lengths

ℓn, ℓp lengths of the n- and p-regions outside depletion region in a pn junction

ln (x) natural logarithm of x

LCAO linear combination of atomic orbitals

M, M magnetization vector, magnetization (A m−1)

M multiplication in avalanche effect

Mat relative atomic mass; atomic mass; “atomic weight” (g mol−1)

Mr remanent or residual magnetization (A m−1); reduced mass of two bodies 

A and B, Mr = MAMB∕(MA + MB)

Msat saturation magnetization (A m−1)

m mass (kg)

m the raito of LED output spectrum width in photon energy to kT (Ch. 6)

me mass of the electron in free space (9.10939 × 10−31 kg)

m*e  effective mass of an electron in a crystal

m*h  effective mass of a hole in a crystal

mℓ magnetic quantum number

ms spin magnetic quantum number
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MOS (MOST) metal-oxide-semiconductor (transistor)
MOSFET metal-oxide-semiconductor FET

N number of atoms or molecules; number of atoms per unit volume (m−3) 
(Chs. 7 and 9); number of turns on a coil (Ch. 8)

N atomic concentration (m−3) (Ch. 9)
NA Avogadro’s number (6.0221 × 1023 mol−1)
n electron concentration (number per unit volume); atomic concentration; 

principal quantum number; integer number; refractive index (Ch. 9)
n+ heavily doped n-region
nat number of atoms per unit volume
Nc, Nv effective density of states at the conduction and valence band edges (m−3)
Nd, N 

+
d  donor and ionized donor concentrations (m−3)

ne, no refractive index for extraordinary and ordinary waves in a birefringent crystal
ni intrinsic concentration (m−3)
nno, ppo equilibrium majority carrier concentrations (m−3)
npo, pno equilibrium minority carrier concentrations (m−3)
Ns concentration of electron scattering centers
Nv velocity density function; vacancy concentration (m−3)

P probability; pressure (Pa); power (W) or power loss (W); polarization in a 
dielectric (C m−2) (Ch. 7)

p, p electric dipole moment (C m)
p hole concentration (m−3); momentum (kg m s−1); pyroelectric coefficient  

(C m−2 K−1) (Ch. 7)
p+ heavily doped p-region
pav average dipole moment per molecule or per atom of a medium
pe electron momentum (kg m s−1)
PE potential energy
pinduced induced dipole moment (C m)
po permanent dipole moment (C m)
PET polyester, polyethylene terephthalate
PZT lead zirconate titanate

Q charge (C); heat (J); quality factor
Q′ rate of heat flow (W)

q charge (C); an integer number used in lattice vibrations (Ch. 4)

R gas constant (NAk = 8.3145 J mol−1 K−1); resistance; radius; reflection coef-
ficient (Ch. 3); rate of recombination (Ch. 5)

R reflectance (Ch. 9)
ℛI, ℛV pyroelectric current and voltage responsivities
r position vector
r radial distance; radius; interatomic separation; resistance per unit length
r reflection coefficient (Ch. 9)
RH Hall coefficient (m3 C−1)
ro bond length, equilibrium separation
rms root mean square
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S total spin momentum, intrinsic angular momentum; Poynting vector (Ch. 9)
S cross-sectional area of a scattering center; Seebeck coefficient, thermoelectric 

power (V m−1); strain (Ch. 7)
Sband number of states per unit volume in the band
Sj strain along direction j
SCL space charge layer

T temperature in Kelvin; transmission coefficient
T transmittance
t time (s); thickness (m)
t transmission coefficient
tan δ loss tangent
TC Curie temperature
Tc critical temperature (K)
Tj mechanical stress along direction j (Pa)
TC thermocouple
TCC temperature coefficient of capacitance (K−1)
TCR temperature coefficient of resistivity (K−1)

U total internal energy
u mean speed (of electrons) (m s−1)

V voltage; volume; PE function of the electron, PE(x)
Vbr breakdown voltage
Vo built-in voltage
VP pinch-off voltage
Vr reverse bias voltage
v instantaneous voltage (Ch. 1 and 6); volume fraction (Ch. 7)
v velocity (m s−1)
v 

2  mean square velocity
vdx drift velocity in the x direction
ve, vrms effective velocity or rms velocity of the electron
vF, Fermi speed
vg, vg group velocity
vth thermal velocity
VB valence band

W width; width of depletion layer with applied voltage; dielectric loss
Wo width of depletion region with no applied voltage
Wn, Wp width of depletion region on the n-side and on the p-side with no applied 

voltage

X atomic fraction

Y admittance (Ω−1); Young’s modulus (Pa)

Z impedance (Ω); atomic number, number of electrons in the atom

α polarizability; temperature coefficient of resistivity (K−1); absorption coeffi-
cient (m−1); gain or current transfer ratio from emitter to collector of a BJT



952 APPENDIX B

β current gain IC∕IB of a BJT; Bohr magneton (9.2740 × 10−24 J T−1); spring 
constant (Ch. 4)

βS Schottky coefficient in field assisted thermionic emission
γ Grüneisen parameter (Ch. 4); emitter injection efficiency (Ch. 6); loss  

coefficient in the Lorentz oscillator model (Ch. 7); gyromagnetic ratio 
(Ch. 8)

Γ, Γph flux density (m−2 s−1), photon flux density (photons m−2 s−1)
δ small change; skin depth (Ch. 2); loss angle (Ch. 7); domain wall thickness 

(Ch. 8); penetration depth (Ch. 9)
Δ change, excess (e.g., Δn = excess electron concentration)
∇2 ∂2∕∂x2 + ∂2∕∂y2 + ∂2∕∂z2

ε εoεr, permittivity of a medium (C V−1 m−1 or F m−1); elastic strain
εo permittivity of free space or absolute permittivity (8.8542 × 10−12 C V−1 m−1 

or F m−1)
εr relative permittivity or dielectric constant
η efficiency; quantum efficiency; ideality factor
θ angle; an angular spherical coordinate; thermal resistance; angle between 

a light ray and normal to a surface (Ch. 9)
κ thermal conductivity (W m−1 K−1); dielectric constant
λ wavelength (m); thermal coefficient of linear expansion (K−1); electron 

mean free path in the bulk crystal (Ch. 2); characteristic length (Ch. 8)
μ, μ magnetic dipole moment (A m2) (Ch. 3)
μ μoμr, magnetic permeability (H m−1)
μo absolute permeability (4π × 10−7 H m−1)
μr relative permeability
μm, μm magnetic dipole moment (A m2) (Ch. 8)
μd drift mobility (m2 V−1 s−1)
μh, μe hole drift mobility, electron drift mobility (m2 V−1 s−1)
f frequency (Hz)
ν Poisson’s ratio
π pi, 3.14159. . . ; piezoresistive coefficient (Pa−1)
πL, πT longitudinal and transverse piezoresistive coefficients (Pa−1)
Π Peltier coefficient (WA−1 or V)
ρ resistivity (Ω m); density (kg m−3); charge density (C m−3)
ρE energy density (J m−3)
ρnet net space charge density (C m−3)
ρJ 2 Joule heating per unit volume (W m−3)
σ electrical conductivity (Ω−1 m−1); surface concentration of charge (C m−2) 

(Ch. 7)
σP polarization charge density appearing on a dielectric surface or boundary 

(C m−2)
σo free surface charge density (C m−2)
σS Stefan’s constant (5.6704 × 10−8 W m−2 K−4)
τ time constant; mean electron scattering time; relaxation time; torque (N m)
τg mean time to generate an electron–hole pair
ϕ angle; an angular spherical coordinate
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Φ work function (J or eV); magnetic flux (Wb); rotation angle of electric 
field in light passing through a liquid crystal cell (Ch. 9)

Φe radiant flux (W)
Φm metal work function (J or eV)
Φn energy required to remove an electron from an n-type semiconductor (J or eV)
Φv luminous flux (lumens)
χ volume fraction; electron affinity; susceptibility ( χe is electrical; χm is  

magnetic)
Ψ(x, t) total wavefunction
ψ (x) spatial dependence of the electron wavefunction under steady-state conditions
ψk(x) Bloch wavefunction, electron wavefunction in a crystal
ψhyb hybrid orbital
ω angular frequency (2πf); oscillation frequency (rad s−1)
ωI ionic polarization resonance frequency (angular)
ωo resonance or natural frequency (angular) of an oscillating system.
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a p p e n d i x

C
Elements to Uranium

   Atomic 

   Mass Electronic Density (g cm−3) Crystal in 

Element Symbol Z (g mol−1) Structure (*at 0 °C, 1 atm) Solid State

Hydrogen H 1 1.008 1s1 0.00009* HCP
Helium He 2 4.003 1s2 0.00018* FCP
Lithium Li 3 6.941 [He]2s1 0.54 BCC
Beryllium Be 4 9.012 [He]2s2 1.85 HCP
Boron B 5 10.81 [He]2s2p1 2.5 Rhombohedral
Carbon C 6 12.01 [He]2s2p2 2.3 Hexagonal
Nitrogen N 7 14.007 [He]2s2p3 0.00125* HCP
Oxygen O 8 16.00 [He]2s2p4 0.00143* Monoclinic
Fluorine F 9 18.99 [He]2s2p5 0.00170* Monoclinic
Neon Ne 10 20.18 [He]2s2p6 0.00090* FCC
Sodium Na 11 22.99 [Ne]3s1 0.97 BCC
Magnesium Mg 12 24.31 [Ne]3s2 1.74 HCP
Aluminum Al 13 26.98 [Ne]3s2p1 2.70 FCC
Silicon Si 14 28.09 [Ne]3s2p2 2.33 Diamond
Phosphorus P 15 30.97 [Ne]3s2p3 1.82 Triclinic
Sulfur S 16 32.06 [Ne]3s2p4 2.0 Orthorhombic
Chlorine Cl 17 35.45 [Ne]3s2p5 0.0032* Orthorhombic
Argon Ar 18 39.95 [Ne]3s2p6 0.0018* FCC
Potassium K 19 39.09 [Ar]4s1 0.86 BCC
Calcium Ca 20 40.08 [Ar]4s2 1.55 FCC
Scandium Sc 21 44.96 [Ar]3d14s2 3.0 HCP
Titanium Ti 22 47.87 [Ar]3d 24s2 4.5 HCP
Vanadium V 23 50.94 [Ar]3d 34s2 5.8 BCC
Chromium Cr 24 52.00 [Ar]3d 54s1 7.19 BCC
Manganese Mn 25 54.95 [Ar]3d 54s2 7.43 BCC
Iron Fe 26 55.85 [Ar]3d 64s2 7.86 BCC
Cobalt Co 27 58.93 [Ar]3d 74s2 8.90 HCP
Nickel Ni 28 58.69 [Ar]3d 84s2 8.90 FCC
Copper Cu 29 63.55 [Ar]3d104s1 8.96 FCC
Zinc Zn 30 65.39 [Ar]3d104s2 7.14 HCP
Gallium Ga 31 69.72 [Ar]3d104s2p1 5.91 Orthorhombic
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Germanium Ge 32 72.61 [Ar]3d104s2p2 5.32 Diamond
Arsenic As 33 74.92 [Ar]3d104s2p3 5.72 Rhombohedral
Selenium Se 34 78.96 [Ar]3d104s2p4 4.80 Hexagonal
Bromine Br 35 79.90 [Ar]3d104s2p5 3.12 Orthorhombic
Krypton Kr 36 83.80 [Ar]3d104s2p6 3.74 FCC
Rubidium Rb 37 85.47 [Kr]5s1 1.53 BCC
Strontium Sr 38 87.62 [Kr]5s2 2.6 FCC
Yttrium Y 39 88.90 [Kr]4d15s2 4.5 HCP
Zirconium Zr 40 91.22 [Kr]4d 25s2 6.50 HCP
Niobium Nb 41 92.91 [Kr]4d 45s1 8.55 BCC
Molybdenum Mo 42 95.94 [Kr]4d 55s1 10.2 BCC
Technetium Tc 43 (97.91) [Kr]4d 55s2 11.5 HCP
Ruthenium Ru 44 101.07 [Kr]4d 75s1 12.2 HCP
Rhodium Rh 45 102.91 [Kr]4d 85s1 12.4 FCC
Palladium Pd 46 106.42 [Kr]4d10 12.0 FCC
Silver Ag 47 107.87 [Kr]4d105s1 10.5 FCC
Cadmium Cd 48 112.41 [Kr]4d105s2 8.65 HCP
Indium In 49 114.82 [Kr]4d105s2p1 7.31 FCT
Tin Sn 50 118.71 [Kr]4d105s2p2 7.30 BCT
Antimony Sb 51 121.75 [Kr]4d105s2p3 6.68 Rhombohedral
Tellurium Te 52 127.60 [Kr]4d105s2p4 6.24 Hexagonal
Iodine I 53 126.91 [Kr]4d105s2p5 4.92 Orthorhombic
Xenon Xe 54 131.29 [Kr]4d105s2p6 0.0059* FCC
Cesium Cs 55 132.90 [Xe]6s1 1.87 BCC
Barium Ba 56 137.33 [Xe]6s2 3.62 BCC
Lanthanum La 57 138.91 [Xe]5d16s2 6.15 HCP
Cerium Ce 58 140.12 [Xe]4f 15d16s2 6.77 FCC
Praseodymium Pr 59 140.91 [Xe]4f 36s2 6.77 HCP
Neodymium Nd 60 144.24 [Xe]4f 46s2 7.00 HCP
Promethium Pm 61 (145) [Xe]4f 56s2 7.26 Hexagonal
Samarium Sm 62 150.4 [Xe]4f 66s2 7.5 Rhombohedral
Europium Eu 63 151.97 [Xe]4f 76s2 5.24 BCC
Gadolinium Gd 64 157.25 [Xe]4f 75d16s2 7.90 HCP
Terbium Tb 65 158.92 [Xe]4f 96s2 8.22 HCP
Dysprosium Dy 66 162.50 [Xe]4f 106s2 8.55 HCP
Holmium Ho 67 164.93 [Xe]4f 116s2 8.80 HCP
Erbium Er 68 167.26 [Xe]4f 126s2 9.06 HCP
Thulium Tm 69 168.93 [Xe]4f 136s2 9.32 HCP
Ytterbium Yb 70 173.04 [Xe]4f 146s2 6.90 FCC
Lutetium Lu 71 174.97 [Xe]4f 145d16s2 9.84 HCP
Hafnium Hf 72 178.49 [Xe]4f 145d 26s2 13.3 HCP
Tantalum Ta 73 180.95 [Xe]4f 145d 36s2 16.4 BCC

   Atomic 

   Mass Electronic Density (g cm−3) Crystal in 

Element Symbol Z (g mol−1) Structure (*at 0 °C, 1 atm) Solid State
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Tungsten W 74 183.84 [Xe]4f 145d 46s2 19.3 BCC
Rhenium Re 75 186.21 [Xe]4f 145d 56s2 21.0 HCP
Osmium Os 76 190.2 [Xe]4f 145d 66s2 22.6 HCP
Iridium Ir 77 192.22 [Xe]4f 145d 76s2 22.5 FCC
Platinum Pt 78 195.08 [Xe]4f 145d 96s1 21.4 FCC
Gold Au 79 196.97 [Xe]4f 145d106s1 19.3 FCC
Mercury Hg 80 200.59 [Xe]4f 145d106s2 13.55 Rhombohedral
Thallium Tl 81 204.38 [Xe]4f 145d106s2p1 11.8 HCP
Lead Pb 82 207.2 [Xe]4f 145d106s2p2 11.34 FCC
Bismuth Bi 83 208.98 [Xe]4f 145d106s2p3 9.8 Rhombohedral
Polonium Po 84 (209) [Xe]4f 145d106s2p4 9.2 SC
Astatine At 85 (210) [Xe]4f 145d106s2p5 — —
Radon Rn 86 (222) [Xe]4f 145d106s2p6 0.0099* Rhombohedral
Francium Fr 87 (223) [Rn]7s1 — —
Radium Ra 88 226.02 [Rn]7s2 5 BCC
Actinium Ac 89 227.02 [Rn]6d17s2 10.0 FCC
Thorium Th 90 232.04 [Rn]6d27s2 11.7 FCC
Protactinium Pa 91 (231.03) [Rn]5f 26d17s2 15.4 BCT
Uranium U 92 (238.05) [Rn]5f 36d17s2 19.07 Orthorhombic

   Atomic 

   Mass Electronic Density (g cm−3) Crystal in 

Element Symbol Z (g mol−1) Structure (*at 0 °C, 1 atm) Solid State

Erwin Schrödinger (1887 – 1961) was an Austrian physicist who won 

the Nobel prize in physics with Paul Dirac in 1933 “for the discovery of 

new productive forms of atomic theory”. Based on the view that elec-

trons can have particle-like and wave-like properties, he formulated 

his famous time-independent Schrödinger equation in 1926 in a paper 

entitled “Quantisierung als Eigenwertproblem” (Quantization as an  

Eigenvalue Problem) in Annalen der Physik (Volume 384, Issue 4,  

361-376), in which he solved it for the hydrogen atom and showed that 

it gave the right energies. The 1926 Analen der Physics volume had 

several papers from Schrödinger, including the harmonic oscillator 

problem in Chapter 4. (Courtesy of Interfoto / Alamy Stock Photo)





959

a p p e n d i x

D
Constants and Useful Information

Physical Constants

Atomic mass unit amu 1.66054 × 10−27 kg
Avogadro’s number NA 6.02214 × 1023 mol−1

Bohr magneton β 9.2740 × 10−24 J T−1

Boltzmann constant k 1.3807 × 10−23 J K−1 = 8.6174 × 10−5 eV K−1

Electron mass in free space me 9.10939 × 10−31 kg
Electron charge e 1.60218 × 10−19 C
Gas constant R 8.3145 J K−1 mol−1 or m3 Pa K−1 mol−1

Gravitational constant G 6.6742 × 10−11 N m2 kg−2

Permeability of vacuum or μo 4π × 10−7 H m−1 (or Wb A−1 m−1) 
absolute permeability

Permittivity of vacuum or  εo 8.8542 × 10−12 F m−1 
absolute permittivity

Planck’s constant h 6.626 × 10−34 J s = 4.136 × 10−15 eV s
Planck’s constant/2π h 1.055 × 10−34 J s = 6.582 × 10−16 eV s
Proton rest mass mp 1.67262 × 10−27 kg
Rydberg constant R∞ 1.0974 × 107 m−1

Speed of light c 2.9979 × 108 m s−1

Stefan’s constant σs 5.6704 × 10−8 W m−2 K−4

Useful Information

Acceleration due to gravity at g 9.81 m s−2 
45° latitude

kT at T = 293 K (20 °C) kT 0.02525 eV
kT at T = 300 K (27 °C) kT 0.02585 eV
Bohr radius ao 0.0529 nm
1 angstrom Å 10−10 m
1 micron μm 10−6 m
1 eV = 1.6022 × 10−19 J
1 kJ mol−1 = 0.010364 eV atom−1

1 atmosphere (pressure)  
= 1.013 × 105 Pa
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Useful Information

π = 3.1416 e = 2.7183
1 Å (Angstrom) = 0.1 nm = 10−10 m 1 eV = 1.60218 × 10−19 J

Common Prefixes for Multiples of Ten

10−15 10−12 10−9 10−6 10−3 10−2 103 106 109 1012

f p n μ m d k M G T
femto pico nano micro milli deci kilo mega giga tera

Color Violet Blue Green Yellow Orange Red

λ (nm) 390–455 455–492 492–577 577–597 597–622 622–780

Visible Spectrum

The table gives the typical wavelength ranges and color perception by an average person.

Complex Numbers

j = (−1)1/2 j2 = −1

exp( jθ) = e jθ = cos θ + j sin θ

Z = a + jb = re jθ r = (a2 + b2)1/2 tan θ =
b

a

Z* = a − jb = re−jθ Re(Z) = a Im(Z) = b

Magnitude2 = ∣Z∣2 = ZZ* = a2 + b2  Argument = θ = arctan(b

a)
cos θ =

1
2

 (ejθ + e−jθ)   sin θ =
1
2j

 (ejθ − e−jθ)

Expansions

ex = 1 + x + 
1
2!

 x2 +
1
3!

 x3 + …

(1 + x)n = 1+ nx + 
n(n − 1)

2!
 x2 +

n(n − 1)(n − 2)
3!

 x3 + …

Small x:   (1 + x)n ≈ 1 + nx   sin x ≈ x   tan x ≈ x   cos x ≈ 1

Small Δx in x = xo + Δx: f(x) ≈ f(xo) + Δx( df

dx)
xo
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Accelerated failure tests, 195
Acceptors, 429, 507
AC conductivity, 180–183
Accumulation, 641
Accumulation region, 487
Activated state, 107
Activation energy, 107
Activator, 908, 932

excitation, 909
Active device, defined, 641
Affinity, electron, 6, 17, 108, 

332, 398, 413, 509
AlGaAs LED emitter, 650
Allotropy, 66–69, 110

transition temperature, 66
Alloy, 196

ternary, 572, 650
Amorphous semiconductors, 

85–88, 505–508
bandgap, 507
extended states, 506, 509
localized states, 507, 510
mobility edge, 508
tail states, 507

Amorphous solids, 85–88, 107
Ampere’s law, 775
Angular momentum, 294

intrinsic, 271–272
orbital, 258, 266
potential energy, 274
total, 277–278

Anion, 6, 14, 107
Anisotropic magnetoresistance 

(AMR), 815–820, 846
Anisotropy, magnetocrystalline, 

789–790
shape, 807, 846–847

Antibonding orbital, 314, 316
Antiferromagnetism,  

781–782, 843
Antireflection coating, 641, 

888–889

Arrhenius rate equation, 50–52
a-Si:H, 89, 506
Aspect ratio, 193
Atomic concentration, 60
Atomic magnetic moments, 

769–770
Bohr magneton, 770, 843
unfilled subshells, 770

Atomic mass, 8
Atomic mass number, 8
Atomic mass units (amu), 8, 107
Atomic number, 4

effective (Zeff), 265
Atomic packing factor (APF), 

60, 107
Atomic polarizability, 753
Atomic radius, 753
Atomic structure, 3–8

orbital angular momentum 
quantum number,  
4, 258, 295

principal quantum number, 4, 
258, 296

shell, 4, 264
subshells, 4, 264

Atomic weight. See Atomic 
mass

Attempt frequency, 856
Attenuation, 885
Attenuation coefficient,  

885, 907
Attenuation in optical fibers, 

904–907
graph, 905
Rayleigh scattering limit, 906

Avalanche breakdown,  
562–564, 641, 648

Avalanche effect, 563
Average free time (in electron 

drift), 129. See also 
Mean free time

Avogadro’s number, 8, 25, 107

B versus H, 798–799
Balmer series, 307
Balmer-Rydberg formula, 269
Band theory of solids,  

319–328
Bandgap (energy gap) Eg, 330, 

391, 393, 413, 511
direct band gap, 471, 498
indirect band gap, 471, 499
mobility gap, 507
narrowing and emitter  

injection efficiency, 654
temperature dependence, 515

Bardeen-Cooper-Schrieffer  
theory, 838, 839–840

Barkhausen effect, 797
Basis, 55, 102, 107
BCC (body centered cubic). See 

Crystal structure
BCS theory. See Bardeen- 

Cooper-Schrieffer
BCT (body centered tetragonal). 

See Crystal structure
Bednorz, J. George, 830
Beer-Lambert law, 470
Biaxial crystals, 915

negative, 915
positive, 915

Binary eutectic phase diagrams, 
97–102

Bipolar junction transistor, 527, 
598–614, 642

active region, 603
α, 602–603
amplifier, CB, 607–609
base, 598
base transport factor, aT, 602
base-width modulation, 604, 

642. See also Early effect 
β, 603, 613

collector, 598
collector junction, 600, 642

i n d e x



962 INDEX

Bipolar junction transistor—Cont.

common base (CB)  
configuration, 598–609

common emitter (CE) DC 
characteristics, 609–611

current gain a, CB, 601–602
current transfer ratio a, 601, 606
emitter, 598
emitter injection efficiency, 

606–607
emitter junction, 600, 642
emitter current, 601
equations, pnp BJT, 652–653
input resistance, 609, 612
power gain, 601
saturated operating region, 611
small signal equivalent  

circuit, 644
small signal low-frequency 

model, 611–614
transconductance, 612
transistor action, 601
transit time, minority  

carrier, 602
voltage gain, 609, 612

Birefrigence. See also Retarding 
plates

circular, 922–923
crystals, 915, 932
of calcite, 919–920
of calcite crystal, photo, 915

BJT. See Bipolar junction  
transistor

Black body radiation, 224–227
Planck’s formula, 225
Rayleigh-Jeans law, 225
Stefan’s black body radiation 

law, 225
Stefan’s constant, 225
Wien’s law, 304

Black’s equation, 194, 196
Bloch wall, 787, 790–793, 842

potential energy, 792
thickness, 792

Bloch wavefunctions, 497,  
506, 508

Bohr magneton, 309, 770, 843
Bohr model, 3
Bohr radius, 260, 265
Bohr’s correspondence  

principle, 241

Boltzmann approximation, 576
Boltzmann constant, 27
Boltzmann energy distribution, 40
Boltzmann factor, 39
Boltzmann statistics, 343–344, 

397, 531, 741
Bond, general, 9–24

energy, 11, 108
length, 10
polar, 22
primary, 9–18, 110
relative angle, 85
secondary, 18–21, 111
switching, 169
twisting, 86

Bonding and types of  
solids, 9–24

Bonding (binding) energy,  
11, 108

Bonding orbital, 314, 316
Boson particle, 839
Bound charges, 666
Boundary conditions

dielectrics, 691–696, 750
electric field, 880
magnetic field, 880
quantum mechanics, 234

Bragg diffraction condition, 216, 
302, 393, 941–945

Bragg angle, 942
diffracted beam, 941
diffraction angle, 942
for cubic crystals, 944

Bragg distributed reflector, 640
Bragg reflector, 890
Bragg’s law. See Bragg  

diffraction condition
Brass, 196, 201
Bravais lattices, 102–105

unit cell geometry, 61, 104
Brightness, LED, 582–586
Bronze, 196
Brewster’s angle, 882, 932
Brillouin zones, 391,  

394–397
Bruggeman mixture rule, 764
Buckminsterfullerene.  

See Carbon
Built-in field, 642
Built-in potential, 462–463, 

530–532

Built-in voltage, 642
Bulk modulus, 108

Capacitance
definition, 660
per unit volume, 715
temperature coefficient 

(TCC), 717
volume efficiency, 715

Capacitor
constructions, 710–714
dielectric materials, 710
dielectrics table, 715, 760
electrolytic, 712
equivalent circuits for parallel 

and series, 757
polyester (PET), 717, 758
polymeric film, 711
tantalum, 713
temperature coefficient, 717
types compared, 710, 715, 759

Carbon, 66–69
amorphous, 69
Buckminsterfullerene, 67
diamond, 67, 68
graphite, 67, 68
lonsdaleite, 68
properties (table), 68

Carbon nanotube (CNT), 69, 
373, 406

field enhancement factor, 406
Carrier concentration

majority carrier, 451
minority carrier, 452
of extrinsic semiconductor, 

426–429
of intrinsic semiconductor, 

412–426
saturation temperature, 436
temperature dependence of, 

435–439
extrinsic range, 436
intrinsic range, 436
ionization range, 436

Cathode, 397
Cathodoluminescence, 371,  

908, 933
Cation, 6, 14, 108
Cauchy coefficients (table), 868
Cauchy dispersion equation, 

869, 870
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CB. See Conduction band
Ceramic, magnets, 809
Ceramic, materials, 22
Chemisorption, 80
Chip (integrated circuit), 642
Circular birefrigence,  

922–924, 932
media, 924
optical activity, 923
specific rotary power, 923, 934

Cladding, 878
Classical  atomic  polarizability, 

663, 664–665
Clausius-Mossotti equation, 

669–670, 678, 750
Coaxial cable failure, 708–710

thermal breakdown, 760–761
Coercive field (coercivity),  

797, 843
Coercivity on the B–H loop, 798
Cohesive energy, 16
Cole-Cole plots, 688–691
Collimated beam, 37
Common Base (CB) BJT con-

figuration. See Bipolar 
junction transistor

Compensated  
semiconductor, 508

Compensation doping,  
430–435, 513

Complementary principle, 294
Complex dielectric constant, 

682–687, 890–898
loss angle, 686
loss tangent, 683
relaxation peak, 683

Complex propagation constant, 
892, 932

Complex refractive index,  
890–898, 932, 935–940

extinction coefficient, 892, 
932, 933

for a-Si, 893
of InP, 895
resonance absorption,  

896–898
Complex relative permittivity. 

See Complex dielectric 
constant

Compton effect, 294
Compton scattering, 221–224

Conduction, 126–134, 302–303, 
457–463

in metals, 349–352
in semiconductors, 416–418
in silver, 352

Conduction band (CB), 330, 
412–416, 508–509

Conduction electron  
concentration, 127, 161

Conduction electrons, 127, 168, 
199, 328

Conduction in solids
electrical, 125–161
thermal, 162–167
in thin films, 184

Conductivity
AC, 180–183 
activation energy for, 174
electrical, 175–176, 196, 199
of extrinsic semiconductor, 428
of Fermi level electrons in 

metal, 350
of intrinsic semiconductor, 418
of ionic crystals and glasses, 

172–176
lattice-scattering-limited, 136
of metals, 126, 387–388, 403
of nonmetals, 167–176
of semiconductors, 168–171
temperature dependence of, 

134–137, 443–445
Conductivity-mixture rule, 153
Contact potential, 352–355
Continuity equation, 463–468

steady state, 466
time-dependent, 463–465

Continuous random network 
(CRN) model, 86

Cooper pairs, 839, 843
Coordination number (CN), 12, 17

definition, 108
Core, 878
Corona discharge, 698, 750
Covalent bond, 108
Covalent solids, 671–673
Covalently bonded solids, 11–13
Critical angle, 877
Critical electric field, 642
Crystal, 108
Crystal directions and planes, 

61–66, 121

Crystal lattice, 55–69
different types, 104

Crystal periodicity, 55
strained around a point  

defect, 71
Crystal structure, 55

body-centered cubic (BCC), 
56, 104, 121

body-centered tetragonal 
(BCT), 104, 105

close-packed, 13, 56
CsCl, 59
diamond cubic, 57, 122
face-centered cubic (FCC), 

13, 56, 60, 104, 108
diffraction pattern  

(figure), 945
hexagonal close-packed 

(HCP), 56
NaCl, 59
polymorphic, 66
properties (table), 60
study using x-ray diffraction, 

942–945
Laue technique, 943
powder technique, 944

types, 55–61, 104
zinc blende (ZnS), 58, 121

Crystal surface, 79–82
absorption, 80
adsorption, 80
chemisorption, 80
dangling bonds, 79, 89
Kossel model, 81
passivating layer, 81
physisorption (physical  

adsorption), 80
reconstructed, 80
terrace-ledge-kink model, 81

Crystal symmetry, 104
Crystal systems, 105
Crystal types, 55–61
Crystalline defects, 69–82
Crystalline solid, 55
Crystalline state, 55–69
Crystallization, 108

from melt, 77
nuclei, 77

Cubic crystals, 104
interplanar separation, 944

Cubic symmetry, 55
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Curie temperature, 728, 730, 
750, 785–786

table, 786
Curie-Weiss law, 779
Current in plane (CIP), 818
Czochralski growth, 82–83
Czochralski, Jan, 84

Dangling bonds, 89
De Broglie relationship,  

227–231, 294
Debye equations, 688–691, 750

non-Debye relaxation, 690
Debye loss peak, 688
Debye heat capacity, 379–384
Debye frequency, 380, 397
Debye temperature, 381, 397

table, 382
Defect structures, 82
Deformation, plastic  

(permanent), 75
Degeneracy, 256

three-fold, 256
Degenerate semiconductor,  

446, 509
Degree of freedom, 28, 116
Delocalized electrons, 13

electron cloud or gas, 13, 323
Demagnetization, 799–801
Density of states, 336–342,  

346–347, 397,  
418–420, 470

effective density at CB edge, 
420, 509

effective density at  
VB edge, 420

Density of vibrational states, 
379, 397

Deperming. See Demagnetization
Depletion capacitance, 553, 637
Depletion region. See pn  

junction
Depolarizing field, 737–738

depolarizing factor, 737
Diamagnetism, 778–780

deperming, 800
Dichroism, 920
Dielectric breakdown, 696–710

aging effects, 697
breakdown mechanisms  

compared, 708

in coaxial cables, 708–710, 
760–761

electrical tree, 703
electrofracture, 702–703, 751
electromechanical,  

702–703, 751
electron avalanche  

breakdown, 701
electronic, 701, 751
external discharges,  

707–708, 751
in gases, 697–700
internal discharges,  

703–706, 751
intrinsic, 701, 751
in liquids, 700
loss, 679–687
partial discharge, 698, 752
in solids, 701–710
surface tracking, 707, 752
table, 697
thermal, 701–702, 753
water treeing, 707

Dielectric materials, 659–766
constant. See Relative  

permittivity
definition, 750
dispersion relation, 746
loss, 679–687, 750
loss table, 687
low-k, 192
properties (table), 760
strength, 660, 696–697, 750. 

See also Dielectric 
breakdown

strength table, 697
volume efficiency, 715

Dielectric mirrors, 889,  
932, 938

Dielectric mixtures, 747–749
effective dielectric  

constant, 747
Lichtenecker formula, 748
logarithmic mixture  

rules, 748
Maxwell-Garnett formula, 749

Dielectric resonance, 683,  
742–747, 750

frictional force, 743
Lorentz dipole oscillator 

model, 744

natural angular frequency, 744
peak, 745
relaxation peak, 745
resonant angular  

frequency, 744
restoring force, 742
spring constant, 742

Diffraction, 294, 941–945. See 

also Bragg diffraction 
condition

angle, 942
beam, 941
patterns (figure), 213, 945
study of crystal structure, 

388–397, 942–945
Diffractometer, 944
Diffusion, 52–54, 108, 457–463, 

509, 642
coefficient, 53, 108, 461
current, 536
current density, 457, 459
diffusion length, 466,  

468, 535
mean free path, 458

Diffusion capacitance,  
559–562, 642

diode action, 560
dynamic conductance, 560
dynamic (incremental)  

resistance, 560, 642
Diffusion coefficient, 461
Diode. See pn Junction

action, 560
equation, 540
laser, 292
long, 643
photodiodes, 635–638
short, 538, 644

Dipolar (orientational)  
polarization, 674–676, 
740–742, 750

Langevin function, 741–742
relaxation equation, 750
relaxation process, 680, 750
relaxation time, 681

Dipole moment. See Electric  
dipole moment;  
Magnetic dipole moment

Dipole relaxation,  
681–683, 750

Dipole-dipole interaction, 20
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Dirac, Paul Adrien Maurice, 345
Direct bandgap semiconductors, 

449, 545
Direct recombination capture 

coefficient, 519, 546
Director, 925
Dislocations, 73–77, 108

edge, 73, 108
misfit, 77
screw, 74, 111
threading, 77

Dispersion relation, 397–398, 
746, 933. See also  
Refractive index

Dispersive medium, 871, 933
Domains. See Ferromagnetism
Donors, 428, 509
Doping, 426–435

compensation, 430–432
n-type, 422, 427–429
p-type, 422, 429–430

Doppler effect, 290, 294
Double-hetrostructure (DH)  

device, 568
Drift mobility, 129, 440–443

definition, 196
effective, 139, 442
impurity dependence,  

440–443
impurity-scattering-limited, 

139, 441, 510
lattice-scattering-limited, 139, 

440, 510
tables, 159, 424
temperature dependence, 

440–443
Drift velocity, 126, 130, 133, 

169, 196, 417
Drude model, 126–134, 350
Dulong-Petit rule, 30, 381
Dynamic (incremental) resis-

tance, 559–562, 642

Early effect, 604, 642
Early voltage, 630
Eddy currents and losses, 844, 851
Effective lifetime, 546
Effective mass, 334–335, 398, 

417, 500–502, 509
EHP. See Electron-hole pairs
Eigenenergy, 237

Eigenfunction, 233
Einstein relation, 174, 461, 509
E-k diagrams, 495–500
Elastic modulus, 23–24, 108
Electric dipole moment, 19, 108, 

659, 661–665, 750
definition, 19, 108, 750
induced, 20, 663, 865–866
in nonuniform electric field, 

756–757
permanent, 19, 674
relaxation time, 681

Electric displacement, 734–738
depolarizing factor, 737
depolarizing field, 737

Electric susceptibility, 667, 751
Electrical conductivity, 175–176, 

196, 198–199
Electrical contacts, 156–157
Electrical double-layer capaci-

tance (EDLC), 714
Electrical noise, 47–50, 120. See 

also Noise
Johnson resistor noise  

equation, 49
rms noise voltage, 49

Electrochemical potential, 354
Electrodeposition, 184
Electroluminescence, 567,  

908, 933
injection, 911

Electromechanical coupling  
factor, 722

Electromigration, 191
accelerated failure tests, 195
of Al-Cu interconnects, 210
barrier, 195
definition, 196
hillock, 195
mean time to 50 percent  

failure, 195
rate, 195
void, 195

Electromigration and Black’s 
equation, 194–196

Electron
average energy in CB, 423, 509
average energy in metal,  

348, 397
concentration in CB, 420, 

427–429, 431

conduction electrons, 127, 
168, 199, 328

confined, 235–241
confined, in finite PE well, 

244–247
crystal momentum, 448, 498, 

501, 901–902
current due to, 460
diffraction in crystals,  

388–397
diffraction patterns, 228
diffusion, 359
diffusion current density, 459
effective mass, 334–335, 398, 

417, 500–502, 509
effective speed in metals, 349
energy in hydrogenic atom, 

257–266
energy in metals, 348
Fermi-Dirac statistics, 135
gas, 323
group velocity, 501
magnetic dipole moment, 

273–277
mean recombination time  

(pn junction), 539
mobility, 417
momentum, 237
motion and drift, 500
in a potential box, 254–257
secondary emission,  

332, 399
spin, 271–272, 296–297
spin resonance (ESR), 309
standing wave, 389
surface scattering, 186–190
as a wave, 227–235, 388–391
wavefunction in hydrogenic 

atom, 257–262
wavefunction in infinite PE 

well, 255
wavelength, 228

Electron affinity, 6, 108, 398, 
477, 509

Electron beam deposition,  
87, 184

Electron drift mobility. See Drift 
mobility

Electron spin resonance  
(ESR), 309

Electronegativity, 22, 108
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Electron-hole pairs, 413–416
generation, 331, 413–416, 

421, 451–454
mean thermal generation 

time, 543
recombination, 416, 453, 505

Electronic impurity, 572
Electronic polarization  

resonance frequency, 663
Electronic (quantum) state,  

260, 272
Electro-optic effects,  

928–931, 932
field induced refractive  

index, 928
Kerr effect, 929, 933
noncentrosymmetric  

crystals, 929
Pockels effect, 929, 934

Electroresistivity, 473, 511
Energy bands, 319–324, 336–339
Energy density, 295, 778
Energy gap (Eg). See Bandgap
Energy, quantized, 256, 262–266

ground state energy, 238
in the crystal, 509
infinite potential well, 235

Energy versus crystal  
momentum plot.  
See E-k diagrams

Epitaxial layer, 75, 642
Epitaxy, 75, 574
Equilibrium, 109
Equilibrium separation, 10
Equilibrium state, 46, 109
Eutectic composition, 100, 109
Eutectic phase diagrams,  

97–102
Eutectic point, 99
Eutectic transformation, 100
Evanescent wave, 885

attenuation coefficient, 885
penetration depth, 885

Excess carrier concentration, 
452, 509, 518

Exchange integral, 784
Exchange interaction,  

782–785, 844
Excitation

activator, 909
host, 909

Excited atom, 6
Extended states, 506, 509
External efficiency, 583
External quantum efficiency 

(EQE), 584–585, 642
External reflection, 883,  

887–888, 937
Extinction coefficient, 892, 933
Extraction efficiency (EE), 584
Extrinsic semiconductors,  

426–435, 509, 512

Family of directions in a  
crystal, 63

Family of planes in a crystal, 65
Fermi energy, 322, 345, 348, 

352–355, 398, 402,  
477–478, 509

in intrinsic semiconductor, 422
in a metal, 346–349
table, 323

Fermi surface, 395
Fermi-Dirac statistics, 135,  

344–346, 398
Ferrimagnetism, 782, 844
Ferrite antenna, 852
Ferrites, 805, 844, 852. See also 

Ferrimagnetism
Ferroelectric crystals,  

727–733, 751
ferroelectric axis, 729

Ferromagnetism, 781, 844
closure domains, 788
domain wall energy, 791–793, 

844, 849
domain wall motion,  

794–795
domain walls, 787,  

790–793, 844
domains, 781, 787–789, 845
electrostatic interaction  

energy, 783
energy band model, 814–815
magnetocrystalline  

anisotropy, 789–790
materials table, 786
ordering, 781
origin, 782–785
polycrystalline materials, 

795–799
Fick’s first law, 459

Field assisted tunneling  
probability, 370

Field effect transistor, 643. See 
JFET; MOSFET

Field emission, 368–373, 398
Field emission tip, 371

anode, 371
gate, 371
Spindt tip cathode, 371

Field enhancement factor, 406
Fluence

energy, 301
photon, 301

Fluorescence, 908, 933
Flux, defined, 295

of particles, 44–45, 457
of photons, 220
radiant, 582

Flux density, 43
photon, 220

Flux quantization, 842–843
Forward bias, 533–539. See also 

pn Junction
Four probe resistivity  

measurement, 524
Fourier’s law, 163, 197
Fowler-Nordheim

anode current, 371
equation, 371
field emission current, 406

Fraunhofer, 269–270
Free surface charge  

density, 668
Frenkel defect, 72, 109
Fresnel’s equations,  

879–890, 933
Fresnel’s optical indicatrix,  

defined, 915–919, 933
extraordinary wave, 916
ordinary wave, 916

Frequency, resonant
antiresonant, 725
mechanical resonant, 725
natural angular  

frequency, 744
resonant angular  

frequency, 744
Fuchs-Sondheimer  

equation, 187
Full width at half maximum 

(FWHM), 577
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GaAs, 57, 424, 514
Gas constant, 25
Gas pressure (kinetic theory), 27
Gauge factor, 151, 476
Gauss’s law, 691–695,  

734–738, 751
Giant magnetoresistance 

(GMR), 767, 815–820, 
822, 844. See also  
Magnetoresistance

table, 818
Glasses, 85–90. See also  

Amorphous solids
melt spinning, 87

GMR. See Giant  
magnetoresistance

Grain, 77, 109
Grain boundaries, 77–79, 109

disordered, 78
Grain coarsening (growth), 79
Ground state, 238, 295

energy, 238, 263
Group index, 870–873, 933

definition, 871
Group velocity, 398,  

870–873, 933
in medium, 871
in vacuum, 871

Gruneisen’s rule, 105–107
Gruneisen’s law, 106, 123
Gruneisen’s parameter  

(table), 123
Gyromagnetic ratio, 769

Half-wave quartz plate, 940
Hall coefficient, 159,  

202, 396
for ambipolar  

conduction, 171
for intrinsic Si, 171

Hall devices, 157–161
Hall effect, 157–161, 197,  

202–203
in semiconductors,  

169–171, 517 
Hall field, 158
Hall mobility, 161
Hard magnetic materials,  

806–812, 844
neodymium-iron-boron, 810
rare earth cobalt, 809–810

single domain particles,  
807, 844

table, 806
Harmonic oscillator,  

374–379, 398
average energy, 379–380
energy, 374
potential energy of, 374
Schrödinger equation, 374
zero point energy, 375, 399

Haven ratio, 174
Heat, 46, 109
Heat capacity, 27, 109*
Heat current, 166
Heat of fusion, 91
Heat, thermal fluctuation and 

noise, 45–50
noise in an RLC circuit, 

49–50
rms noise voltage, 49
thermal equilibrium, 46

Heisenberg’s uncertainty prin-
ciple, 241–244, 295, 306

for energy and time, 242
for position and  

momentum, 242
Heisenberg, Werner, 241
Helium atom, 278–281
Helium-Neon laser, 287–290

efficiency, 290
Hervé-Vandamme  

relationship, 936
Heteroepitaxy, 75
Heterogeneous media, 747–749

Lichtenecker formula, 748
logarithmic mixture rules, 748
Maxwell-Garnett formula, 749

Heterogeneous mixture  
(multiphase solid),  
152–156, 197

Heterojunction, 568–569, 643
Heterostructure devices, 567, 568

confining layers, 569
double hetrostructure, 568

Hexagonal crystals, 57, 104
HF resistance of conductor, 

177–180
Hole, 168, 331, 411, 413–416, 

502–503
concentration in VB, 420, 430
current due to, 460

diffusion current density, 460
diffusion length, 535
effective mass, 417, 503
mean recombination time  

(pn junction), 539
mobility, 418

Homogeneous mixture, 197
Homojunction, 568, 643
Host excitation, 909
Host matrix, 908, 933
Human eye, 300

photopic vision, 300
scotopic vision, 300

Hund’s rule, 281–283, 295, 310
Hybrid orbital, 329
Hybridization, 329
Hydrogen bond, 19
Hydrogenated amorphous  

silicon. See a-Si:H
Hydrogenic atom, 257–278

electron wavefunctions,  
257–262

line spectra, 307
Hyperabrupt junctions, 556, 643
Hysteresis loop, 797–798, 844

energy dissipated per unit  
volume, 800–801

loss, 845, 851

Image charges theorem, 368
Impact ionization, 563, 643, 699
Impurities, 69–73
Incandescence, 908
Indirect bandgap  

semiconductors, 450
Inductance, 177, 775–776

of a solenoid,847
toroid, 775, 805, 850

Infinite potential well, 235–241
Insulation strength. See also  

Dielectric breakdown
aging, 706, 751

Integrated circuit (IC), 643
Intensity, defined, 295

of EM waves, 214
of light, 214, 219–220, 885

Interconnects, 190–194, 197, 210
aspect ratio, 193
effective multilevel  

capacitance, 192
low-k dielectric materials, 193
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Interconnects—Cont.

multilevel interconnect  
delay time, 193

RC time constant, 191, 193–194
Interfacial polarization. See  

Polarization
Internal discharges. See  

Dielectric breakdown
Internal quantum efficiency 

(IQE), 583
Internal reflection, 882–883, 

886–887, 937
Interplanar separation in cubic 

crystals, 944
Interstitial site, 51, 109

impurity, 71, 90–91
Intrinsic angular momentum. 

See Angular momentum; 
Spin

Intrinsic coercivity, 797
Intrinsic concentration (ni), 421, 

509, 537
Intrinsic semiconductors,  

412–426, 510
Inversion, 624–626, 643. See 

also MOSFET
Ion implantation, 633–635, 643
Ionic conduction, 197
Ionic crystals, 17
Ionically bonded solids,  

14–18, 114
table, 21

Ionization energy, 6, 15, 109, 
262, 400, 510

for nth shell, 262
of He+, 265

Irradiance, 873–875
average, 875, 933
instantaneous, 875, 933

Isoelectronic impurity, 572, 643
Isomorphous, 109
Isomorphous alloys, 90–95
Isomorphous phase diagram,  

91, 197
Isotropic substance, 109

JFET, 614–624, 643
amplifier, 620–624, 655
channel, 615, 642
characteristics, 616, 620
common source amplifier, 621

constant current region, 620
current saturation region, 620
drain, 614
drain current, 615
field effect, 620
gate, 614
general principles, 614–620
nonlinearity, 624
pentode region, 620
pinch-off condition, 617
pinch-off voltage, 576,  

616, 655
quiescent point, 621
source, 614
transconductance, 623
voltage gain, small-signal, 623

Johnson resistor noise equation, 49
Josephson effect, 840–842

dc characteristics, 841
definition of 1 V, 842

Joule’s law, 197
Junction field effect transistor. 

See JFET

k. See Wavevector
Kamerlingh Onnes, Heike, 829
Kerr effect, 929, 933

coefficients, table, 931
Kilby, Jack, 599
Kinetic (molecular) theory,  

25–36, 109
degree of freedom, 28
equipartition of energy  

theorem, 28
heat capacity, 27. See also 

Dulong-Petit rule
mean kinetic energy, 27
mean speed, 27, 30–31, 127
thermal fluctuations, 45–50

Kossel model, 81
Kramers-Kroning relations,  

893, 933

Lamellae, 100
Langevin function, 741–742
Lasers, 283–292, 295

cavity modes, 291
Doppler effect, 290
He-Ne laser. See  

Helium-Neon laser
lasing emission, 285

linewidth, 291
long-lived states, 284
metastable state, 285
output spectrum, 290–292
population inversion, 284
pump energy level, 284
pumping, 284, 296
semiconductor, 527,  

638–641
single-frequency, 640
single-mode, 640
stimulated emission,  

293, 297
threshold current, 640

Lattice, 55, 102, 109. See also 
Bravais lattices

cut-off frequency, 376
energy, 18
parameter, 56, 61, 103, 109
space, 102
waves, 374–379, 378, 398

Lattice matched, 76
Lattice vibrations, 376–387

density of states, 380, 397
heat capacity, 379
internal energy, 379
modes, 377–378, 398
state, 377, 398

Lattice-scattering-limited  
conductivity, 136

Laue technique, 943
Law of the junction, 535, 643
Lennard-Jones 6–12 potential 

energy curve, 23
Lever rule, 157
Lichtenecker formula, 748
Light absorption, 890–898

and conductivity, 895
Light as wave, 213–216
Light emitting diodes (LEDs), 

527, 566–571
brightness and efficiency of, 

582–586
electroluminescence, 567
heterojunction high intensity, 

567–569
linewidth, 577, 643, 649
luminous flux, 650, 651
materials and structures,  

572–575
output spectrum, 576–582
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principles, 566–567
spectral linewidths,  

580–581, 649
substrate, 574
turn-on (cut-in) voltage, 645

Light propagation, 890–891
attenuated, 890
conduction loss, 891
lossless, 891

Light scattering, 891,  
903–904, 934

Light waves, 860–862
Light valve, 925
Line defects, 73–77

strain field, 73
Linear combination of atomic 

orbitals (LCAO),  
315, 398

Liquid crystals (LCs), 924
Liquid crystal displays (LCDs), 

924–928
Liquidus curve, 93
Local field, 669–671,  

738–740, 752
Localized states, 507, 510
Long range order, 55, 85
Lonsdaleite, 69
Lorentz dipole oscillator  

model, 744
Lorentz equation, 738–740
Lorentz field, 670
Lorentz force, 158, 197
Lorenz number, 163.  

See also Wiedemann-
Franz-Lorenz’s law

Loss angle, 685
Loss tangent (factor), 683, 752
Low-κ dielectrics, 765

Luminescence, 907–912

activator, 908, 932

activator excitation, 909

cathodoluminescence, 908, 933

electroluminescence, 567, 

908, 933

fluorescence, 908, 933

host excitation, 909

host matrix, 908, 933

phosphorescence, 909, 933

photoluminescence, 908, 933

radiative recombination  

center, 910

Stoke’s shift, 910, 934

X-ray, 908

Luminescent (luminescence  

centers). See Activator

Luminous efficacy, 582

Luminosity function, 582

Luminous flux, 582

Luminous (photometric) flux or 

power, 295, 299

Lyman series, 307

Madelung constant, 17

Magnet, permanent, 853

table, 853

with yoke and air gap,  

853–854

Magnetic bit tracks, 822

Magnetic dipole moment,  

768–769, 845

atomic, 769–770

definition, 768

of electron, 273–277

orbital, 274, 769

per unit volume, 771

potential energy, 274

spin, 274, 769

Magnetic domains. See  

Ferromagnetism

Magnetic field (B), 197, 845, 

873–875

in a gap, 854

intensity, 773–774

transverse, 877

Magnetic field intensity 

(strength). See  

Magnetizing field (H)

Magnetic flux, 775, 845

quantization, 842–843

Magnetic flux density. See  

Magnetic field

Magnetic induction. See  

Magnetic field

Magnetic materials  

classification, 778–782

amorphous, 805

soft and hard materials,  

801–803

table, 779

Magnetic moment. See  

Magnetic dipole  

moment

Magnetic permeability, 197, 

774–778, 845. See also 

Relative permeability

quantities table, 775

relative, 774, 846

Magnetic pressure, 856

Magnetic quantities and units, 

table, 775

Magnetic quantum number,  

258, 295

Magnetic recording, 820–829

fringing magnetic field, 820

general principles, 820–825

inductive recording  

heads, 820

longitudinal recording, 821

magnetic bit tracks, 822

materials tables, 826

storage media

thin film heads, 822

Magnetic reluctance, 848

Magnetic susceptibility,  

774–778, 845

Magnetism and energy band  

diagrams, 812–815

Energy band model of  

ferromagnetism, 814–815

Pauli-Spin paramagnetism, 

812–814

Magnetization current,  

772, 845

Magnetization of matter,  

768–778

Magnetization vector (M),  

770–772, 845

and surface currents, 772, 845

Magnetization versus H,  

795–799

coercivity, 797, 843

initial magnetization, 798

remanent (residual), 797, 846

saturation, 785, 799, 846

Magnetizing field (H),  

773–774, 845

conduction current, 773

Magnetocrystalline anisotropy, 

789–790, 846

easy direction, 788, 790, 844

energy, 790, 846

hard direction, 790, 844

Magnetometer, 197
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Magnetomotive force  
(MMF), 848

Magnetoresistance, anisotropic 
and giant, 815–820, 846

current in plane (CIP), 818
ferromagnetic layer, 817
spacer, 817
spin valve, 819

Magnetostatic energy, 787, 846
density, 778
per unit volume, 776–778

Magnetostriction, 793–794, 846
saturation strain, 793

Magnetostrictive energy,  
793, 846

constant, 793
Majority carrier, 451, 510
Mass action law (semiconduc-

tors), 421, 510
with bandgap narrowing, 654

Mass fractions, 8–9, 95
Matthiessen’s rule,  

137–145, 197
combined with Nordheim’s 

rule, 147, 148, 155–156
Maxwell’s equations, 860
Maxwell-Boltzmann distribution 

function, 38–40
Maxwell’s principle of equipar-

tition of energy, 28,  
47–48

Mayadas-Shatzkes formula, 185
Mean free path, 699, 110

of electron, 134, 135,  
198, 426

in polycrystalline  
sample, 185

in thin film, 187
of gas molecules, 41, 116

Mean free time, 129, 131,  
133, 198

Mean frequency of  
collisions, 130

Mean kinetic energy and  
temperature, 25–32

Mean scattering time. See Mean 
free time

Mean speed of molecules, 40–41
Mean square free time, 133
Mean thermal expansion  

coefficient, 35

Mechanical work, 110
Meissner effect, 829, 846
Melt spinning, 87
Mesogenic state, 925
Mesogens, 924
Metalization layer, 190
Metallic bonding, 13, 110
Metallurgical junction (semicon-

ductors), 528, 643
Metal strain gauge equation, 151
Metal-metal contacts, 352–355
Metal-oxide semiconductor 

(MOS), 624–626, 644. 
See also MOSFET

threshold voltage,  
631–633, 644

Metal-oxide semiconductor field 
effect transistor. See 
MOSFET

Metals, band theory, 388–397
free electron model of,  

346–349
quantum theory of, 346–352

Miller indices, 63–66, 110
Minority carrier, 451–457, 510

diffusion, 535
diffusion length, 511
excess concentration of,  

451–457
injection, 447–457, 527,  

534–535, 644
lifetime, 453, 510
recombination time,  

453, 645
Miscibility, 110
Misfit dislocations, 77
Mixed bonding, 22–24
Mixture rules, 152–157, 203
Mobility. See Drift mobility
Mode number, 291
Modern theory of solids,  

313–409
Molar fractions, 8
Molar heat capacity, 28,  

109, 379
Mole, 8, 110
Molecular collisions, 41–45
Molecular orbital, 314
Molecular orbital theory of 

bonding, 313–318
hydrogen molecule, 313–318

Molecular orbital  
wavefunction, 398

Molecular solids, 20
Molecular speeds,  

distribution (Stern-type 
experiment), 38

Molecular velocity and energy 
distribution, 37–41

Monoclinic crystals, 104
Moseley relation, 308
MOSFET, 624–635, 644

accumulation, 641
amplifier, 656
depletion layer, 624–626, 642
early voltage, 630
enhancement, 626–631, 642
field effect and inversion, 

624–626
inversion layer, 626
ion implanted, 633–635
MOST, 644
NMOS, 644
PMOS, 644
silicon gate technology, 634
threshold voltage, 631–633, 644

Moss’s rule, 935
Motion of a diatomic molecule, 

28–29
rotational, 28–29
translational, 28–29

Mott-Jones equations, 359,  
362–363

Müller, K. Alex, 767
Mulliken electronegativity, 400
Multilevel interconnect

delay time, 193
effective capacitance, 192
RC time constant, 193–194

Nanotube, carbon, 69, 373
Natural (resonance) frequency 

of an atom, 866, 937
Nearly free electron model, 496
Néel temperature, 781
Nematic phase, 925
Newton’s second law, 25
Nichrome, 145
NMOS. See MOSFET
Node, 238
Noise, 45–50. See also  

Electrical noise
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Nondegenerate semiconductor, 
445–447, 510

Nonradiative lifetimes, 546
Nonstoichiometry, 82
Nordheim, Lothar, 148
Nordheim’s coefficient, 146

table, 147
Nordheim’s rule, 145–152,  

198, 201
combined with Matthiessen’s 

rule, 148, 155–156
Normalization condition in 

quantum mechanics, 237
n-type doping, 427–429

energy-band diagram, 428
Nucleate (solidify), 91

Ohm’s law of electrical conduc-
tion, 163, 163–164

Ohmic contacts, 487–492, 510
Optic axis, 915–916, 933

principal, 914–915, 933
Optical absorption, 469–473, 

890–898, 932
absorption coefficient,  

470, 900
band-to-band (interband), 

470, 900–903
and conductivity, 895
free carrier, 891, 938–939
lattice, 898–900
penetration depth, 470, 900
Reststrahlen absorption,  

898, 939
upper cut-off wavelength, 900

Optical activity, 922, 933
specific rotary power, 923

Optical amplifiers, 293
Optical anisotropy,  

914–920, 932
Optical cavity, 286
Optical fiber, 878, 904–907

attenuation in, 904–907, 939
cladding, 878
in communications, 878–879
core, 878

Optical fiber amplifiers,  
292–294

Erbium (Er3+ ion) doped,  
293, 311

long-lived energy level, 293

Optical field, 860
Optical indicatrix. See Fresnel’s 

optical indicatrix
Optical power. See Radiant, 

power
Optical properties of materials, 

859–940
Optical pumping, 284, 296
Optically isotropic, media, 864

crystals, 915
Orbital, 260, 295, 398

magnetic moment, 274
Orbital wavefunction, 295, 398
Orientational polarization. See 

Dipolar polarization
Orthorombic crystal, 104

Parallel rule of mixtures, 153
Paramagnetism, 780, 846

Pauli spin, 812–814, 849
Parity, 239

even, 239
odd, 239

Partial discharge, 694,  
697–699, 752

Particle flux, 43–44, 457–463
Particle statistics. See Statistics
Paschen

curves, 758
series, 307

Paschen’s law, 752
Passivated Emitter Rear  

Locally diffused cells 
(PERL), 595

Passive device, defined, 644
Pauli exclusion principle, 127, 

278–281, 295–296,  
343–344, 783

Pauli spin magnetization, 780, 
812–814, 849

Pauling scale of  
electronegativity, 22

PECVD. See Plasma-enhanced 
chemical vapor  
deposition

Peltier, coefficient, 491–492
device, 488
effect, 489, 510
figure of merit (FOM),  

522–523
maximum cooling rate, 522

Penetration depth, 246, 470, 900
Periodic array of points in space. 

See Crystal structure
PERL. See Passivated Emitter 

Rear Locally diffused 
cells

Permanent magnet, (BH)max, 
810–812

Permeability, absolute, 774.  
See also Magnetic  
permeability; Relative 
permeability

initial, 802–803, 845
maximum, 802–803, 846
relative, 774, 846

Permittivity. See Relative  
permittivity

Phase, 90, 110, 198
cored structure, 94
diagrams, 91–95, 110
equilibrium, 94
eutectic, 97–102
lever rule, 95
liquidus curve, 93
nonequilibrium cooling, 94
solidus curve, 93
tie line, 95

Phonon distribution function, 384
Phonon drag, 359, 494
Phonons, 359, 374–388, 398, 

450, 510, 902
dispersion relation, 376, 397
energy, 376
group velocity, 377
lattice cut-off frequency, 376
momentum, 376, 902
phosphors, 907–912, 934
table, 911

Phosphorescence, 909, 934
Photo-Dember effect, 468
Photoconductivity, 455–457, 510
Photodetectors, 527
Photodiodes, 635–638
Photoelectric effect, 216–221, 

296, 303
Photoemission, 324, 399
Photoexcited, 331
Photogeneration, 414,  

451–453, 510
carrier kinetic energy, 523
steady state rate, 519
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Photoinjection, 510
Photometric flux. See Luminous 

flux or power
Photon, 213–227, 296, 298

efficiency, quantum, 303
energy, 218, 222
flux, 220
momentum, 221, 222
picture, 220

Photon amplification, 283–287
Photon flux density, 220
Photovoltaic devices, principles, 

586–593. See also Solar 
cell

Photoresponse time, 454–455
Physical vapor deposition 

(PVD), 43–44, 184
Physisorption, 80
Piezoelectric

antiresonant frequency, 725
bender, 761
coefficients, 721, 763
detectors, 762
electromechanical coupling 

factor, 722
inductance, 726
materials, 752
mechanical resonant  

frequency, 725
poling, 723, 752
properties table, 722
quartz oscillators and filters, 

724–727
spark generator, 723–724
transducer, 721, 753
voltage coefficient, 724, 761

Piezoelectricity, 719–727
center of symmetry, 719
noncentrosymmetric, 720

Piezoresistive strain gauge, 476
Piezoresistivity, 473–476, 510, 

519–520
Cantilever equations, 519
diaphragm, 476
piezoresistive coefficient, 

474, 511
pin Diodes, 635–638

depletion layer  
capacitance, 637

Pinch-off, 616–620, 629,  
644, 655

Planar concentration of atoms, 
65, 110, 121

Planar defects, 77–79
Planck, Max, 225

constant, 218
Plane of incidence, 879
Plasma-enhanced chemical  

vapor deposition 
(PECVD), 89

PLZT, 752
PMOS. See MOSFET
pn Junction, 528–548

band diagram, 548–553
built-in potential, 532
depletion capacitance,  

552–553, 642
depletion region,  

529, 642
depletion region width,  

531, 553
diffused Si diode, 646
diffusion capacitance,  

559–562
diffusion current, 533–539
forward bias, 533–539, 643
GaAs, 646
heterojunction, 568
homojunction, 568
ideal diode equation, 537
ideality factor, 541
incremental resistance,  

561–562
I-V characteristics, 551
I-V for Ge, Si, and GaAs,  

538, 541
linearly graded, 557–559
no bias, 528–533
recombination current,  

540, 644
reverse bias, 541–548
reverse saturation current, 

537, 542, 644
short diode, 538
space charge layer (SCL), 

529, 642
storage capacitance. See  

Diffusion capacitance
temperature dependence, 

648
total current, 539–541
total reverse current, 543

pn Junction band diagrams, 
548–553

built-in voltage from band  
diagrams, 552–553

forward and reverse bias, 
550–553

open circuit, 548–550
Pockels cell phase modulator, 

930, 940
Pockels effect, 929, 934

coefficients, table, 931
Point defects, 69–73

Frenkel, 72
impurities, 69–73
interstitial, 71
Schottky, 71
substitutional, 70
thermodynamic, 69

Poisson ratio, 205
Polar molecules, 19
Polarizability, 662, 664, 781. 

See Polarization
defined, 662, 742
dipolar (orientational), 742
ionic, 744
orientational, 742
table, 664

Polarization, 110, 659–679
charges, 667
definition, 661–662, 752
dipolar, 674–676,  

740–742, 750
electronic, 661–665, 671–673, 

751, 867
electronic bond, 751
induced, 661, 662,  

744, 751
interfacial, 676–678, 751
ionic, 673–674, 678,  

742–747, 751, 898
mechanisms, 673–679
orientational. See  

Polarization, dipolar
relaxation peak, 745
table, 678
total, 678–679
vector, 665–669, 752

Polarization angle. See  
Brewster’s angle

Polarization modulator, 931
halfwave voltage, 931
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Polarization of EM wave, 882, 
912–914, 934

circular, 914, 932
elliptical, 914
linear, 883, 913
plane, 913

Polarized molecule, 20
Poling, 723, 752
Polycrystalline films and grain 

boundary scattering, 
184–186

Polymorphism, 66, 110
Polysilicon gate (poly-Si),  

633–635, 644
Population inversion, 284, 296. 

See also Lasers
Powder technique, 944
Power conversion efficiency 

(PCE), 583 
Poynting vector, 873–875, 934
Primary α, 101
Primary bonds, 18
Principal optic axis, 915
Principal refractive indices, 915
Probability. See Statistics
Probability of electron  

scattering, 131
Probability per unit energy, 40
Proeutectic (primary α), 101
Properties of electrons in a band, 

325–328
Property, definition, 110
p-type doping, 429–430

energy-band diagram, 429
Pumping, 284, 296
PV work, 110
Pyroelectric, crystals, 727–733

coefficients, 730
current density, 732
current responsivity, 732
detector, 732–733, 763–764
electric time constant, 764
material, 752
table, 730
thermal time constant, 764
voltage responsivity, 732

PZT, 752, 763

Q-factor, 752
Quarter-wave dielectric  stack, 

889–890

Quantization
of angular momentum,  

266–270
of energy, 256, 262–266
space, 266–270, 272

Quantum efficiency, 303
Quantum leak. See Tunneling
Quantum numbers, 237, 258

magnetic, 258, 267, 295
orbital angular momentum, 

258, 266–270, 295
principal, 258, 295
quantum state, 260
spin magnetic, 271, 297

Quantum physics, 213–311
harmonic oscillator, 374–379
tunneling, 248–255, 297, 306

Quantum well, 235–241, 244–247
Quarternary III–V alloy, 573
Quartz oscillators and filter, 

724–727
Quartz crystal

equivalent circuit, 726
inductance, 727

Quiescent point, 621

Radial function, 260–263
Radial probability density, 260

function, 261–262
Radiant, 296

flux, 295, 296, 582
power, 296

Radiant emittance, 225. See also 
Blackbody radiation

Radiation, 296
brightness

Radiative lifetime, 546
Radiative recombination  

center, 910
Radiometry

flux in, 295
Random motion, 457–463
Rare earth cobalt, magnets, 

809–810
Rayleigh scattering, 903–904

in silica, 906
Rayleigh-Jeans law, 225
Recombination, 421, 447–451, 

505, 511, 518–519
capture coefficient, direct, 519
current, 539–541, 644

direct, 447–451, 519
indirect, 447–451, 505
lifetime, 519
mean recombination time, 

453, 539
and minority carrier injection, 

451–457
rate, 518

Reflectance, 885–890, 894, 934
infrared, 898

Reflectance bandwidth, 890
Reflection of light, 879–885

coefficient, 879–885, 894, 934
external, 883, 887–888, 937
internal, 882, 883, 886–887, 937
at normal incidence, 882
phase changes, 881

Refracted light, 875, 934
phase changes, 881
transmission coefficients, 

879–885, 935
Refractive index, 863–865, 934

complex, 890–898
definition, 863
dispersion relation, 859,  

867–868, 933, 937
dispersion relation in  

diamond, 937
dispersion relation in  

GaAs, 869
isotropic, 863
at low frequencies, 864
temperature coefficient, 936
versus wavelength, 865–870

Relative atomic mass. See 
Atomic mass

Relative luminous efficiency, 582
Relative permeability, 774, 846
Relative permittivity, 659,  

660–661, 752, 754, 864, 
867, 934

complex, 682, 750, 890–891
definition, 660, 752
effective, 747
loss angle, 686
real and imaginary, 682–691
table, 678, 686

Relaxation peak, 683
Relaxation process, 680
Relaxation time, 129, 198,  

691, 752
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Reluctance, of magnetic  
component, 848

Remanence. See under  
Magnetization

Remanent magnetization. See 

under Magnetization
Residual resistivity, 140, 198
Resistivity, effective, 153
Resistivity index (n), 144
Resistivity of metals (Table), 141

due to impurities, 149
graph, 142

Resistivity of mixtures and  
porous materials, 152–157

Resistivity of thin films,  
184–190

Resistivity-mixture rule,  
154, 155

Resonant frequency. See  
Frequency, resonant

Reststrahlen absorption,  
899–900

Reststrahlen band, 898
Retarding plates, 920–922,  

934, 940
half-wave retarder, 921
quarter-wave retarder, 922
quartz retarder, 922
relative phase shift, 921
retardation, defined, 921

Reverse bias, 541–548, 644. See 

also pn Junction
RF heating, 83
Rhombohedral crystal, 104
Richardson-Dushman equation, 

364–368, 369
Root mean square velocity, 41
Rydberg constant, 270

Saturated solution, 110
Saturation of magnetism,  

785–786
Saturation voltage, 928
Schottky defect, 71, 111
Schottky effect, 368–373
Schottky coefficient, 369
Schottky junction, 477–486, 511

built-in electric field, 478
built-in potential, 478
depletion region, 479
diode, 477–482

energy band diagram, 478, 
480, 482

I-V characteristic, 480
Schottky barrier height, 479
Schottky junction  

equation, 482
solar cell, 482–486
space charge layer (SCL), 479

Schrödinger’s equation,  
231–235, 296, 497

for three dimension, 233
time dependent, 231–232
time independent,  

231–235, 296
SCL. See Space charge layer
Screw dislocation, 73, 111

line, 74
Secondary bonding, 18–21, 111
Secondary electron emission, 

332, 399
Seebeck effect, 355–364, 399

in semiconductors, 492–495
Seebeck coefficient, 356–357
Seed, 83
Selection rules, 268, 296
Sellmeier coefficients, 868
Sellmeier equation, 869, 936
Semiconductor bonding,  

328–334
Semiconductor devices,  

527–657
ultimate limits to device  

performance, 656
Semiconductor optical  

amplifiers, 638–641
active layer, 638
optical amplification, 640

Semiconductors, 328–334,  
411–523

conduction band (CB), 330
degenerate and non- 

degenerate, 445–447
direct and indirect bandgap, 

449, 450, 495–505,  
901–902

strain gauge, 476
tables, 401, 402, 424
valence band (VB), 329–330

Series rule of mixtures, 153
Shell model, 3
Shockley, William, 482, 503

Shockley equation, 537, 644
Short-range order, 86
Shunt resistance, 652
Silicon, 88, 328–334,  

412–418
amorphous, 88–90, 508. See 

also a–Si:H
conduction band, 330
crystalline, 88–90
energy band diagram, 412
hybrid orbitals, 329
hydrogenated amorphous  

silicon (a-Si:H), 89,  
506, 508

properties (table), 755
valence band, 329
zone refining, 95–97

Silicon carbide (SiC), 646
Silicon gate technology. See 

Polysilicon gate
Silicon single crystal growth, 

82–85
Simplified Fuchs-Sondheimer 

equation, 187
Skin depth for conduction, 178
Skin effect in inductor, 180
Skin effect: HF resistance of 

conductor, 177–180, 198
at 60 Hz, 207

Small signal equivalent  
circuit, 644

Snell’s law, 875–879, 934
Soft magnetic materials,  

803–806, 847
table, 804

Solar cell, 527, 586–598, 652
antireflection coating, 586, 

888–889, 932, 937
fill factor, 592, 643
finger electrodes, 586
I-V characteristics, 590–591
load line, 591
materials, devices and  

efficiencies, 595–598
maximum power  

delivered, 651
normalized current and  

voltage, 651
open circuit voltage, 587, 

592–593
operating point, 591
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passivated emitter rear  
locally diffused cells 
(PERL), 595

photocurrent, 588, 644
photovoltaic device  

principles, 586–593
power delivered to the  

load, 591
Schottky junction, 477–486
series resistance,  

593–595, 651
short circuit current, 590
shunt (parallel) resistance, 

593–595, 652
total current, 590

Solder (Pb-Sn), 97–102, 123
Solid solution and Nordheim’s 

rule, 145–152, 201
Cu-Au, 148
Cu-Ni, 146

Solid solutions, 70, 90–102, 
111, 198

interstitial, 91
isomorphous, 90
substitutional, 70

Solidification, nucleation, 78
Solidus curve, 93
Solute, 90, 111
Solvent, 90, 111
Solvus curve, 97
Sound velocity, 378
Source material, 43
Space charge layer (SCL),  

479, 529. See also pn  
Junction

Specific heat capacity,  
31–32, 109

Spectral irradiance, 224
Specularity parameter, 187
Spherical harmonic, 258
Spin, 271–272

of an electron (defined), 295
magnetic moment, 309
magnetic quantum number, 258
paired, 280
Stern-Gerlach experiment, 

275–277
Spin-orbit coupling, 310

potential energy, 310
Spontaneous emission, 283, 297
Sputtering, 184

SQUID, 830
State, electronic, 260, 272,  

297, 399
ground, 238
stationary state, 234

Statistics, 343–346
Boltzmann classical statistics, 

343–344, 397
Boltzmann tail, 346
Fermi-Dirac statistics, 135, 

343–346, 398
of donor occupation, 428, 513
of dopant ionization, 439

Stefan-Boltzmann law. See 
Blackbody radiation

Stefan’s black body radiation 
law, 198, 225

Stefan’s constant, 225–226
Stimulated emission, 283, 297
Stoichiometric compounds,  

82, 111
Stoichiometry, 82
Stoke’s shift, 910, 934
Stop-band, 890
Strain, 23, 111

shear strain, 111
volume strain, 111

Strain gauge, 205
design of, 150–152

Stress, 23, 111
shear stress, 111

Strong force, 4
Substrate, 574, 644
Supercapacitors, 714
Superconducting solenoid,  

836–838
Superconductivity, 767,  

829–838, 847
critical current, 834–836, 856
critical magnetic field,  

843, 843
critical surface, 836
critical temperature, 829, 843
high Tc materials, 830, 835
Meissner effect, 829–832, 846
Meissner state, 833
origin, 838–840
penetration depth, 832
table, 835
type I and II, 832–834, 847
vortex state, 834

weak link, 841
zero resistance, 829–832

Supercooled liquid, 85
Surface current, 772
Surface polarization charges, 666

density, 667
Surface scattering, 186
Surface tracking, 707, 752.  

See also Dielectric 
breakdown

Temperature coefficient of  
capacitance (TCC),  
753, 758

Temperature coefficient of  
resistivity (TCR or a), 
137–145, 198, 205

definition, 140
metals (table), 141

Temperature dependence of  
resistivity in pure  
metals, 134–137

Temperature of light bulb  
filament, 206

Ternary alloys, 572
Terrace-ledge-kink model. See 

Kossel model
Tetragonal crystals, 105
Thermal coefficient of linear  

expansion, 34, 111, 205
Thermal conduction,  

162–167, 205
Thermal conductivity,  

162–166, 198
Ag, 203
due to phonons, 384
graph (versus electrical  

conductivity), 163
of nonmetals, 384–387
table, 165

Thermal equilibrium, 46
Thermal equilibrium carrier 

concentration, 436, 511
Thermal evaporation, 43, 184
Thermal expansion, 32–37, 111

bimetal cantilever, 120
strain gauge, 152

Thermal expansion coefficient. 
See Thermal coefficient 
of linear expansion

Thermal fluctuations, 45–50
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Thermal generation, 331, 414
Thermal generation current, 644
Thermal radiation, 224. See also 

Blackbody radiation
Thermal resistance, 166–167, 

198, 205
Thermal velocity, 41, 426,  

440, 511
Thermalization, 469
Thermally activated  

conductivity, 174, 198
Thermally activated processes, 

50–55
activated state and activation 

energy, 51
Arrhenius type behavior, 50
diffusion, 52
diffusion coefficient, 52–53
jump frequency, 52
root mean square  

displacement, 54
Thermionic emission, 364–368, 

399, 405
constant, 367

Thermocouple, 355–364
copper-constantan, 363–364
equation, 360, 362–363, 404

Thermoelectric cooler, 487–492
Thermoelectric emf, 361, 359

metals (table), 361
Thermoelectric power, 357
Thin film, 198, 208
Thin film head, 822
Thin metal films, 184–190
Threading dislocations, 77
Transmission electron  

microscope, 305–306
Threshold voltage, 631–633, 

644, 928
Toroid, 775–778, 850
Total internal reflection (TIR), 

875–879, 883, 935
critical angle, 877, 932
phase change in, 883

Transducer. See Piezoelectric, 
transducer

Transistor action, defined, 601, 
645. See also Bipolar 
junction transistor

Transition temperature, 66
Transmission coefficient, 935

Transmittance, 885–890, 935
Transverse electric field, 879
Transverse magnetic field, 879
Trapping, 451
Triclinic crystal system, 104
Tunneling, 248–254, 297, 306

field-assisted probability, 370
probability, 250
reflection coefficient, 250
scanning tunneling  

microscope, 250–253
transmission coefficient, 249

Twisted nematic field effect, 925
Twisted  nematic  liquid  crystal  

cell, 925–926
Two-phase alloy resistivity, 

156–157
Ag–Ni, 156

Two-phase solids, 90–102

Ultracapacitors, 714
Unharmonic effect, 34, 106
Unharmonic oscillations, 34, 106
Unharmonicity, 34, 106, 385
Uniaxial crystals, 915–919
Unipolar conductivity, 130
Unit cell, 56, 61, 104, 111, 938

hexagonal, 57
Unpolarized light, 883
Upper cut-off (threshold) wave-

length, 900
graph, 901
table, 900

Vacancy, 69–73, 111, 122
concentration in Al, 72
concentration in  

semiconductor, 73
Vacuum deposition, 42–45
Vacuum level (energy),  

322–326, 477, 511
Vacuum tubes, 364–373

rectifier, 365
saturation current, 365

Valence band (VB), 329–330, 
412–416, 511

Valence electrons, 5, 111
Valency of an atom, 5
van der Waals bond, 19–20

water (H2O), 20
van der Waals-London force, 19

Vapor deposition, 43–44, 184. 
See also Physical vapor 
deposition

Varactor diodes, 556, 647
Varshni equation, 515, 578, 650
VB. See Valence band
Velocity density (distribution) 

function, 38
Vias, 190
Vibrational wave, 165
Virial theorem, 6, 7, 111–112
Visibility function, 582
Vitreous silica, 85
Volume expansion, 36
Volume expansion  

coefficient, 36
Vortex state, 834

Wave, defined, 297
dispersion relation, 397–398, 

746, 933
electromagnetic (EM),  

213–214
energy densities in an  

EM, 874
equation, 297, 379
fields in EM, 874
group velocity, 377
incident, 879
lattice, 376
light waves, 860–862
longitudinal, 375
matter waves, 234
monochromatic plane EM, 860
phase, 860, 933
phase velocity, 862,  

863, 934
propagation constant, 860
reflected, 879
transmitted, 879
transverse, 374
traveling, 213, 860–861
ultrasonic, 722
vibrational, 165

Wavefront, 859, 935
Wavefunction, 232–234

antisymmetric, 238, 239
defined, 297
eigenfunction, 234
matter waves, 234
one-electron, 279
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stationary states, 234
steady state total, 233
symmetric, 238, 239

Wavenumber, 214, 298, 860, 
935. See also Wavevector

Wavepacket, 870, 935
Wavevector (k), defined, 214, 

298, 862, 935
of electron, 298, 497–503

Weak injection, 466
Weight fractions, 8–9, 95
White LED, 907–912
Wiedemann-Franz-Lorenz’s  

law, 163

Wien’s displacement law, 277, 304
Work function, 218, 298, 323, 

399, 477–479, 478, 511
effective, 369
of a semiconductor, 423
table, 323, 405, 520

X-rays, 215–216, 221–224, 298, 
300–302, 941

diffraction, 942–945
energy fluence, 301
photon fluence, 301
radiography, 300
roentgen, 300

Young’s double-slit experiment 
(figure), 215, 227

Young’s fringes, 214
Young’s modulus, 23–24,  

108. See also  
Elastic modulus

Zener breakdown, 562–566, 
645

Zener effect, 564
Zero resistance, 829–832
Zero-point energy, 375
Zone refining, 95–97

“I don’t really start until I get my proofs back from the printers. Then I can begin serious  

writing.”

John Maynard Keynes (1883–1946)
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Li
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78.96

Atomic number
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20

40.078
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Se
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35
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Kr
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83.80P
E

R
IO

D

Al
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Si

14

28.086

P
15

30.974

S
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32.066

Cl
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35.453

Ar
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39.948

B

5

10.811

C

6

12.011

N

7

14.007

O

8

15.999

F

9

18.998

Ne

10

20.180

He

2

4.0026

Rb

37

85.468

Sr

38

87.620

Y

39

88.906

Zr

40

91.224

Nb

41

92.906

Mo

42

95.940

Tc

43

(97.907)

Ru

44

101.07

Rh

45

102.906

Pd

46

106.42

Ag

47

107.87

Cd

48

112.41

In

49

114.82

Sn

50

118.71

Sb

51

121.75

Te

52

127.60

I

53

126.90

Xe

54

131.29

Cs

55

132.91

Ba

56

137.33

La*

57

138.91

Hf

72

178.49

Ta

73

180.95

W

74

183.85

Re

75

186.21

Os

76

190.20

Ir

77

192.22

Pt

78

195.08

Au

79

196.97

80

200.59

Tl

81

204.38

Pb

82

207.20

Bi

83

208.98

Po

84

(208.99)

At

85

(209.99)

Rn

86

(222.02)

Fr

87

(223.02)

Ra

88

(226.03)

Ac**

89

(227.03)

Unq

104

(261.11)

Unp

105

(262.11)

Uns

106

(262.12)

Ce

58

140.12

Pr

59

140.91

Nd
60

144.24

Pm
61

(144.92)

Sm
62

150.36

Eu
63

151.97

Gd
64

157.25

Tb
65

158.93

Dy

66

162.50

Ho
67

164.94

Er
68

167.26

Tm
69

168.93

Yb
70

173.04

Lu
71

174.97

d  Transition Elements

**Actinides

*Lanthanides

(Rare Earths)

Th

90

232.04

Pa

91
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U

92
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Np
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Pu
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f  Transition Elements
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